1 |
|
2 |
/******************************************************* |
3 |
* |
4 |
* Copyright (c) 2003-2008 by University of Queensland |
5 |
* Earth Systems Science Computational Center (ESSCC) |
6 |
* http://www.uq.edu.au/esscc |
7 |
* |
8 |
* Primary Business: Queensland, Australia |
9 |
* Licensed under the Open Software License version 3.0 |
10 |
* http://www.opensource.org/licenses/osl-3.0.php |
11 |
* |
12 |
*******************************************************/ |
13 |
|
14 |
|
15 |
/** \file Data.h */ |
16 |
|
17 |
#ifndef DATA_H |
18 |
#define DATA_H |
19 |
#include "system_dep.h" |
20 |
|
21 |
#include "DataAbstract.h" |
22 |
#include "DataAlgorithm.h" |
23 |
#include "FunctionSpace.h" |
24 |
#include "BinaryOp.h" |
25 |
#include "UnaryOp.h" |
26 |
#include "DataException.h" |
27 |
#include "DataTypes.h" |
28 |
|
29 |
extern "C" { |
30 |
#include "DataC.h" |
31 |
/* #include "paso/Paso.h" doesn't belong in this file...causes trouble for BruceFactory.cpp */ |
32 |
} |
33 |
|
34 |
#include "esysmpi.h" |
35 |
#include <string> |
36 |
#include <algorithm> |
37 |
#include <sstream> |
38 |
|
39 |
|
40 |
#include <boost/shared_ptr.hpp> |
41 |
#include <boost/python/object.hpp> |
42 |
#include <boost/python/tuple.hpp> |
43 |
#include <boost/python/numeric.hpp> |
44 |
|
45 |
namespace escript { |
46 |
|
47 |
// |
48 |
// Forward declaration for various implementations of Data. |
49 |
class DataConstant; |
50 |
class DataTagged; |
51 |
class DataExpanded; |
52 |
class DataLazy; |
53 |
|
54 |
/** |
55 |
\brief |
56 |
Data represents a collection of datapoints. |
57 |
|
58 |
Description: |
59 |
Internally, the datapoints are actually stored by a DataAbstract object. |
60 |
The specific instance of DataAbstract used may vary over the lifetime |
61 |
of the Data object. |
62 |
Some methods on this class return references (eg getShape()). |
63 |
These references should not be used after an operation which changes the underlying DataAbstract object. |
64 |
Doing so will lead to invalid memory access. |
65 |
This should not affect any methods exposed via boost::python. |
66 |
*/ |
67 |
class Data { |
68 |
|
69 |
public: |
70 |
|
71 |
// These typedefs allow function names to be cast to pointers |
72 |
// to functions of the appropriate type when calling unaryOp etc. |
73 |
typedef double (*UnaryDFunPtr)(double); |
74 |
typedef double (*BinaryDFunPtr)(double,double); |
75 |
|
76 |
|
77 |
/** |
78 |
Constructors. |
79 |
*/ |
80 |
|
81 |
/** |
82 |
\brief |
83 |
Default constructor. |
84 |
Creates a DataEmpty object. |
85 |
*/ |
86 |
ESCRIPT_DLL_API |
87 |
Data(); |
88 |
|
89 |
/** |
90 |
\brief |
91 |
Copy constructor. |
92 |
WARNING: Only performs a shallow copy. |
93 |
*/ |
94 |
ESCRIPT_DLL_API |
95 |
Data(const Data& inData); |
96 |
|
97 |
/** |
98 |
\brief |
99 |
Constructor from another Data object. If "what" is different from the |
100 |
function space of inData the inData are tried to be interpolated to what, |
101 |
otherwise a shallow copy of inData is returned. |
102 |
*/ |
103 |
ESCRIPT_DLL_API |
104 |
Data(const Data& inData, |
105 |
const FunctionSpace& what); |
106 |
|
107 |
/** |
108 |
\brief Copy Data from an existing vector |
109 |
*/ |
110 |
|
111 |
ESCRIPT_DLL_API |
112 |
Data(const DataTypes::ValueType& value, |
113 |
const DataTypes::ShapeType& shape, |
114 |
const FunctionSpace& what=FunctionSpace(), |
115 |
bool expanded=false); |
116 |
|
117 |
/** |
118 |
\brief |
119 |
Constructor which creates a Data from a DataArrayView shape. |
120 |
|
121 |
\param value - Input - Single value applied to all Data. |
122 |
\param dataPointShape - Input - The shape of each data point. |
123 |
\param what - Input - A description of what this data represents. |
124 |
\param expanded - Input - Flag, if true fill the entire container with |
125 |
the given value. Otherwise a more efficient storage |
126 |
mechanism will be used. |
127 |
*/ |
128 |
ESCRIPT_DLL_API |
129 |
Data(double value, |
130 |
const DataTypes::ShapeType& dataPointShape=DataTypes::ShapeType(), |
131 |
const FunctionSpace& what=FunctionSpace(), |
132 |
bool expanded=false); |
133 |
|
134 |
/** |
135 |
\brief |
136 |
Constructor which performs a deep copy of a region from another Data object. |
137 |
|
138 |
\param inData - Input - Input Data object. |
139 |
\param region - Input - Region to copy. |
140 |
*/ |
141 |
ESCRIPT_DLL_API |
142 |
Data(const Data& inData, |
143 |
const DataTypes::RegionType& region); |
144 |
|
145 |
/** |
146 |
\brief |
147 |
Constructor which copies data from a python numarray. |
148 |
|
149 |
\param value - Input - Data value for a single point. |
150 |
\param what - Input - A description of what this data represents. |
151 |
\param expanded - Input - Flag, if true fill the entire container with |
152 |
the value. Otherwise a more efficient storage |
153 |
mechanism will be used. |
154 |
*/ |
155 |
ESCRIPT_DLL_API |
156 |
Data(const boost::python::numeric::array& value, |
157 |
const FunctionSpace& what=FunctionSpace(), |
158 |
bool expanded=false); |
159 |
|
160 |
/** |
161 |
\brief |
162 |
Constructor which copies data from any object that can be converted into |
163 |
a python numarray. |
164 |
|
165 |
\param value - Input - Input data. |
166 |
\param what - Input - A description of what this data represents. |
167 |
\param expanded - Input - Flag, if true fill the entire container with |
168 |
the value. Otherwise a more efficient storage |
169 |
mechanism will be used. |
170 |
*/ |
171 |
ESCRIPT_DLL_API |
172 |
Data(const boost::python::object& value, |
173 |
const FunctionSpace& what=FunctionSpace(), |
174 |
bool expanded=false); |
175 |
|
176 |
/** |
177 |
\brief |
178 |
Constructor which creates a DataConstant. |
179 |
Copies data from any object that can be converted |
180 |
into a numarray. All other parameters are copied from other. |
181 |
|
182 |
\param value - Input - Input data. |
183 |
\param other - Input - contains all other parameters. |
184 |
*/ |
185 |
ESCRIPT_DLL_API |
186 |
Data(const boost::python::object& value, |
187 |
const Data& other); |
188 |
|
189 |
/** |
190 |
\brief |
191 |
Constructor which creates a DataConstant of "shape" with constant value. |
192 |
*/ |
193 |
ESCRIPT_DLL_API |
194 |
Data(double value, |
195 |
const boost::python::tuple& shape=boost::python::make_tuple(), |
196 |
const FunctionSpace& what=FunctionSpace(), |
197 |
bool expanded=false); |
198 |
|
199 |
|
200 |
|
201 |
/** |
202 |
\brief Create a Data using an existing DataAbstract. Warning: The new object assumes ownership of the pointer! |
203 |
Once you have passed the pointer, do not delete it. |
204 |
*/ |
205 |
ESCRIPT_DLL_API |
206 |
explicit Data(DataAbstract* underlyingdata); |
207 |
|
208 |
/** |
209 |
\brief Create a Data based on the supplied DataAbstract |
210 |
*/ |
211 |
ESCRIPT_DLL_API |
212 |
explicit Data(DataAbstract_ptr underlyingdata); |
213 |
|
214 |
/** |
215 |
\brief |
216 |
Destructor |
217 |
*/ |
218 |
ESCRIPT_DLL_API |
219 |
~Data(); |
220 |
|
221 |
/** |
222 |
\brief Make this object a deep copy of "other". |
223 |
*/ |
224 |
ESCRIPT_DLL_API |
225 |
void |
226 |
copy(const Data& other); |
227 |
|
228 |
/** |
229 |
\brief Return a pointer to a deep copy of this object. |
230 |
*/ |
231 |
ESCRIPT_DLL_API |
232 |
Data* |
233 |
copySelf(); |
234 |
|
235 |
|
236 |
/** |
237 |
\brief produce a delayed evaluation version of this Data. |
238 |
*/ |
239 |
ESCRIPT_DLL_API |
240 |
Data |
241 |
delay(); |
242 |
|
243 |
/** |
244 |
\brief convert the current data into lazy data. |
245 |
*/ |
246 |
ESCRIPT_DLL_API |
247 |
void |
248 |
delaySelf(); |
249 |
|
250 |
|
251 |
/** |
252 |
Member access methods. |
253 |
*/ |
254 |
|
255 |
/** |
256 |
\brief |
257 |
switches on update protection |
258 |
|
259 |
*/ |
260 |
ESCRIPT_DLL_API |
261 |
void |
262 |
setProtection(); |
263 |
|
264 |
/** |
265 |
\brief |
266 |
Returns trueif the data object is protected against update |
267 |
|
268 |
*/ |
269 |
ESCRIPT_DLL_API |
270 |
bool |
271 |
isProtected() const; |
272 |
|
273 |
/** |
274 |
\brief |
275 |
Return the values of a data point on this process |
276 |
*/ |
277 |
ESCRIPT_DLL_API |
278 |
const boost::python::numeric::array |
279 |
getValueOfDataPoint(int dataPointNo); |
280 |
|
281 |
/** |
282 |
\brief |
283 |
sets the values of a data-point from a python object on this process |
284 |
*/ |
285 |
ESCRIPT_DLL_API |
286 |
void |
287 |
setValueOfDataPointToPyObject(int dataPointNo, const boost::python::object& py_object); |
288 |
|
289 |
/** |
290 |
\brief |
291 |
sets the values of a data-point from a numarray object on this process |
292 |
*/ |
293 |
ESCRIPT_DLL_API |
294 |
void |
295 |
setValueOfDataPointToArray(int dataPointNo, const boost::python::numeric::array&); |
296 |
|
297 |
/** |
298 |
\brief |
299 |
sets the values of a data-point on this process |
300 |
*/ |
301 |
ESCRIPT_DLL_API |
302 |
void |
303 |
setValueOfDataPoint(int dataPointNo, const double); |
304 |
|
305 |
/** |
306 |
\brief |
307 |
Return the value of the specified data-point across all processors |
308 |
*/ |
309 |
ESCRIPT_DLL_API |
310 |
const boost::python::numeric::array |
311 |
getValueOfGlobalDataPoint(int procNo, int dataPointNo); |
312 |
|
313 |
/** |
314 |
\brief |
315 |
Return the tag number associated with the given data-point. |
316 |
|
317 |
*/ |
318 |
ESCRIPT_DLL_API |
319 |
int |
320 |
getTagNumber(int dpno); |
321 |
|
322 |
/** |
323 |
\brief |
324 |
Return the C wrapper for the Data object. |
325 |
*/ |
326 |
ESCRIPT_DLL_API |
327 |
escriptDataC |
328 |
getDataC(); |
329 |
|
330 |
|
331 |
|
332 |
/** |
333 |
\brief |
334 |
Return the C wrapper for the Data object - const version. |
335 |
*/ |
336 |
ESCRIPT_DLL_API |
337 |
escriptDataC |
338 |
getDataC() const; |
339 |
|
340 |
/** |
341 |
\brief How much space is required to evaulate a sample of the Data. |
342 |
*/ |
343 |
ESCRIPT_DLL_API |
344 |
size_t |
345 |
getSampleBufferSize() const; |
346 |
|
347 |
|
348 |
|
349 |
/** |
350 |
\brief |
351 |
Write the data as a string. For large amounts of data, a summary is printed. |
352 |
*/ |
353 |
ESCRIPT_DLL_API |
354 |
std::string |
355 |
toString() const; |
356 |
|
357 |
/** |
358 |
\brief |
359 |
Whatever the current Data type make this into a DataExpanded. |
360 |
*/ |
361 |
ESCRIPT_DLL_API |
362 |
void |
363 |
expand(); |
364 |
|
365 |
/** |
366 |
\brief |
367 |
If possible convert this Data to DataTagged. This will only allow |
368 |
Constant data to be converted to tagged. An attempt to convert |
369 |
Expanded data to tagged will throw an exception. |
370 |
*/ |
371 |
ESCRIPT_DLL_API |
372 |
void |
373 |
tag(); |
374 |
|
375 |
/** |
376 |
\brief If this data is lazy, then convert it to ready data. |
377 |
What type of ready data depends on the expression. For example, Constant+Tagged==Tagged. |
378 |
*/ |
379 |
ESCRIPT_DLL_API |
380 |
void |
381 |
resolve(); |
382 |
|
383 |
|
384 |
/** |
385 |
\brief |
386 |
Return true if this Data is expanded. |
387 |
\note To determine if a sample will contain separate values for each datapoint. Use actsExpanded instead. |
388 |
*/ |
389 |
ESCRIPT_DLL_API |
390 |
bool |
391 |
isExpanded() const; |
392 |
|
393 |
/** |
394 |
\brief |
395 |
Return true if this Data is expanded or resolves to expanded. |
396 |
That is, if it has a separate value for each datapoint in the sample. |
397 |
*/ |
398 |
ESCRIPT_DLL_API |
399 |
bool |
400 |
actsExpanded() const; |
401 |
|
402 |
|
403 |
/** |
404 |
\brief |
405 |
Return true if this Data is tagged. |
406 |
*/ |
407 |
ESCRIPT_DLL_API |
408 |
bool |
409 |
isTagged() const; |
410 |
|
411 |
/** |
412 |
\brief |
413 |
Return true if this Data is constant. |
414 |
*/ |
415 |
ESCRIPT_DLL_API |
416 |
bool |
417 |
isConstant() const; |
418 |
|
419 |
/** |
420 |
\brief Return true if this Data is lazy. |
421 |
*/ |
422 |
ESCRIPT_DLL_API |
423 |
bool |
424 |
isLazy() const; |
425 |
|
426 |
/** |
427 |
\brief Return true if this data is ready. |
428 |
*/ |
429 |
ESCRIPT_DLL_API |
430 |
bool |
431 |
isReady() const; |
432 |
|
433 |
/** |
434 |
\brief |
435 |
Return true if this Data holds an instance of DataEmpty. This is _not_ the same as asking if the object |
436 |
contains datapoints. |
437 |
*/ |
438 |
ESCRIPT_DLL_API |
439 |
bool |
440 |
isEmpty() const; |
441 |
|
442 |
/** |
443 |
\brief |
444 |
Return the function space. |
445 |
*/ |
446 |
ESCRIPT_DLL_API |
447 |
inline |
448 |
const FunctionSpace& |
449 |
getFunctionSpace() const |
450 |
{ |
451 |
return m_data->getFunctionSpace(); |
452 |
} |
453 |
|
454 |
/** |
455 |
\brief |
456 |
Return a copy of the function space. |
457 |
*/ |
458 |
ESCRIPT_DLL_API |
459 |
const FunctionSpace |
460 |
getCopyOfFunctionSpace() const; |
461 |
|
462 |
/** |
463 |
\brief |
464 |
Return the domain. |
465 |
*/ |
466 |
ESCRIPT_DLL_API |
467 |
inline |
468 |
// const AbstractDomain& |
469 |
const_Domain_ptr |
470 |
getDomain() const |
471 |
{ |
472 |
return getFunctionSpace().getDomain(); |
473 |
} |
474 |
|
475 |
|
476 |
/** |
477 |
\brief |
478 |
Return the domain. |
479 |
TODO: For internal use only. This should be removed. |
480 |
*/ |
481 |
ESCRIPT_DLL_API |
482 |
inline |
483 |
// const AbstractDomain& |
484 |
Domain_ptr |
485 |
getDomainPython() const |
486 |
{ |
487 |
return getFunctionSpace().getDomainPython(); |
488 |
} |
489 |
|
490 |
/** |
491 |
\brief |
492 |
Return a copy of the domain. |
493 |
*/ |
494 |
ESCRIPT_DLL_API |
495 |
const AbstractDomain |
496 |
getCopyOfDomain() const; |
497 |
|
498 |
/** |
499 |
\brief |
500 |
Return the rank of the point data. |
501 |
*/ |
502 |
ESCRIPT_DLL_API |
503 |
inline |
504 |
unsigned int |
505 |
getDataPointRank() const |
506 |
{ |
507 |
return m_data->getRank(); |
508 |
} |
509 |
|
510 |
/** |
511 |
\brief |
512 |
Return the number of data points |
513 |
*/ |
514 |
ESCRIPT_DLL_API |
515 |
inline |
516 |
int |
517 |
getNumDataPoints() const |
518 |
{ |
519 |
return getNumSamples() * getNumDataPointsPerSample(); |
520 |
} |
521 |
/** |
522 |
\brief |
523 |
Return the number of samples. |
524 |
*/ |
525 |
ESCRIPT_DLL_API |
526 |
inline |
527 |
int |
528 |
getNumSamples() const |
529 |
{ |
530 |
return m_data->getNumSamples(); |
531 |
} |
532 |
|
533 |
/** |
534 |
\brief |
535 |
Return the number of data points per sample. |
536 |
*/ |
537 |
ESCRIPT_DLL_API |
538 |
inline |
539 |
int |
540 |
getNumDataPointsPerSample() const |
541 |
{ |
542 |
return m_data->getNumDPPSample(); |
543 |
} |
544 |
|
545 |
|
546 |
/** |
547 |
\brief |
548 |
Return the number of values in the shape for this object. |
549 |
*/ |
550 |
ESCRIPT_DLL_API |
551 |
int |
552 |
getNoValues() const |
553 |
{ |
554 |
return m_data->getNoValues(); |
555 |
} |
556 |
|
557 |
|
558 |
/** |
559 |
\brief |
560 |
dumps the object into a netCDF file |
561 |
*/ |
562 |
ESCRIPT_DLL_API |
563 |
void |
564 |
dump(const std::string fileName) const; |
565 |
|
566 |
/** |
567 |
\brief |
568 |
Return the sample data for the given sample no. This is not the |
569 |
preferred interface but is provided for use by C code. |
570 |
The buffer parameter is only required for LazyData. |
571 |
\param sampleNo - Input - the given sample no. |
572 |
\param buffer - Vector to compute (and store) sample data in. |
573 |
\return pointer to the sample data. |
574 |
*/ |
575 |
ESCRIPT_DLL_API |
576 |
inline |
577 |
const DataAbstract::ValueType::value_type* |
578 |
getSampleDataRO(DataAbstract::ValueType::size_type sampleNo, DataTypes::ValueType* buffer=0); |
579 |
|
580 |
/** |
581 |
\brief |
582 |
Return the sample data for the given sample no. This is not the |
583 |
preferred interface but is provided for use by C code. |
584 |
\param sampleNo - Input - the given sample no. |
585 |
\return pointer to the sample data. |
586 |
*/ |
587 |
ESCRIPT_DLL_API |
588 |
inline |
589 |
DataAbstract::ValueType::value_type* |
590 |
getSampleDataRW(DataAbstract::ValueType::size_type sampleNo); |
591 |
|
592 |
|
593 |
/** |
594 |
\brief |
595 |
Return the sample data for the given tag. If an attempt is made to |
596 |
access data that isn't tagged an exception will be thrown. |
597 |
\param tag - Input - the tag key. |
598 |
*/ |
599 |
ESCRIPT_DLL_API |
600 |
inline |
601 |
DataAbstract::ValueType::value_type* |
602 |
getSampleDataByTag(int tag) |
603 |
{ |
604 |
return m_data->getSampleDataByTag(tag); |
605 |
} |
606 |
|
607 |
/** |
608 |
\brief |
609 |
Return a view into the data for the data point specified. |
610 |
NOTE: Construction of the DataArrayView is a relatively expensive |
611 |
operation. |
612 |
\param sampleNo - Input - |
613 |
\param dataPointNo - Input - |
614 |
*/ |
615 |
ESCRIPT_DLL_API |
616 |
DataTypes::ValueType::const_reference |
617 |
getDataPoint(int sampleNo, int dataPointNo) const; |
618 |
|
619 |
|
620 |
ESCRIPT_DLL_API |
621 |
DataTypes::ValueType::reference |
622 |
getDataPoint(int sampleNo, int dataPointNo); |
623 |
|
624 |
|
625 |
|
626 |
/** |
627 |
\brief |
628 |
Return the offset for the given sample and point within the sample |
629 |
*/ |
630 |
ESCRIPT_DLL_API |
631 |
inline |
632 |
DataTypes::ValueType::size_type |
633 |
getDataOffset(int sampleNo, |
634 |
int dataPointNo) |
635 |
{ |
636 |
return m_data->getPointOffset(sampleNo,dataPointNo); |
637 |
} |
638 |
|
639 |
/** |
640 |
\brief |
641 |
Return a reference to the data point shape. |
642 |
*/ |
643 |
ESCRIPT_DLL_API |
644 |
inline |
645 |
const DataTypes::ShapeType& |
646 |
getDataPointShape() const |
647 |
{ |
648 |
return m_data->getShape(); |
649 |
} |
650 |
|
651 |
/** |
652 |
\brief |
653 |
Return the data point shape as a tuple of integers. |
654 |
*/ |
655 |
ESCRIPT_DLL_API |
656 |
const boost::python::tuple |
657 |
getShapeTuple() const; |
658 |
|
659 |
/** |
660 |
\brief |
661 |
Return the size of the data point. It is the product of the |
662 |
data point shape dimensions. |
663 |
*/ |
664 |
ESCRIPT_DLL_API |
665 |
int |
666 |
getDataPointSize() const; |
667 |
|
668 |
/** |
669 |
\brief |
670 |
Return the number of doubles stored for this Data. |
671 |
*/ |
672 |
ESCRIPT_DLL_API |
673 |
DataTypes::ValueType::size_type |
674 |
getLength() const; |
675 |
|
676 |
|
677 |
|
678 |
/** |
679 |
\brief |
680 |
Assign the given value to the tag assocciated with name. Implicitly converts this |
681 |
object to type DataTagged. Throws an exception if this object |
682 |
cannot be converted to a DataTagged object or name cannot be mapped onto a tag key. |
683 |
\param tagKey - Input - Integer key. |
684 |
\param value - Input - Value to associate with given key. |
685 |
==>* |
686 |
*/ |
687 |
ESCRIPT_DLL_API |
688 |
void |
689 |
setTaggedValueByName(std::string name, |
690 |
const boost::python::object& value); |
691 |
|
692 |
/** |
693 |
\brief |
694 |
Assign the given value to the tag. Implicitly converts this |
695 |
object to type DataTagged if it is constant. |
696 |
|
697 |
\param tagKey - Input - Integer key. |
698 |
\param value - Input - Value to associate with given key. |
699 |
==>* |
700 |
*/ |
701 |
ESCRIPT_DLL_API |
702 |
void |
703 |
setTaggedValue(int tagKey, |
704 |
const boost::python::object& value); |
705 |
|
706 |
/** |
707 |
\brief |
708 |
Assign the given value to the tag. Implicitly converts this |
709 |
object to type DataTagged if it is constant. |
710 |
|
711 |
\param tagKey - Input - Integer key. |
712 |
\param pointshape - Input - The shape of the value parameter |
713 |
\param value - Input - Value to associate with given key. |
714 |
\param dataOffset - Input - Offset of the begining of the point within the value parameter |
715 |
*/ |
716 |
ESCRIPT_DLL_API |
717 |
void |
718 |
setTaggedValueFromCPP(int tagKey, |
719 |
const DataTypes::ShapeType& pointshape, |
720 |
const DataTypes::ValueType& value, |
721 |
int dataOffset=0); |
722 |
|
723 |
|
724 |
|
725 |
/** |
726 |
\brief |
727 |
Copy other Data object into this Data object where mask is positive. |
728 |
*/ |
729 |
ESCRIPT_DLL_API |
730 |
void |
731 |
copyWithMask(const Data& other, |
732 |
const Data& mask); |
733 |
|
734 |
/** |
735 |
Data object operation methods and operators. |
736 |
*/ |
737 |
|
738 |
/** |
739 |
\brief |
740 |
set all values to zero |
741 |
* |
742 |
*/ |
743 |
ESCRIPT_DLL_API |
744 |
void |
745 |
setToZero(); |
746 |
|
747 |
/** |
748 |
\brief |
749 |
Interpolates this onto the given functionspace and returns |
750 |
the result as a Data object. |
751 |
* |
752 |
*/ |
753 |
ESCRIPT_DLL_API |
754 |
Data |
755 |
interpolate(const FunctionSpace& functionspace) const; |
756 |
/** |
757 |
\brief |
758 |
Calculates the gradient of the data at the data points of functionspace. |
759 |
If functionspace is not present the function space of Function(getDomain()) is used. |
760 |
* |
761 |
*/ |
762 |
ESCRIPT_DLL_API |
763 |
Data |
764 |
gradOn(const FunctionSpace& functionspace) const; |
765 |
|
766 |
ESCRIPT_DLL_API |
767 |
Data |
768 |
grad() const; |
769 |
|
770 |
/** |
771 |
\brief |
772 |
Calculate the integral over the function space domain. |
773 |
* |
774 |
*/ |
775 |
ESCRIPT_DLL_API |
776 |
boost::python::numeric::array |
777 |
integrate_const() const; |
778 |
|
779 |
ESCRIPT_DLL_API |
780 |
boost::python::numeric::array |
781 |
integrate(); |
782 |
|
783 |
/** |
784 |
\brief |
785 |
Returns 1./ Data object |
786 |
* |
787 |
*/ |
788 |
ESCRIPT_DLL_API |
789 |
Data |
790 |
oneOver() const; |
791 |
/** |
792 |
\brief |
793 |
Return a Data with a 1 for +ive values and a 0 for 0 or -ive values. |
794 |
* |
795 |
*/ |
796 |
ESCRIPT_DLL_API |
797 |
Data |
798 |
wherePositive() const; |
799 |
|
800 |
/** |
801 |
\brief |
802 |
Return a Data with a 1 for -ive values and a 0 for +ive or 0 values. |
803 |
* |
804 |
*/ |
805 |
ESCRIPT_DLL_API |
806 |
Data |
807 |
whereNegative() const; |
808 |
|
809 |
/** |
810 |
\brief |
811 |
Return a Data with a 1 for +ive or 0 values and a 0 for -ive values. |
812 |
* |
813 |
*/ |
814 |
ESCRIPT_DLL_API |
815 |
Data |
816 |
whereNonNegative() const; |
817 |
|
818 |
/** |
819 |
\brief |
820 |
Return a Data with a 1 for -ive or 0 values and a 0 for +ive values. |
821 |
* |
822 |
*/ |
823 |
ESCRIPT_DLL_API |
824 |
Data |
825 |
whereNonPositive() const; |
826 |
|
827 |
/** |
828 |
\brief |
829 |
Return a Data with a 1 for 0 values and a 0 for +ive or -ive values. |
830 |
* |
831 |
*/ |
832 |
ESCRIPT_DLL_API |
833 |
Data |
834 |
whereZero(double tol=0.0) const; |
835 |
|
836 |
/** |
837 |
\brief |
838 |
Return a Data with a 0 for 0 values and a 1 for +ive or -ive values. |
839 |
* |
840 |
*/ |
841 |
ESCRIPT_DLL_API |
842 |
Data |
843 |
whereNonZero(double tol=0.0) const; |
844 |
|
845 |
/** |
846 |
\brief |
847 |
Return the maximum absolute value of this Data object. |
848 |
|
849 |
The method is not const because lazy data needs to be expanded before Lsup can be computed. |
850 |
The _const form can be used when the Data object is const, however this will only work for |
851 |
Data which is not Lazy. |
852 |
|
853 |
For Data which contain no samples (or tagged Data for which no tags in use have a value) |
854 |
zero is returned. |
855 |
*/ |
856 |
ESCRIPT_DLL_API |
857 |
double |
858 |
Lsup(); |
859 |
|
860 |
ESCRIPT_DLL_API |
861 |
double |
862 |
Lsup_const() const; |
863 |
|
864 |
|
865 |
/** |
866 |
\brief |
867 |
Return the maximum value of this Data object. |
868 |
|
869 |
The method is not const because lazy data needs to be expanded before sup can be computed. |
870 |
The _const form can be used when the Data object is const, however this will only work for |
871 |
Data which is not Lazy. |
872 |
|
873 |
For Data which contain no samples (or tagged Data for which no tags in use have a value) |
874 |
a large negative value is returned. |
875 |
*/ |
876 |
ESCRIPT_DLL_API |
877 |
double |
878 |
sup(); |
879 |
|
880 |
ESCRIPT_DLL_API |
881 |
double |
882 |
sup_const() const; |
883 |
|
884 |
|
885 |
/** |
886 |
\brief |
887 |
Return the minimum value of this Data object. |
888 |
|
889 |
The method is not const because lazy data needs to be expanded before inf can be computed. |
890 |
The _const form can be used when the Data object is const, however this will only work for |
891 |
Data which is not Lazy. |
892 |
|
893 |
For Data which contain no samples (or tagged Data for which no tags in use have a value) |
894 |
a large positive value is returned. |
895 |
*/ |
896 |
ESCRIPT_DLL_API |
897 |
double |
898 |
inf(); |
899 |
|
900 |
ESCRIPT_DLL_API |
901 |
double |
902 |
inf_const() const; |
903 |
|
904 |
|
905 |
|
906 |
/** |
907 |
\brief |
908 |
Return the absolute value of each data point of this Data object. |
909 |
* |
910 |
*/ |
911 |
ESCRIPT_DLL_API |
912 |
Data |
913 |
abs() const; |
914 |
|
915 |
/** |
916 |
\brief |
917 |
Return the maximum value of each data point of this Data object. |
918 |
* |
919 |
*/ |
920 |
ESCRIPT_DLL_API |
921 |
Data |
922 |
maxval() const; |
923 |
|
924 |
/** |
925 |
\brief |
926 |
Return the minimum value of each data point of this Data object. |
927 |
* |
928 |
*/ |
929 |
ESCRIPT_DLL_API |
930 |
Data |
931 |
minval() const; |
932 |
|
933 |
/** |
934 |
\brief |
935 |
Return the (sample number, data-point number) of the data point with |
936 |
the minimum value in this Data object. |
937 |
*/ |
938 |
ESCRIPT_DLL_API |
939 |
const boost::python::tuple |
940 |
minGlobalDataPoint() const; |
941 |
|
942 |
ESCRIPT_DLL_API |
943 |
void |
944 |
calc_minGlobalDataPoint(int& ProcNo, int& DataPointNo) const; |
945 |
/** |
946 |
\brief |
947 |
Return the sign of each data point of this Data object. |
948 |
-1 for negative values, zero for zero values, 1 for positive values. |
949 |
* |
950 |
*/ |
951 |
ESCRIPT_DLL_API |
952 |
Data |
953 |
sign() const; |
954 |
|
955 |
/** |
956 |
\brief |
957 |
Return the symmetric part of a matrix which is half the matrix plus its transpose. |
958 |
* |
959 |
*/ |
960 |
ESCRIPT_DLL_API |
961 |
Data |
962 |
symmetric() const; |
963 |
|
964 |
/** |
965 |
\brief |
966 |
Return the nonsymmetric part of a matrix which is half the matrix minus its transpose. |
967 |
* |
968 |
*/ |
969 |
ESCRIPT_DLL_API |
970 |
Data |
971 |
nonsymmetric() const; |
972 |
|
973 |
/** |
974 |
\brief |
975 |
Return the trace of a matrix |
976 |
* |
977 |
*/ |
978 |
ESCRIPT_DLL_API |
979 |
Data |
980 |
trace(int axis_offset) const; |
981 |
|
982 |
/** |
983 |
\brief |
984 |
Transpose each data point of this Data object around the given axis. |
985 |
* |
986 |
*/ |
987 |
ESCRIPT_DLL_API |
988 |
Data |
989 |
transpose(int axis_offset) const; |
990 |
|
991 |
/** |
992 |
\brief |
993 |
Return the eigenvalues of the symmetric part at each data point of this Data object in increasing values. |
994 |
Currently this function is restricted to rank 2, square shape, and dimension 3. |
995 |
* |
996 |
*/ |
997 |
ESCRIPT_DLL_API |
998 |
Data |
999 |
eigenvalues() const; |
1000 |
|
1001 |
/** |
1002 |
\brief |
1003 |
Return the eigenvalues and corresponding eigenvcetors of the symmetric part at each data point of this Data object. |
1004 |
the eigenvalues are ordered in increasing size where eigenvalues with relative difference less than |
1005 |
tol are treated as equal. The eigenvectors are orthogonal, normalized and the sclaed such that the |
1006 |
first non-zero entry is positive. |
1007 |
Currently this function is restricted to rank 2, square shape, and dimension 3 |
1008 |
* |
1009 |
*/ |
1010 |
ESCRIPT_DLL_API |
1011 |
const boost::python::tuple |
1012 |
eigenvalues_and_eigenvectors(const double tol=1.e-12) const; |
1013 |
|
1014 |
/** |
1015 |
\brief |
1016 |
swaps the components axis0 and axis1 |
1017 |
* |
1018 |
*/ |
1019 |
ESCRIPT_DLL_API |
1020 |
Data |
1021 |
swapaxes(const int axis0, const int axis1) const; |
1022 |
|
1023 |
/** |
1024 |
\brief |
1025 |
Return the error function erf of each data point of this Data object. |
1026 |
* |
1027 |
*/ |
1028 |
ESCRIPT_DLL_API |
1029 |
Data |
1030 |
erf() const; |
1031 |
|
1032 |
/** |
1033 |
\brief |
1034 |
Return the sin of each data point of this Data object. |
1035 |
* |
1036 |
*/ |
1037 |
ESCRIPT_DLL_API |
1038 |
Data |
1039 |
sin() const; |
1040 |
|
1041 |
/** |
1042 |
\brief |
1043 |
Return the cos of each data point of this Data object. |
1044 |
* |
1045 |
*/ |
1046 |
ESCRIPT_DLL_API |
1047 |
Data |
1048 |
cos() const; |
1049 |
|
1050 |
/** |
1051 |
\brief |
1052 |
Return the tan of each data point of this Data object. |
1053 |
* |
1054 |
*/ |
1055 |
ESCRIPT_DLL_API |
1056 |
Data |
1057 |
tan() const; |
1058 |
|
1059 |
/** |
1060 |
\brief |
1061 |
Return the asin of each data point of this Data object. |
1062 |
* |
1063 |
*/ |
1064 |
ESCRIPT_DLL_API |
1065 |
Data |
1066 |
asin() const; |
1067 |
|
1068 |
/** |
1069 |
\brief |
1070 |
Return the acos of each data point of this Data object. |
1071 |
* |
1072 |
*/ |
1073 |
ESCRIPT_DLL_API |
1074 |
Data |
1075 |
acos() const; |
1076 |
|
1077 |
/** |
1078 |
\brief |
1079 |
Return the atan of each data point of this Data object. |
1080 |
* |
1081 |
*/ |
1082 |
ESCRIPT_DLL_API |
1083 |
Data |
1084 |
atan() const; |
1085 |
|
1086 |
/** |
1087 |
\brief |
1088 |
Return the sinh of each data point of this Data object. |
1089 |
* |
1090 |
*/ |
1091 |
ESCRIPT_DLL_API |
1092 |
Data |
1093 |
sinh() const; |
1094 |
|
1095 |
/** |
1096 |
\brief |
1097 |
Return the cosh of each data point of this Data object. |
1098 |
* |
1099 |
*/ |
1100 |
ESCRIPT_DLL_API |
1101 |
Data |
1102 |
cosh() const; |
1103 |
|
1104 |
/** |
1105 |
\brief |
1106 |
Return the tanh of each data point of this Data object. |
1107 |
* |
1108 |
*/ |
1109 |
ESCRIPT_DLL_API |
1110 |
Data |
1111 |
tanh() const; |
1112 |
|
1113 |
/** |
1114 |
\brief |
1115 |
Return the asinh of each data point of this Data object. |
1116 |
* |
1117 |
*/ |
1118 |
ESCRIPT_DLL_API |
1119 |
Data |
1120 |
asinh() const; |
1121 |
|
1122 |
/** |
1123 |
\brief |
1124 |
Return the acosh of each data point of this Data object. |
1125 |
* |
1126 |
*/ |
1127 |
ESCRIPT_DLL_API |
1128 |
Data |
1129 |
acosh() const; |
1130 |
|
1131 |
/** |
1132 |
\brief |
1133 |
Return the atanh of each data point of this Data object. |
1134 |
* |
1135 |
*/ |
1136 |
ESCRIPT_DLL_API |
1137 |
Data |
1138 |
atanh() const; |
1139 |
|
1140 |
/** |
1141 |
\brief |
1142 |
Return the log to base 10 of each data point of this Data object. |
1143 |
* |
1144 |
*/ |
1145 |
ESCRIPT_DLL_API |
1146 |
Data |
1147 |
log10() const; |
1148 |
|
1149 |
/** |
1150 |
\brief |
1151 |
Return the natural log of each data point of this Data object. |
1152 |
* |
1153 |
*/ |
1154 |
ESCRIPT_DLL_API |
1155 |
Data |
1156 |
log() const; |
1157 |
|
1158 |
/** |
1159 |
\brief |
1160 |
Return the exponential function of each data point of this Data object. |
1161 |
* |
1162 |
*/ |
1163 |
ESCRIPT_DLL_API |
1164 |
Data |
1165 |
exp() const; |
1166 |
|
1167 |
/** |
1168 |
\brief |
1169 |
Return the square root of each data point of this Data object. |
1170 |
* |
1171 |
*/ |
1172 |
ESCRIPT_DLL_API |
1173 |
Data |
1174 |
sqrt() const; |
1175 |
|
1176 |
/** |
1177 |
\brief |
1178 |
Return the negation of each data point of this Data object. |
1179 |
* |
1180 |
*/ |
1181 |
ESCRIPT_DLL_API |
1182 |
Data |
1183 |
neg() const; |
1184 |
|
1185 |
/** |
1186 |
\brief |
1187 |
Return the identity of each data point of this Data object. |
1188 |
Simply returns this object unmodified. |
1189 |
* |
1190 |
*/ |
1191 |
ESCRIPT_DLL_API |
1192 |
Data |
1193 |
pos() const; |
1194 |
|
1195 |
/** |
1196 |
\brief |
1197 |
Return the given power of each data point of this Data object. |
1198 |
|
1199 |
\param right Input - the power to raise the object to. |
1200 |
* |
1201 |
*/ |
1202 |
ESCRIPT_DLL_API |
1203 |
Data |
1204 |
powD(const Data& right) const; |
1205 |
|
1206 |
/** |
1207 |
\brief |
1208 |
Return the given power of each data point of this boost python object. |
1209 |
|
1210 |
\param right Input - the power to raise the object to. |
1211 |
* |
1212 |
*/ |
1213 |
ESCRIPT_DLL_API |
1214 |
Data |
1215 |
powO(const boost::python::object& right) const; |
1216 |
|
1217 |
/** |
1218 |
\brief |
1219 |
Return the given power of each data point of this boost python object. |
1220 |
|
1221 |
\param left Input - the bases |
1222 |
* |
1223 |
*/ |
1224 |
|
1225 |
ESCRIPT_DLL_API |
1226 |
Data |
1227 |
rpowO(const boost::python::object& left) const; |
1228 |
|
1229 |
/** |
1230 |
\brief |
1231 |
writes the object to a file in the DX file format |
1232 |
*/ |
1233 |
ESCRIPT_DLL_API |
1234 |
void |
1235 |
saveDX(std::string fileName) const; |
1236 |
|
1237 |
/** |
1238 |
\brief |
1239 |
writes the object to a file in the VTK file format |
1240 |
*/ |
1241 |
ESCRIPT_DLL_API |
1242 |
void |
1243 |
saveVTK(std::string fileName) const; |
1244 |
|
1245 |
/** |
1246 |
\brief |
1247 |
Overloaded operator += |
1248 |
\param right - Input - The right hand side. |
1249 |
* |
1250 |
*/ |
1251 |
ESCRIPT_DLL_API |
1252 |
Data& operator+=(const Data& right); |
1253 |
ESCRIPT_DLL_API |
1254 |
Data& operator+=(const boost::python::object& right); |
1255 |
|
1256 |
ESCRIPT_DLL_API |
1257 |
Data& operator=(const Data& other); |
1258 |
|
1259 |
/** |
1260 |
\brief |
1261 |
Overloaded operator -= |
1262 |
\param right - Input - The right hand side. |
1263 |
* |
1264 |
*/ |
1265 |
ESCRIPT_DLL_API |
1266 |
Data& operator-=(const Data& right); |
1267 |
ESCRIPT_DLL_API |
1268 |
Data& operator-=(const boost::python::object& right); |
1269 |
|
1270 |
/** |
1271 |
\brief |
1272 |
Overloaded operator *= |
1273 |
\param right - Input - The right hand side. |
1274 |
* |
1275 |
*/ |
1276 |
ESCRIPT_DLL_API |
1277 |
Data& operator*=(const Data& right); |
1278 |
ESCRIPT_DLL_API |
1279 |
Data& operator*=(const boost::python::object& right); |
1280 |
|
1281 |
/** |
1282 |
\brief |
1283 |
Overloaded operator /= |
1284 |
\param right - Input - The right hand side. |
1285 |
* |
1286 |
*/ |
1287 |
ESCRIPT_DLL_API |
1288 |
Data& operator/=(const Data& right); |
1289 |
ESCRIPT_DLL_API |
1290 |
Data& operator/=(const boost::python::object& right); |
1291 |
|
1292 |
/** |
1293 |
\brief |
1294 |
Returns true if this can be interpolated to functionspace. |
1295 |
*/ |
1296 |
ESCRIPT_DLL_API |
1297 |
bool |
1298 |
probeInterpolation(const FunctionSpace& functionspace) const; |
1299 |
|
1300 |
/** |
1301 |
Data object slicing methods. |
1302 |
*/ |
1303 |
|
1304 |
/** |
1305 |
\brief |
1306 |
Returns a slice from this Data object. |
1307 |
|
1308 |
/description |
1309 |
Implements the [] get operator in python. |
1310 |
Calls getSlice. |
1311 |
|
1312 |
\param key - Input - python slice tuple specifying |
1313 |
slice to return. |
1314 |
*/ |
1315 |
ESCRIPT_DLL_API |
1316 |
Data |
1317 |
getItem(const boost::python::object& key) const; |
1318 |
|
1319 |
/** |
1320 |
\brief |
1321 |
Copies slice from value into this Data object. |
1322 |
|
1323 |
Implements the [] set operator in python. |
1324 |
Calls setSlice. |
1325 |
|
1326 |
\param key - Input - python slice tuple specifying |
1327 |
slice to copy from value. |
1328 |
\param value - Input - Data object to copy from. |
1329 |
*/ |
1330 |
ESCRIPT_DLL_API |
1331 |
void |
1332 |
setItemD(const boost::python::object& key, |
1333 |
const Data& value); |
1334 |
|
1335 |
ESCRIPT_DLL_API |
1336 |
void |
1337 |
setItemO(const boost::python::object& key, |
1338 |
const boost::python::object& value); |
1339 |
|
1340 |
// These following public methods should be treated as private. |
1341 |
|
1342 |
/** |
1343 |
\brief |
1344 |
Perform the given unary operation on every element of every data point in |
1345 |
this Data object. |
1346 |
*/ |
1347 |
template <class UnaryFunction> |
1348 |
ESCRIPT_DLL_API |
1349 |
inline |
1350 |
void |
1351 |
unaryOp2(UnaryFunction operation); |
1352 |
|
1353 |
/** |
1354 |
\brief |
1355 |
Return a Data object containing the specified slice of |
1356 |
this Data object. |
1357 |
\param region - Input - Region to copy. |
1358 |
* |
1359 |
*/ |
1360 |
ESCRIPT_DLL_API |
1361 |
Data |
1362 |
getSlice(const DataTypes::RegionType& region) const; |
1363 |
|
1364 |
/** |
1365 |
\brief |
1366 |
Copy the specified slice from the given value into this |
1367 |
Data object. |
1368 |
\param value - Input - Data to copy from. |
1369 |
\param region - Input - Region to copy. |
1370 |
* |
1371 |
*/ |
1372 |
ESCRIPT_DLL_API |
1373 |
void |
1374 |
setSlice(const Data& value, |
1375 |
const DataTypes::RegionType& region); |
1376 |
|
1377 |
/** |
1378 |
\brief |
1379 |
print the data values to stdout. Used for debugging |
1380 |
*/ |
1381 |
ESCRIPT_DLL_API |
1382 |
void |
1383 |
print(void); |
1384 |
|
1385 |
/** |
1386 |
\brief |
1387 |
return the MPI rank number of the local data |
1388 |
MPI_COMM_WORLD is assumed and the result of MPI_Comm_size() |
1389 |
is returned |
1390 |
*/ |
1391 |
ESCRIPT_DLL_API |
1392 |
int |
1393 |
get_MPIRank(void) const; |
1394 |
|
1395 |
/** |
1396 |
\brief |
1397 |
return the MPI rank number of the local data |
1398 |
MPI_COMM_WORLD is assumed and the result of MPI_Comm_rank() |
1399 |
is returned |
1400 |
*/ |
1401 |
ESCRIPT_DLL_API |
1402 |
int |
1403 |
get_MPISize(void) const; |
1404 |
|
1405 |
/** |
1406 |
\brief |
1407 |
return the MPI rank number of the local data |
1408 |
MPI_COMM_WORLD is assumed and returned. |
1409 |
*/ |
1410 |
ESCRIPT_DLL_API |
1411 |
MPI_Comm |
1412 |
get_MPIComm(void) const; |
1413 |
|
1414 |
/** |
1415 |
\brief |
1416 |
return the object produced by the factory, which is a DataConstant or DataExpanded |
1417 |
TODO Ownership of this object should be explained in doco. |
1418 |
*/ |
1419 |
ESCRIPT_DLL_API |
1420 |
DataAbstract* |
1421 |
borrowData(void) const; |
1422 |
|
1423 |
ESCRIPT_DLL_API |
1424 |
DataAbstract_ptr |
1425 |
borrowDataPtr(void) const; |
1426 |
|
1427 |
ESCRIPT_DLL_API |
1428 |
DataReady_ptr |
1429 |
borrowReadyPtr(void) const; |
1430 |
|
1431 |
|
1432 |
|
1433 |
/** |
1434 |
\brief |
1435 |
Return a pointer to the beginning of the datapoint at the specified offset. |
1436 |
TODO Eventually these should be inlined. |
1437 |
\param i - position(offset) in the underlying datastructure |
1438 |
*/ |
1439 |
ESCRIPT_DLL_API |
1440 |
DataTypes::ValueType::const_reference |
1441 |
getDataAtOffset(DataTypes::ValueType::size_type i) const; |
1442 |
|
1443 |
|
1444 |
ESCRIPT_DLL_API |
1445 |
DataTypes::ValueType::reference |
1446 |
getDataAtOffset(DataTypes::ValueType::size_type i); |
1447 |
|
1448 |
|
1449 |
|
1450 |
/** |
1451 |
\brief Create a buffer for use by getSample |
1452 |
Allocates a DataVector large enough for DataLazy::resolveSample to operate on for the current Data. |
1453 |
Do not use this buffer for other Data instances (unless you are sure they will be the same size). |
1454 |
|
1455 |
\return A DataVector* if Data is lazy, NULL otherwise. |
1456 |
\warning This pointer must be deallocated using freeSampleBuffer to avoid cross library memory issues. |
1457 |
*/ |
1458 |
ESCRIPT_DLL_API |
1459 |
DataTypes::ValueType* |
1460 |
allocSampleBuffer() const; |
1461 |
|
1462 |
/** |
1463 |
\brief Free a buffer allocated with allocSampleBuffer. |
1464 |
\param buffer Input - pointer to the buffer to deallocate. |
1465 |
*/ |
1466 |
ESCRIPT_DLL_API void freeSampleBuffer(DataTypes::ValueType* buffer); |
1467 |
|
1468 |
protected: |
1469 |
|
1470 |
private: |
1471 |
|
1472 |
double |
1473 |
LsupWorker() const; |
1474 |
|
1475 |
double |
1476 |
supWorker() const; |
1477 |
|
1478 |
double |
1479 |
infWorker() const; |
1480 |
|
1481 |
boost::python::numeric::array |
1482 |
integrateWorker() const; |
1483 |
|
1484 |
/** |
1485 |
\brief |
1486 |
Check *this and the right operand are compatible. Throws |
1487 |
an exception if they aren't. |
1488 |
\param right - Input - The right hand side. |
1489 |
*/ |
1490 |
inline |
1491 |
void |
1492 |
operandCheck(const Data& right) const |
1493 |
{ |
1494 |
return m_data->operandCheck(*(right.m_data.get())); |
1495 |
} |
1496 |
|
1497 |
/** |
1498 |
\brief |
1499 |
Perform the specified reduction algorithm on every element of every data point in |
1500 |
this Data object according to the given function and return the single value result. |
1501 |
*/ |
1502 |
template <class BinaryFunction> |
1503 |
inline |
1504 |
double |
1505 |
algorithm(BinaryFunction operation, |
1506 |
double initial_value) const; |
1507 |
|
1508 |
/** |
1509 |
\brief |
1510 |
Reduce each data-point in this Data object using the given operation. Return a Data |
1511 |
object with the same number of data-points, but with each data-point containing only |
1512 |
one value - the result of the reduction operation on the corresponding data-point in |
1513 |
this Data object |
1514 |
*/ |
1515 |
template <class BinaryFunction> |
1516 |
inline |
1517 |
Data |
1518 |
dp_algorithm(BinaryFunction operation, |
1519 |
double initial_value) const; |
1520 |
|
1521 |
/** |
1522 |
\brief |
1523 |
Perform the given binary operation on all of the data's elements. |
1524 |
The underlying type of the right hand side (right) determines the final |
1525 |
type of *this after the operation. For example if the right hand side |
1526 |
is expanded *this will be expanded if necessary. |
1527 |
RHS is a Data object. |
1528 |
*/ |
1529 |
template <class BinaryFunction> |
1530 |
inline |
1531 |
void |
1532 |
binaryOp(const Data& right, |
1533 |
BinaryFunction operation); |
1534 |
|
1535 |
/** |
1536 |
\brief |
1537 |
Convert the data type of the RHS to match this. |
1538 |
\param right - Input - data type to match. |
1539 |
*/ |
1540 |
void |
1541 |
typeMatchLeft(Data& right) const; |
1542 |
|
1543 |
/** |
1544 |
\brief |
1545 |
Convert the data type of this to match the RHS. |
1546 |
\param right - Input - data type to match. |
1547 |
*/ |
1548 |
void |
1549 |
typeMatchRight(const Data& right); |
1550 |
|
1551 |
/** |
1552 |
\brief |
1553 |
Construct a Data object of the appropriate type. |
1554 |
*/ |
1555 |
|
1556 |
void |
1557 |
initialise(const DataTypes::ValueType& value, |
1558 |
const DataTypes::ShapeType& shape, |
1559 |
const FunctionSpace& what, |
1560 |
bool expanded); |
1561 |
|
1562 |
void |
1563 |
initialise(const boost::python::numeric::array& value, |
1564 |
const FunctionSpace& what, |
1565 |
bool expanded); |
1566 |
|
1567 |
// |
1568 |
// flag to protect the data object against any update |
1569 |
bool m_protected; |
1570 |
|
1571 |
// |
1572 |
// pointer to the actual data object |
1573 |
// boost::shared_ptr<DataAbstract> m_data; |
1574 |
DataAbstract_ptr m_data; |
1575 |
|
1576 |
// If possible please use getReadyPtr instead |
1577 |
const DataReady* |
1578 |
getReady() const; |
1579 |
|
1580 |
DataReady* |
1581 |
getReady(); |
1582 |
|
1583 |
DataReady_ptr |
1584 |
getReadyPtr(); |
1585 |
|
1586 |
const_DataReady_ptr |
1587 |
getReadyPtr() const; |
1588 |
|
1589 |
|
1590 |
}; |
1591 |
|
1592 |
} // end namespace escript |
1593 |
|
1594 |
|
1595 |
// No, this is not supposed to be at the top of the file |
1596 |
// DataAbstact needs to be declared first, then DataReady needs to be fully declared |
1597 |
// so that I can dynamic cast between them below. |
1598 |
#include "DataReady.h" |
1599 |
#include "DataLazy.h" |
1600 |
|
1601 |
namespace escript |
1602 |
{ |
1603 |
|
1604 |
inline |
1605 |
const DataReady* |
1606 |
Data::getReady() const |
1607 |
{ |
1608 |
const DataReady* dr=dynamic_cast<const DataReady*>(m_data.get()); |
1609 |
EsysAssert((dr!=0), "Error - casting to DataReady."); |
1610 |
return dr; |
1611 |
} |
1612 |
|
1613 |
inline |
1614 |
DataReady* |
1615 |
Data::getReady() |
1616 |
{ |
1617 |
DataReady* dr=dynamic_cast<DataReady*>(m_data.get()); |
1618 |
EsysAssert((dr!=0), "Error - casting to DataReady."); |
1619 |
return dr; |
1620 |
} |
1621 |
|
1622 |
inline |
1623 |
DataReady_ptr |
1624 |
Data::getReadyPtr() |
1625 |
{ |
1626 |
DataReady_ptr dr=boost::dynamic_pointer_cast<DataReady>(m_data); |
1627 |
EsysAssert((dr.get()!=0), "Error - casting to DataReady."); |
1628 |
return dr; |
1629 |
} |
1630 |
|
1631 |
|
1632 |
inline |
1633 |
const_DataReady_ptr |
1634 |
Data::getReadyPtr() const |
1635 |
{ |
1636 |
const_DataReady_ptr dr=boost::dynamic_pointer_cast<const DataReady>(m_data); |
1637 |
EsysAssert((dr.get()!=0), "Error - casting to DataReady."); |
1638 |
return dr; |
1639 |
} |
1640 |
|
1641 |
inline |
1642 |
DataAbstract::ValueType::value_type* |
1643 |
Data::getSampleDataRW(DataAbstract::ValueType::size_type sampleNo) |
1644 |
{ |
1645 |
if (isLazy()) |
1646 |
{ |
1647 |
resolve(); |
1648 |
} |
1649 |
return getReady()->getSampleData(sampleNo); |
1650 |
} |
1651 |
|
1652 |
inline |
1653 |
const DataAbstract::ValueType::value_type* |
1654 |
Data::getSampleDataRO(DataAbstract::ValueType::size_type sampleNo, DataTypes::ValueType* buffer) |
1655 |
{ |
1656 |
DataLazy* l=dynamic_cast<DataLazy*>(m_data.get()); |
1657 |
if (l!=0) |
1658 |
{ |
1659 |
size_t offset=0; |
1660 |
EsysAssert((buffer!=NULL),"Error attempt to getSampleDataRO for lazy Data with buffer==NULL"); |
1661 |
const DataTypes::ValueType* res=l->resolveSample(*buffer,0,sampleNo,offset); |
1662 |
return &((*res)[offset]); |
1663 |
} |
1664 |
return getReady()->getSampleData(sampleNo); |
1665 |
} |
1666 |
|
1667 |
|
1668 |
|
1669 |
/** |
1670 |
Modify a filename for MPI parallel output to multiple files |
1671 |
*/ |
1672 |
char *Escript_MPI_appendRankToFileName(const char *, int, int); |
1673 |
|
1674 |
/** |
1675 |
Binary Data object operators. |
1676 |
*/ |
1677 |
inline double rpow(double x,double y) |
1678 |
{ |
1679 |
return pow(y,x); |
1680 |
} |
1681 |
|
1682 |
/** |
1683 |
\brief |
1684 |
Operator+ |
1685 |
Takes two Data objects. |
1686 |
*/ |
1687 |
ESCRIPT_DLL_API Data operator+(const Data& left, const Data& right); |
1688 |
|
1689 |
/** |
1690 |
\brief |
1691 |
Operator- |
1692 |
Takes two Data objects. |
1693 |
*/ |
1694 |
ESCRIPT_DLL_API Data operator-(const Data& left, const Data& right); |
1695 |
|
1696 |
/** |
1697 |
\brief |
1698 |
Operator* |
1699 |
Takes two Data objects. |
1700 |
*/ |
1701 |
ESCRIPT_DLL_API Data operator*(const Data& left, const Data& right); |
1702 |
|
1703 |
/** |
1704 |
\brief |
1705 |
Operator/ |
1706 |
Takes two Data objects. |
1707 |
*/ |
1708 |
ESCRIPT_DLL_API Data operator/(const Data& left, const Data& right); |
1709 |
|
1710 |
/** |
1711 |
\brief |
1712 |
Operator+ |
1713 |
Takes LHS Data object and RHS python::object. |
1714 |
python::object must be convertable to Data type. |
1715 |
*/ |
1716 |
ESCRIPT_DLL_API Data operator+(const Data& left, const boost::python::object& right); |
1717 |
|
1718 |
/** |
1719 |
\brief |
1720 |
Operator- |
1721 |
Takes LHS Data object and RHS python::object. |
1722 |
python::object must be convertable to Data type. |
1723 |
*/ |
1724 |
ESCRIPT_DLL_API Data operator-(const Data& left, const boost::python::object& right); |
1725 |
|
1726 |
/** |
1727 |
\brief |
1728 |
Operator* |
1729 |
Takes LHS Data object and RHS python::object. |
1730 |
python::object must be convertable to Data type. |
1731 |
*/ |
1732 |
ESCRIPT_DLL_API Data operator*(const Data& left, const boost::python::object& right); |
1733 |
|
1734 |
/** |
1735 |
\brief |
1736 |
Operator/ |
1737 |
Takes LHS Data object and RHS python::object. |
1738 |
python::object must be convertable to Data type. |
1739 |
*/ |
1740 |
ESCRIPT_DLL_API Data operator/(const Data& left, const boost::python::object& right); |
1741 |
|
1742 |
/** |
1743 |
\brief |
1744 |
Operator+ |
1745 |
Takes LHS python::object and RHS Data object. |
1746 |
python::object must be convertable to Data type. |
1747 |
*/ |
1748 |
ESCRIPT_DLL_API Data operator+(const boost::python::object& left, const Data& right); |
1749 |
|
1750 |
/** |
1751 |
\brief |
1752 |
Operator- |
1753 |
Takes LHS python::object and RHS Data object. |
1754 |
python::object must be convertable to Data type. |
1755 |
*/ |
1756 |
ESCRIPT_DLL_API Data operator-(const boost::python::object& left, const Data& right); |
1757 |
|
1758 |
/** |
1759 |
\brief |
1760 |
Operator* |
1761 |
Takes LHS python::object and RHS Data object. |
1762 |
python::object must be convertable to Data type. |
1763 |
*/ |
1764 |
ESCRIPT_DLL_API Data operator*(const boost::python::object& left, const Data& right); |
1765 |
|
1766 |
/** |
1767 |
\brief |
1768 |
Operator/ |
1769 |
Takes LHS python::object and RHS Data object. |
1770 |
python::object must be convertable to Data type. |
1771 |
*/ |
1772 |
ESCRIPT_DLL_API Data operator/(const boost::python::object& left, const Data& right); |
1773 |
|
1774 |
|
1775 |
|
1776 |
/** |
1777 |
\brief |
1778 |
Output operator |
1779 |
*/ |
1780 |
ESCRIPT_DLL_API std::ostream& operator<<(std::ostream& o, const Data& data); |
1781 |
|
1782 |
/** |
1783 |
\brief |
1784 |
Compute a tensor product of two Data objects |
1785 |
\param arg0 - Input - Data object |
1786 |
\param arg1 - Input - Data object |
1787 |
\param axis_offset - Input - axis offset |
1788 |
\param transpose - Input - 0: transpose neither, 1: transpose arg0, 2: transpose arg1 |
1789 |
*/ |
1790 |
ESCRIPT_DLL_API |
1791 |
Data |
1792 |
C_GeneralTensorProduct(Data& arg0, |
1793 |
Data& arg1, |
1794 |
int axis_offset=0, |
1795 |
int transpose=0); |
1796 |
|
1797 |
/** |
1798 |
\brief |
1799 |
Perform the given binary operation with this and right as operands. |
1800 |
Right is a Data object. |
1801 |
*/ |
1802 |
template <class BinaryFunction> |
1803 |
inline |
1804 |
void |
1805 |
Data::binaryOp(const Data& right, |
1806 |
BinaryFunction operation) |
1807 |
{ |
1808 |
// |
1809 |
// if this has a rank of zero promote it to the rank of the RHS |
1810 |
if (getDataPointRank()==0 && right.getDataPointRank()!=0) { |
1811 |
throw DataException("Error - attempt to update rank zero object with object with rank bigger than zero."); |
1812 |
} |
1813 |
|
1814 |
if (isLazy() || right.isLazy()) |
1815 |
{ |
1816 |
throw DataException("Programmer error - attempt to call binaryOp with Lazy Data."); |
1817 |
} |
1818 |
// |
1819 |
// initially make the temporary a shallow copy |
1820 |
Data tempRight(right); |
1821 |
|
1822 |
if (getFunctionSpace()!=right.getFunctionSpace()) { |
1823 |
if (right.probeInterpolation(getFunctionSpace())) { |
1824 |
// |
1825 |
// an interpolation is required so create a new Data |
1826 |
tempRight=Data(right,this->getFunctionSpace()); |
1827 |
} else if (probeInterpolation(right.getFunctionSpace())) { |
1828 |
// |
1829 |
// interpolate onto the RHS function space |
1830 |
Data tempLeft(*this,right.getFunctionSpace()); |
1831 |
m_data=tempLeft.m_data; |
1832 |
} |
1833 |
} |
1834 |
operandCheck(tempRight); |
1835 |
// |
1836 |
// ensure this has the right type for the RHS |
1837 |
typeMatchRight(tempRight); |
1838 |
// |
1839 |
// Need to cast to the concrete types so that the correct binaryOp |
1840 |
// is called. |
1841 |
if (isExpanded()) { |
1842 |
// |
1843 |
// Expanded data will be done in parallel, the right hand side can be |
1844 |
// of any data type |
1845 |
DataExpanded* leftC=dynamic_cast<DataExpanded*>(m_data.get()); |
1846 |
EsysAssert((leftC!=0), "Programming error - casting to DataExpanded."); |
1847 |
escript::binaryOp(*leftC,*(tempRight.getReady()),operation); |
1848 |
} else if (isTagged()) { |
1849 |
// |
1850 |
// Tagged data is operated on serially, the right hand side can be |
1851 |
// either DataConstant or DataTagged |
1852 |
DataTagged* leftC=dynamic_cast<DataTagged*>(m_data.get()); |
1853 |
EsysAssert((leftC!=0), "Programming error - casting to DataTagged."); |
1854 |
if (right.isTagged()) { |
1855 |
DataTagged* rightC=dynamic_cast<DataTagged*>(tempRight.m_data.get()); |
1856 |
EsysAssert((rightC!=0), "Programming error - casting to DataTagged."); |
1857 |
escript::binaryOp(*leftC,*rightC,operation); |
1858 |
} else { |
1859 |
DataConstant* rightC=dynamic_cast<DataConstant*>(tempRight.m_data.get()); |
1860 |
EsysAssert((rightC!=0), "Programming error - casting to DataConstant."); |
1861 |
escript::binaryOp(*leftC,*rightC,operation); |
1862 |
} |
1863 |
} else if (isConstant()) { |
1864 |
DataConstant* leftC=dynamic_cast<DataConstant*>(m_data.get()); |
1865 |
DataConstant* rightC=dynamic_cast<DataConstant*>(tempRight.m_data.get()); |
1866 |
EsysAssert((leftC!=0 && rightC!=0), "Programming error - casting to DataConstant."); |
1867 |
escript::binaryOp(*leftC,*rightC,operation); |
1868 |
} |
1869 |
} |
1870 |
|
1871 |
/** |
1872 |
\brief |
1873 |
Perform the given Data object reduction algorithm on this and return the result. |
1874 |
Given operation combines each element of each data point, thus argument |
1875 |
object (*this) is a rank n Data object, and returned object is a scalar. |
1876 |
Calls escript::algorithm. |
1877 |
*/ |
1878 |
template <class BinaryFunction> |
1879 |
inline |
1880 |
double |
1881 |
Data::algorithm(BinaryFunction operation, double initial_value) const |
1882 |
{ |
1883 |
if (isExpanded()) { |
1884 |
DataExpanded* leftC=dynamic_cast<DataExpanded*>(m_data.get()); |
1885 |
EsysAssert((leftC!=0), "Programming error - casting to DataExpanded."); |
1886 |
return escript::algorithm(*leftC,operation,initial_value); |
1887 |
} else if (isTagged()) { |
1888 |
DataTagged* leftC=dynamic_cast<DataTagged*>(m_data.get()); |
1889 |
EsysAssert((leftC!=0), "Programming error - casting to DataTagged."); |
1890 |
return escript::algorithm(*leftC,operation,initial_value); |
1891 |
} else if (isConstant()) { |
1892 |
DataConstant* leftC=dynamic_cast<DataConstant*>(m_data.get()); |
1893 |
EsysAssert((leftC!=0), "Programming error - casting to DataConstant."); |
1894 |
return escript::algorithm(*leftC,operation,initial_value); |
1895 |
} else if (isEmpty()) { |
1896 |
throw DataException("Error - Operations not permitted on instances of DataEmpty."); |
1897 |
} else if (isLazy()) { |
1898 |
throw DataException("Error - Operations not permitted on instances of DataLazy."); |
1899 |
} else { |
1900 |
throw DataException("Error - Data encapsulates an unknown type."); |
1901 |
} |
1902 |
} |
1903 |
|
1904 |
/** |
1905 |
\brief |
1906 |
Perform the given data point reduction algorithm on data and return the result. |
1907 |
Given operation combines each element within each data point into a scalar, |
1908 |
thus argument object is a rank n Data object, and returned object is a |
1909 |
rank 0 Data object. |
1910 |
Calls escript::dp_algorithm. |
1911 |
*/ |
1912 |
template <class BinaryFunction> |
1913 |
inline |
1914 |
Data |
1915 |
Data::dp_algorithm(BinaryFunction operation, double initial_value) const |
1916 |
{ |
1917 |
if (isEmpty()) { |
1918 |
throw DataException("Error - Operations not permitted on instances of DataEmpty."); |
1919 |
} |
1920 |
else if (isExpanded()) { |
1921 |
Data result(0,DataTypes::ShapeType(),getFunctionSpace(),isExpanded()); |
1922 |
DataExpanded* dataE=dynamic_cast<DataExpanded*>(m_data.get()); |
1923 |
DataExpanded* resultE=dynamic_cast<DataExpanded*>(result.m_data.get()); |
1924 |
EsysAssert((dataE!=0), "Programming error - casting data to DataExpanded."); |
1925 |
EsysAssert((resultE!=0), "Programming error - casting result to DataExpanded."); |
1926 |
escript::dp_algorithm(*dataE,*resultE,operation,initial_value); |
1927 |
return result; |
1928 |
} |
1929 |
else if (isTagged()) { |
1930 |
DataTagged* dataT=dynamic_cast<DataTagged*>(m_data.get()); |
1931 |
EsysAssert((dataT!=0), "Programming error - casting data to DataTagged."); |
1932 |
DataTypes::ValueType defval(1); |
1933 |
defval[0]=0; |
1934 |
DataTagged* resultT=new DataTagged(getFunctionSpace(), DataTypes::scalarShape, defval, dataT); |
1935 |
escript::dp_algorithm(*dataT,*resultT,operation,initial_value); |
1936 |
return Data(resultT); // note: the Data object now owns the resultT pointer |
1937 |
} |
1938 |
else if (isConstant()) { |
1939 |
Data result(0,DataTypes::ShapeType(),getFunctionSpace(),isExpanded()); |
1940 |
DataConstant* dataC=dynamic_cast<DataConstant*>(m_data.get()); |
1941 |
DataConstant* resultC=dynamic_cast<DataConstant*>(result.m_data.get()); |
1942 |
EsysAssert((dataC!=0), "Programming error - casting data to DataConstant."); |
1943 |
EsysAssert((resultC!=0), "Programming error - casting result to DataConstant."); |
1944 |
escript::dp_algorithm(*dataC,*resultC,operation,initial_value); |
1945 |
return result; |
1946 |
} else if (isLazy()) { |
1947 |
throw DataException("Error - Operations not permitted on instances of DataLazy."); |
1948 |
} else { |
1949 |
throw DataException("Error - Data encapsulates an unknown type."); |
1950 |
} |
1951 |
} |
1952 |
|
1953 |
/** |
1954 |
\brief |
1955 |
Compute a tensor operation with two Data objects |
1956 |
\param arg0 - Input - Data object |
1957 |
\param arg1 - Input - Data object |
1958 |
\param operation - Input - Binary op functor |
1959 |
*/ |
1960 |
template <typename BinaryFunction> |
1961 |
inline |
1962 |
Data |
1963 |
C_TensorBinaryOperation(Data const &arg_0, |
1964 |
Data const &arg_1, |
1965 |
BinaryFunction operation) |
1966 |
{ |
1967 |
if (arg_0.isEmpty() || arg_1.isEmpty()) |
1968 |
{ |
1969 |
throw DataException("Error - Operations not permitted on instances of DataEmpty."); |
1970 |
} |
1971 |
if (arg_0.isLazy() || arg_1.isLazy()) |
1972 |
{ |
1973 |
throw DataException("Error - Operations not permitted on lazy data."); |
1974 |
} |
1975 |
// Interpolate if necessary and find an appropriate function space |
1976 |
Data arg_0_Z, arg_1_Z; |
1977 |
if (arg_0.getFunctionSpace()!=arg_1.getFunctionSpace()) { |
1978 |
if (arg_0.probeInterpolation(arg_1.getFunctionSpace())) { |
1979 |
arg_0_Z = arg_0.interpolate(arg_1.getFunctionSpace()); |
1980 |
arg_1_Z = Data(arg_1); |
1981 |
} |
1982 |
else if (arg_1.probeInterpolation(arg_0.getFunctionSpace())) { |
1983 |
arg_1_Z=arg_1.interpolate(arg_0.getFunctionSpace()); |
1984 |
arg_0_Z =Data(arg_0); |
1985 |
} |
1986 |
else { |
1987 |
throw DataException("Error - C_TensorBinaryOperation: arguments have incompatible function spaces."); |
1988 |
} |
1989 |
} else { |
1990 |
arg_0_Z = Data(arg_0); |
1991 |
arg_1_Z = Data(arg_1); |
1992 |
} |
1993 |
// Get rank and shape of inputs |
1994 |
int rank0 = arg_0_Z.getDataPointRank(); |
1995 |
int rank1 = arg_1_Z.getDataPointRank(); |
1996 |
DataTypes::ShapeType shape0 = arg_0_Z.getDataPointShape(); |
1997 |
DataTypes::ShapeType shape1 = arg_1_Z.getDataPointShape(); |
1998 |
int size0 = arg_0_Z.getDataPointSize(); |
1999 |
int size1 = arg_1_Z.getDataPointSize(); |
2000 |
|
2001 |
// Declare output Data object |
2002 |
Data res; |
2003 |
|
2004 |
if (shape0 == shape1) { |
2005 |
|
2006 |
if (arg_0_Z.isConstant() && arg_1_Z.isConstant()) { |
2007 |
res = Data(0.0, shape0, arg_1_Z.getFunctionSpace()); // DataConstant output |
2008 |
/* double *ptr_0 = &((arg_0_Z.getPointDataView().getData())[0]); |
2009 |
double *ptr_1 = &((arg_1_Z.getPointDataView().getData())[0]); |
2010 |
double *ptr_2 = &((res.getPointDataView().getData())[0]);*/ |
2011 |
double *ptr_0 = &(arg_0_Z.getDataAtOffset(0)); |
2012 |
double *ptr_1 = &(arg_1_Z.getDataAtOffset(0)); |
2013 |
double *ptr_2 = &(res.getDataAtOffset(0)); |
2014 |
|
2015 |
tensor_binary_operation(size0, ptr_0, ptr_1, ptr_2, operation); |
2016 |
} |
2017 |
else if (arg_0_Z.isConstant() && arg_1_Z.isTagged()) { |
2018 |
|
2019 |
// Prepare the DataConstant input |
2020 |
DataConstant* tmp_0=dynamic_cast<DataConstant*>(arg_0_Z.borrowData()); |
2021 |
|
2022 |
// Borrow DataTagged input from Data object |
2023 |
DataTagged* tmp_1=dynamic_cast<DataTagged*>(arg_1_Z.borrowData()); |
2024 |
|
2025 |
// Prepare a DataTagged output 2 |
2026 |
res = Data(0.0, shape0, arg_1_Z.getFunctionSpace()); // DataTagged output |
2027 |
res.tag(); |
2028 |
DataTagged* tmp_2=dynamic_cast<DataTagged*>(res.borrowData()); |
2029 |
|
2030 |
// Prepare offset into DataConstant |
2031 |
int offset_0 = tmp_0->getPointOffset(0,0); |
2032 |
double *ptr_0 = &(arg_0_Z.getDataAtOffset(offset_0)); |
2033 |
// Get the views |
2034 |
// DataArrayView view_1 = tmp_1->getDefaultValue(); |
2035 |
// DataArrayView view_2 = tmp_2->getDefaultValue(); |
2036 |
// // Get the pointers to the actual data |
2037 |
// double *ptr_1 = &((view_1.getData())[0]); |
2038 |
// double *ptr_2 = &((view_2.getData())[0]); |
2039 |
|
2040 |
// Get the pointers to the actual data |
2041 |
double *ptr_1 = &(tmp_1->getDefaultValue(0)); |
2042 |
double *ptr_2 = &(tmp_2->getDefaultValue(0)); |
2043 |
|
2044 |
// Compute a result for the default |
2045 |
tensor_binary_operation(size0, ptr_0, ptr_1, ptr_2, operation); |
2046 |
// Compute a result for each tag |
2047 |
const DataTagged::DataMapType& lookup_1=tmp_1->getTagLookup(); |
2048 |
DataTagged::DataMapType::const_iterator i; // i->first is a tag, i->second is an offset into memory |
2049 |
for (i=lookup_1.begin();i!=lookup_1.end();i++) { |
2050 |
tmp_2->addTag(i->first); |
2051 |
/* DataArrayView view_1 = tmp_1->getDataPointByTag(i->first); |
2052 |
DataArrayView view_2 = tmp_2->getDataPointByTag(i->first); |
2053 |
double *ptr_1 = &view_1.getData(0); |
2054 |
double *ptr_2 = &view_2.getData(0);*/ |
2055 |
double *ptr_1 = &(tmp_1->getDataByTag(i->first,0)); |
2056 |
double *ptr_2 = &(tmp_2->getDataByTag(i->first,0)); |
2057 |
|
2058 |
tensor_binary_operation(size0, ptr_0, ptr_1, ptr_2, operation); |
2059 |
} |
2060 |
|
2061 |
} |
2062 |
else if (arg_0_Z.isConstant() && arg_1_Z.isExpanded()) { |
2063 |
|
2064 |
res = Data(0.0, shape0, arg_1_Z.getFunctionSpace(),true); // DataExpanded output |
2065 |
DataConstant* tmp_0=dynamic_cast<DataConstant*>(arg_0_Z.borrowData()); |
2066 |
DataExpanded* tmp_1=dynamic_cast<DataExpanded*>(arg_1_Z.borrowData()); |
2067 |
DataExpanded* tmp_2=dynamic_cast<DataExpanded*>(res.borrowData()); |
2068 |
|
2069 |
int sampleNo_1,dataPointNo_1; |
2070 |
int numSamples_1 = arg_1_Z.getNumSamples(); |
2071 |
int numDataPointsPerSample_1 = arg_1_Z.getNumDataPointsPerSample(); |
2072 |
int offset_0 = tmp_0->getPointOffset(0,0); |
2073 |
#pragma omp parallel for private(sampleNo_1,dataPointNo_1) schedule(static) |
2074 |
for (sampleNo_1 = 0; sampleNo_1 < numSamples_1; sampleNo_1++) { |
2075 |
for (dataPointNo_1 = 0; dataPointNo_1 < numDataPointsPerSample_1; dataPointNo_1++) { |
2076 |
int offset_1 = tmp_1->getPointOffset(sampleNo_1,dataPointNo_1); |
2077 |
int offset_2 = tmp_2->getPointOffset(sampleNo_1,dataPointNo_1); |
2078 |
// double *ptr_0 = &((arg_0_Z.getPointDataView().getData())[offset_0]); |
2079 |
// double *ptr_1 = &((arg_1_Z.getPointDataView().getData())[offset_1]); |
2080 |
// double *ptr_2 = &((res.getPointDataView().getData())[offset_2]); |
2081 |
|
2082 |
double *ptr_0 = &(arg_0_Z.getDataAtOffset(offset_0)); |
2083 |
double *ptr_1 = &(arg_1_Z.getDataAtOffset(offset_1)); |
2084 |
double *ptr_2 = &(res.getDataAtOffset(offset_2)); |
2085 |
tensor_binary_operation(size0, ptr_0, ptr_1, ptr_2, operation); |
2086 |
} |
2087 |
} |
2088 |
|
2089 |
} |
2090 |
else if (arg_0_Z.isTagged() && arg_1_Z.isConstant()) { |
2091 |
|
2092 |
// Borrow DataTagged input from Data object |
2093 |
DataTagged* tmp_0=dynamic_cast<DataTagged*>(arg_0_Z.borrowData()); |
2094 |
|
2095 |
// Prepare the DataConstant input |
2096 |
DataConstant* tmp_1=dynamic_cast<DataConstant*>(arg_1_Z.borrowData()); |
2097 |
|
2098 |
// Prepare a DataTagged output 2 |
2099 |
res = Data(0.0, shape0, arg_0_Z.getFunctionSpace()); // DataTagged output |
2100 |
res.tag(); |
2101 |
DataTagged* tmp_2=dynamic_cast<DataTagged*>(res.borrowData()); |
2102 |
|
2103 |
// Prepare offset into DataConstant |
2104 |
int offset_1 = tmp_1->getPointOffset(0,0); |
2105 |
// double *ptr_1 = &((arg_1_Z.getPointDataView().getData())[offset_1]); |
2106 |
double *ptr_1 = &(arg_1_Z.getDataAtOffset(offset_1)); |
2107 |
// Get the views |
2108 |
// DataArrayView view_0 = tmp_0->getDefaultValue(); |
2109 |
// DataArrayView view_2 = tmp_2->getDefaultValue(); |
2110 |
// // Get the pointers to the actual data |
2111 |
// double *ptr_0 = &((view_0.getData())[0]); |
2112 |
// double *ptr_2 = &((view_2.getData())[0]); |
2113 |
// Get the pointers to the actual data |
2114 |
double *ptr_0 = &(tmp_0->getDefaultValue(0)); |
2115 |
double *ptr_2 = &(tmp_2->getDefaultValue(0)); |
2116 |
// Compute a result for the default |
2117 |
tensor_binary_operation(size0, ptr_0, ptr_1, ptr_2, operation); |
2118 |
// Compute a result for each tag |
2119 |
const DataTagged::DataMapType& lookup_0=tmp_0->getTagLookup(); |
2120 |
DataTagged::DataMapType::const_iterator i; // i->first is a tag, i->second is an offset into memory |
2121 |
for (i=lookup_0.begin();i!=lookup_0.end();i++) { |
2122 |
tmp_2->addTag(i->first); |
2123 |
// DataArrayView view_0 = tmp_0->getDataPointByTag(i->first); |
2124 |
// DataArrayView view_2 = tmp_2->getDataPointByTag(i->first); |
2125 |
// double *ptr_0 = &view_0.getData(0); |
2126 |
// double *ptr_2 = &view_2.getData(0); |
2127 |
double *ptr_0 = &(tmp_0->getDataByTag(i->first,0)); |
2128 |
double *ptr_2 = &(tmp_2->getDataByTag(i->first,0)); |
2129 |
tensor_binary_operation(size0, ptr_0, ptr_1, ptr_2, operation); |
2130 |
} |
2131 |
|
2132 |
} |
2133 |
else if (arg_0_Z.isTagged() && arg_1_Z.isTagged()) { |
2134 |
|
2135 |
// Borrow DataTagged input from Data object |
2136 |
DataTagged* tmp_0=dynamic_cast<DataTagged*>(arg_0_Z.borrowData()); |
2137 |
|
2138 |
// Borrow DataTagged input from Data object |
2139 |
DataTagged* tmp_1=dynamic_cast<DataTagged*>(arg_1_Z.borrowData()); |
2140 |
|
2141 |
// Prepare a DataTagged output 2 |
2142 |
res = Data(0.0, shape0, arg_1_Z.getFunctionSpace()); |
2143 |
res.tag(); // DataTagged output |
2144 |
DataTagged* tmp_2=dynamic_cast<DataTagged*>(res.borrowData()); |
2145 |
|
2146 |
// // Get the views |
2147 |
// DataArrayView view_0 = tmp_0->getDefaultValue(); |
2148 |
// DataArrayView view_1 = tmp_1->getDefaultValue(); |
2149 |
// DataArrayView view_2 = tmp_2->getDefaultValue(); |
2150 |
// // Get the pointers to the actual data |
2151 |
// double *ptr_0 = &((view_0.getData())[0]); |
2152 |
// double *ptr_1 = &((view_1.getData())[0]); |
2153 |
// double *ptr_2 = &((view_2.getData())[0]); |
2154 |
|
2155 |
// Get the pointers to the actual data |
2156 |
double *ptr_0 = &(tmp_0->getDefaultValue(0)); |
2157 |
double *ptr_1 = &(tmp_1->getDefaultValue(0)); |
2158 |
double *ptr_2 = &(tmp_2->getDefaultValue(0)); |
2159 |
|
2160 |
// Compute a result for the default |
2161 |
tensor_binary_operation(size0, ptr_0, ptr_1, ptr_2, operation); |
2162 |
// Merge the tags |
2163 |
DataTagged::DataMapType::const_iterator i; // i->first is a tag, i->second is an offset into memory |
2164 |
const DataTagged::DataMapType& lookup_0=tmp_0->getTagLookup(); |
2165 |
const DataTagged::DataMapType& lookup_1=tmp_1->getTagLookup(); |
2166 |
for (i=lookup_0.begin();i!=lookup_0.end();i++) { |
2167 |
tmp_2->addTag(i->first); // use tmp_2 to get correct shape |
2168 |
} |
2169 |
for (i=lookup_1.begin();i!=lookup_1.end();i++) { |
2170 |
tmp_2->addTag(i->first); |
2171 |
} |
2172 |
// Compute a result for each tag |
2173 |
const DataTagged::DataMapType& lookup_2=tmp_2->getTagLookup(); |
2174 |
for (i=lookup_2.begin();i!=lookup_2.end();i++) { |
2175 |
|
2176 |
// DataArrayView view_0 = tmp_0->getDataPointByTag(i->first); |
2177 |
// DataArrayView view_1 = tmp_1->getDataPointByTag(i->first); |
2178 |
// DataArrayView view_2 = tmp_2->getDataPointByTag(i->first); |
2179 |
// double *ptr_0 = &view_0.getData(0); |
2180 |
// double *ptr_1 = &view_1.getData(0); |
2181 |
// double *ptr_2 = &view_2.getData(0); |
2182 |
|
2183 |
double *ptr_0 = &(tmp_0->getDataByTag(i->first,0)); |
2184 |
double *ptr_1 = &(tmp_1->getDataByTag(i->first,0)); |
2185 |
double *ptr_2 = &(tmp_2->getDataByTag(i->first,0)); |
2186 |
|
2187 |
tensor_binary_operation(size0, ptr_0, ptr_1, ptr_2, operation); |
2188 |
} |
2189 |
|
2190 |
} |
2191 |
else if (arg_0_Z.isTagged() && arg_1_Z.isExpanded()) { |
2192 |
|
2193 |
// After finding a common function space above the two inputs have the same numSamples and num DPPS |
2194 |
res = Data(0.0, shape0, arg_1_Z.getFunctionSpace(),true); // DataExpanded output |
2195 |
DataTagged* tmp_0=dynamic_cast<DataTagged*>(arg_0_Z.borrowData()); |
2196 |
DataExpanded* tmp_1=dynamic_cast<DataExpanded*>(arg_1_Z.borrowData()); |
2197 |
DataExpanded* tmp_2=dynamic_cast<DataExpanded*>(res.borrowData()); |
2198 |
|
2199 |
int sampleNo_0,dataPointNo_0; |
2200 |
int numSamples_0 = arg_0_Z.getNumSamples(); |
2201 |
int numDataPointsPerSample_0 = arg_0_Z.getNumDataPointsPerSample(); |
2202 |
#pragma omp parallel for private(sampleNo_0,dataPointNo_0) schedule(static) |
2203 |
for (sampleNo_0 = 0; sampleNo_0 < numSamples_0; sampleNo_0++) { |
2204 |
int offset_0 = tmp_0->getPointOffset(sampleNo_0,0); // They're all the same, so just use #0 |
2205 |
double *ptr_0 = &(arg_0_Z.getDataAtOffset(offset_0)); |
2206 |
for (dataPointNo_0 = 0; dataPointNo_0 < numDataPointsPerSample_0; dataPointNo_0++) { |
2207 |
int offset_1 = tmp_1->getPointOffset(sampleNo_0,dataPointNo_0); |
2208 |
int offset_2 = tmp_2->getPointOffset(sampleNo_0,dataPointNo_0); |
2209 |
|
2210 |
// double *ptr_1 = &((arg_1_Z.getPointDataView().getData())[offset_1]); |
2211 |
// double *ptr_2 = &((res.getPointDataView().getData())[offset_2]); |
2212 |
double *ptr_1 = &(arg_1_Z.getDataAtOffset(offset_1)); |
2213 |
double *ptr_2 = &(res.getDataAtOffset(offset_2)); |
2214 |
|
2215 |
|
2216 |
tensor_binary_operation(size0, ptr_0, ptr_1, ptr_2, operation); |
2217 |
} |
2218 |
} |
2219 |
|
2220 |
} |
2221 |
else if (arg_0_Z.isExpanded() && arg_1_Z.isConstant()) { |
2222 |
|
2223 |
res = Data(0.0, shape0, arg_1_Z.getFunctionSpace(),true); // DataExpanded output |
2224 |
DataExpanded* tmp_0=dynamic_cast<DataExpanded*>(arg_0_Z.borrowData()); |
2225 |
DataConstant* tmp_1=dynamic_cast<DataConstant*>(arg_1_Z.borrowData()); |
2226 |
DataExpanded* tmp_2=dynamic_cast<DataExpanded*>(res.borrowData()); |
2227 |
|
2228 |
int sampleNo_0,dataPointNo_0; |
2229 |
int numSamples_0 = arg_0_Z.getNumSamples(); |
2230 |
int numDataPointsPerSample_0 = arg_0_Z.getNumDataPointsPerSample(); |
2231 |
int offset_1 = tmp_1->getPointOffset(0,0); |
2232 |
#pragma omp parallel for private(sampleNo_0,dataPointNo_0) schedule(static) |
2233 |
for (sampleNo_0 = 0; sampleNo_0 < numSamples_0; sampleNo_0++) { |
2234 |
for (dataPointNo_0 = 0; dataPointNo_0 < numDataPointsPerSample_0; dataPointNo_0++) { |
2235 |
int offset_0 = tmp_0->getPointOffset(sampleNo_0,dataPointNo_0); |
2236 |
int offset_2 = tmp_2->getPointOffset(sampleNo_0,dataPointNo_0); |
2237 |
|
2238 |
// double *ptr_0 = &((arg_0_Z.getPointDataView().getData())[offset_0]); |
2239 |
// double *ptr_1 = &((arg_1_Z.getPointDataView().getData())[offset_1]); |
2240 |
// double *ptr_2 = &((res.getPointDataView().getData())[offset_2]); |
2241 |
|
2242 |
double *ptr_0 = &(arg_0_Z.getDataAtOffset(offset_0)); |
2243 |
double *ptr_1 = &(arg_1_Z.getDataAtOffset(offset_1)); |
2244 |
double *ptr_2 = &(res.getDataAtOffset(offset_2)); |
2245 |
|
2246 |
|
2247 |
tensor_binary_operation(size0, ptr_0, ptr_1, ptr_2, operation); |
2248 |
} |
2249 |
} |
2250 |
|
2251 |
} |
2252 |
else if (arg_0_Z.isExpanded() && arg_1_Z.isTagged()) { |
2253 |
|
2254 |
// After finding a common function space above the two inputs have the same numSamples and num DPPS |
2255 |
res = Data(0.0, shape0, arg_1_Z.getFunctionSpace(),true); // DataExpanded output |
2256 |
DataExpanded* tmp_0=dynamic_cast<DataExpanded*>(arg_0_Z.borrowData()); |
2257 |
DataTagged* tmp_1=dynamic_cast<DataTagged*>(arg_1_Z.borrowData()); |
2258 |
DataExpanded* tmp_2=dynamic_cast<DataExpanded*>(res.borrowData()); |
2259 |
|
2260 |
int sampleNo_0,dataPointNo_0; |
2261 |
int numSamples_0 = arg_0_Z.getNumSamples(); |
2262 |
int numDataPointsPerSample_0 = arg_0_Z.getNumDataPointsPerSample(); |
2263 |
#pragma omp parallel for private(sampleNo_0,dataPointNo_0) schedule(static) |
2264 |
for (sampleNo_0 = 0; sampleNo_0 < numSamples_0; sampleNo_0++) { |
2265 |
int offset_1 = tmp_1->getPointOffset(sampleNo_0,0); |
2266 |
double *ptr_1 = &(arg_1_Z.getDataAtOffset(offset_1)); |
2267 |
for (dataPointNo_0 = 0; dataPointNo_0 < numDataPointsPerSample_0; dataPointNo_0++) { |
2268 |
int offset_0 = tmp_0->getPointOffset(sampleNo_0,dataPointNo_0); |
2269 |
int offset_2 = tmp_2->getPointOffset(sampleNo_0,dataPointNo_0); |
2270 |
double *ptr_0 = &(arg_0_Z.getDataAtOffset(offset_0)); |
2271 |
double *ptr_2 = &(res.getDataAtOffset(offset_2)); |
2272 |
tensor_binary_operation(size0, ptr_0, ptr_1, ptr_2, operation); |
2273 |
} |
2274 |
} |
2275 |
|
2276 |
} |
2277 |
else if (arg_0_Z.isExpanded() && arg_1_Z.isExpanded()) { |
2278 |
|
2279 |
// After finding a common function space above the two inputs have the same numSamples and num DPPS |
2280 |
res = Data(0.0, shape0, arg_1_Z.getFunctionSpace(),true); // DataExpanded output |
2281 |
DataExpanded* tmp_0=dynamic_cast<DataExpanded*>(arg_0_Z.borrowData()); |
2282 |
DataExpanded* tmp_1=dynamic_cast<DataExpanded*>(arg_1_Z.borrowData()); |
2283 |
DataExpanded* tmp_2=dynamic_cast<DataExpanded*>(res.borrowData()); |
2284 |
|
2285 |
int sampleNo_0,dataPointNo_0; |
2286 |
int numSamples_0 = arg_0_Z.getNumSamples(); |
2287 |
int numDataPointsPerSample_0 = arg_0_Z.getNumDataPointsPerSample(); |
2288 |
#pragma omp parallel for private(sampleNo_0,dataPointNo_0) schedule(static) |
2289 |
for (sampleNo_0 = 0; sampleNo_0 < numSamples_0; sampleNo_0++) { |
2290 |
for (dataPointNo_0 = 0; dataPointNo_0 < numDataPointsPerSample_0; dataPointNo_0++) { |
2291 |
int offset_0 = tmp_0->getPointOffset(sampleNo_0,dataPointNo_0); |
2292 |
int offset_1 = tmp_1->getPointOffset(sampleNo_0,dataPointNo_0); |
2293 |
int offset_2 = tmp_2->getPointOffset(sampleNo_0,dataPointNo_0); |
2294 |
double *ptr_0 = &(arg_0_Z.getDataAtOffset(offset_0)); |
2295 |
double *ptr_1 = &(arg_1_Z.getDataAtOffset(offset_1)); |
2296 |
double *ptr_2 = &(res.getDataAtOffset(offset_2)); |
2297 |
tensor_binary_operation(size0, ptr_0, ptr_1, ptr_2, operation); |
2298 |
} |
2299 |
} |
2300 |
|
2301 |
} |
2302 |
else { |
2303 |
throw DataException("Error - C_TensorBinaryOperation: unknown combination of inputs"); |
2304 |
} |
2305 |
|
2306 |
} else if (0 == rank0) { |
2307 |
|
2308 |
if (arg_0_Z.isConstant() && arg_1_Z.isConstant()) { |
2309 |
res = Data(0.0, shape1, arg_1_Z.getFunctionSpace()); // DataConstant output |
2310 |
double *ptr_0 = &(arg_0_Z.getDataAtOffset(0)); |
2311 |
double *ptr_1 = &(arg_1_Z.getDataAtOffset(0)); |
2312 |
double *ptr_2 = &(res.getDataAtOffset(0)); |
2313 |
tensor_binary_operation(size1, ptr_0[0], ptr_1, ptr_2, operation); |
2314 |
} |
2315 |
else if (arg_0_Z.isConstant() && arg_1_Z.isTagged()) { |
2316 |
|
2317 |
// Prepare the DataConstant input |
2318 |
DataConstant* tmp_0=dynamic_cast<DataConstant*>(arg_0_Z.borrowData()); |
2319 |
|
2320 |
// Borrow DataTagged input from Data object |
2321 |
DataTagged* tmp_1=dynamic_cast<DataTagged*>(arg_1_Z.borrowData()); |
2322 |
|
2323 |
// Prepare a DataTagged output 2 |
2324 |
res = Data(0.0, shape1, arg_1_Z.getFunctionSpace()); // DataTagged output |
2325 |
res.tag(); |
2326 |
DataTagged* tmp_2=dynamic_cast<DataTagged*>(res.borrowData()); |
2327 |
|
2328 |
// Prepare offset into DataConstant |
2329 |
int offset_0 = tmp_0->getPointOffset(0,0); |
2330 |
double *ptr_0 = &(arg_0_Z.getDataAtOffset(offset_0)); |
2331 |
// Get the views |
2332 |
// DataArrayView view_1 = tmp_1->getDefaultValue(); |
2333 |
// DataArrayView view_2 = tmp_2->getDefaultValue(); |
2334 |
// // Get the pointers to the actual data |
2335 |
// double *ptr_1 = &((view_1.getData())[0]); |
2336 |
// double *ptr_2 = &((view_2.getData())[0]); |
2337 |
double *ptr_1 = &(tmp_1->getDefaultValue(0)); |
2338 |
double *ptr_2 = &(tmp_2->getDefaultValue(0)); |
2339 |
|
2340 |
// Compute a result for the default |
2341 |
tensor_binary_operation(size1, ptr_0[0], ptr_1, ptr_2, operation); |
2342 |
// Compute a result for each tag |
2343 |
const DataTagged::DataMapType& lookup_1=tmp_1->getTagLookup(); |
2344 |
DataTagged::DataMapType::const_iterator i; // i->first is a tag, i->second is an offset into memory |
2345 |
for (i=lookup_1.begin();i!=lookup_1.end();i++) { |
2346 |
tmp_2->addTag(i->first); |
2347 |
// DataArrayView view_1 = tmp_1->getDataPointByTag(i->first); |
2348 |
// DataArrayView view_2 = tmp_2->getDataPointByTag(i->first); |
2349 |
// double *ptr_1 = &view_1.getData(0); |
2350 |
// double *ptr_2 = &view_2.getData(0); |
2351 |
double *ptr_1 = &(tmp_1->getDataByTag(i->first,0)); |
2352 |
double *ptr_2 = &(tmp_2->getDataByTag(i->first,0)); |
2353 |
tensor_binary_operation(size1, ptr_0[0], ptr_1, ptr_2, operation); |
2354 |
} |
2355 |
|
2356 |
} |
2357 |
else if (arg_0_Z.isConstant() && arg_1_Z.isExpanded()) { |
2358 |
|
2359 |
res = Data(0.0, shape1, arg_1_Z.getFunctionSpace(),true); // DataExpanded output |
2360 |
DataConstant* tmp_0=dynamic_cast<DataConstant*>(arg_0_Z.borrowData()); |
2361 |
DataExpanded* tmp_1=dynamic_cast<DataExpanded*>(arg_1_Z.borrowData()); |
2362 |
DataExpanded* tmp_2=dynamic_cast<DataExpanded*>(res.borrowData()); |
2363 |
|
2364 |
int sampleNo_1,dataPointNo_1; |
2365 |
int numSamples_1 = arg_1_Z.getNumSamples(); |
2366 |
int numDataPointsPerSample_1 = arg_1_Z.getNumDataPointsPerSample(); |
2367 |
int offset_0 = tmp_0->getPointOffset(0,0); |
2368 |
#pragma omp parallel for private(sampleNo_1,dataPointNo_1) schedule(static) |
2369 |
for (sampleNo_1 = 0; sampleNo_1 < numSamples_1; sampleNo_1++) { |
2370 |
for (dataPointNo_1 = 0; dataPointNo_1 < numDataPointsPerSample_1; dataPointNo_1++) { |
2371 |
int offset_1 = tmp_1->getPointOffset(sampleNo_1,dataPointNo_1); |
2372 |
int offset_2 = tmp_2->getPointOffset(sampleNo_1,dataPointNo_1); |
2373 |
double *ptr_0 = &(arg_0_Z.getDataAtOffset(offset_0)); |
2374 |
double *ptr_1 = &(arg_1_Z.getDataAtOffset(offset_1)); |
2375 |
double *ptr_2 = &(res.getDataAtOffset(offset_2)); |
2376 |
tensor_binary_operation(size1, ptr_0[0], ptr_1, ptr_2, operation); |
2377 |
|
2378 |
} |
2379 |
} |
2380 |
|
2381 |
} |
2382 |
else if (arg_0_Z.isTagged() && arg_1_Z.isConstant()) { |
2383 |
|
2384 |
// Borrow DataTagged input from Data object |
2385 |
DataTagged* tmp_0=dynamic_cast<DataTagged*>(arg_0_Z.borrowData()); |
2386 |
|
2387 |
// Prepare the DataConstant input |
2388 |
DataConstant* tmp_1=dynamic_cast<DataConstant*>(arg_1_Z.borrowData()); |
2389 |
|
2390 |
// Prepare a DataTagged output 2 |
2391 |
res = Data(0.0, shape1, arg_0_Z.getFunctionSpace()); // DataTagged output |
2392 |
res.tag(); |
2393 |
DataTagged* tmp_2=dynamic_cast<DataTagged*>(res.borrowData()); |
2394 |
|
2395 |
// Prepare offset into DataConstant |
2396 |
int offset_1 = tmp_1->getPointOffset(0,0); |
2397 |
// double *ptr_1 = &((arg_1_Z.getPointDataView().getData())[offset_1]); |
2398 |
double *ptr_1 = &(arg_1_Z.getDataAtOffset(offset_1)); |
2399 |
// Get the views |
2400 |
/* DataArrayView view_0 = tmp_0->getDefaultValue(); |
2401 |
DataArrayView view_2 = tmp_2->getDefaultValue(); |
2402 |
// Get the pointers to the actual data |
2403 |
double *ptr_0 = &((view_0.getData())[0]); |
2404 |
double *ptr_2 = &((view_2.getData())[0]);*/ |
2405 |
|
2406 |
// Get the pointers to the actual data |
2407 |
double *ptr_0 = &(tmp_0->getDefaultValue(0)); |
2408 |
double *ptr_2 = &(tmp_2->getDefaultValue(0)); |
2409 |
|
2410 |
|
2411 |
// Compute a result for the default |
2412 |
tensor_binary_operation(size1, ptr_0[0], ptr_1, ptr_2, operation); |
2413 |
// Compute a result for each tag |
2414 |
const DataTagged::DataMapType& lookup_0=tmp_0->getTagLookup(); |
2415 |
DataTagged::DataMapType::const_iterator i; // i->first is a tag, i->second is an offset into memory |
2416 |
for (i=lookup_0.begin();i!=lookup_0.end();i++) { |
2417 |
tmp_2->addTag(i->first); |
2418 |
/* DataArrayView view_0 = tmp_0->getDataPointByTag(i->first); |
2419 |
DataArrayView view_2 = tmp_2->getDataPointByTag(i->first); |
2420 |
double *ptr_0 = &view_0.getData(0); |
2421 |
double *ptr_2 = &view_2.getData(0);*/ |
2422 |
double *ptr_0 = &(tmp_0->getDataByTag(i->first,0)); |
2423 |
double *ptr_2 = &(tmp_2->getDataByTag(i->first,0)); |
2424 |
|
2425 |
tensor_binary_operation(size1, ptr_0[0], ptr_1, ptr_2, operation); |
2426 |
} |
2427 |
|
2428 |
} |
2429 |
else if (arg_0_Z.isTagged() && arg_1_Z.isTagged()) { |
2430 |
|
2431 |
// Borrow DataTagged input from Data object |
2432 |
DataTagged* tmp_0=dynamic_cast<DataTagged*>(arg_0_Z.borrowData()); |
2433 |
|
2434 |
// Borrow DataTagged input from Data object |
2435 |
DataTagged* tmp_1=dynamic_cast<DataTagged*>(arg_1_Z.borrowData()); |
2436 |
|
2437 |
// Prepare a DataTagged output 2 |
2438 |
res = Data(0.0, shape1, arg_1_Z.getFunctionSpace()); |
2439 |
res.tag(); // DataTagged output |
2440 |
DataTagged* tmp_2=dynamic_cast<DataTagged*>(res.borrowData()); |
2441 |
|
2442 |
// Get the views |
2443 |
/* DataArrayView view_0 = tmp_0->getDefaultValue(); |
2444 |
DataArrayView view_1 = tmp_1->getDefaultValue(); |
2445 |
DataArrayView view_2 = tmp_2->getDefaultValue(); |
2446 |
// Get the pointers to the actual data |
2447 |
double *ptr_0 = &((view_0.getData())[0]); |
2448 |
double *ptr_1 = &((view_1.getData())[0]); |
2449 |
double *ptr_2 = &((view_2.getData())[0]);*/ |
2450 |
|
2451 |
// Get the pointers to the actual data |
2452 |
double *ptr_0 = &(tmp_0->getDefaultValue(0)); |
2453 |
double *ptr_1 = &(tmp_1->getDefaultValue(0)); |
2454 |
double *ptr_2 = &(tmp_2->getDefaultValue(0)); |
2455 |
|
2456 |
|
2457 |
// Compute a result for the default |
2458 |
tensor_binary_operation(size1, ptr_0[0], ptr_1, ptr_2, operation); |
2459 |
// Merge the tags |
2460 |
DataTagged::DataMapType::const_iterator i; // i->first is a tag, i->second is an offset into memory |
2461 |
const DataTagged::DataMapType& lookup_0=tmp_0->getTagLookup(); |
2462 |
const DataTagged::DataMapType& lookup_1=tmp_1->getTagLookup(); |
2463 |
for (i=lookup_0.begin();i!=lookup_0.end();i++) { |
2464 |
tmp_2->addTag(i->first); // use tmp_2 to get correct shape |
2465 |
} |
2466 |
for (i=lookup_1.begin();i!=lookup_1.end();i++) { |
2467 |
tmp_2->addTag(i->first); |
2468 |
} |
2469 |
// Compute a result for each tag |
2470 |
const DataTagged::DataMapType& lookup_2=tmp_2->getTagLookup(); |
2471 |
for (i=lookup_2.begin();i!=lookup_2.end();i++) { |
2472 |
|
2473 |
/* DataArrayView view_0 = tmp_0->getDataPointByTag(i->first); |
2474 |
DataArrayView view_1 = tmp_1->getDataPointByTag(i->first); |
2475 |
DataArrayView view_2 = tmp_2->getDataPointByTag(i->first); |
2476 |
double *ptr_0 = &view_0.getData(0); |
2477 |
double *ptr_1 = &view_1.getData(0); |
2478 |
double *ptr_2 = &view_2.getData(0);*/ |
2479 |
|
2480 |
double *ptr_0 = &(tmp_0->getDataByTag(i->first,0)); |
2481 |
double *ptr_1 = &(tmp_1->getDataByTag(i->first,0)); |
2482 |
double *ptr_2 = &(tmp_2->getDataByTag(i->first,0)); |
2483 |
|
2484 |
tensor_binary_operation(size1, ptr_0[0], ptr_1, ptr_2, operation); |
2485 |
} |
2486 |
|
2487 |
} |
2488 |
else if (arg_0_Z.isTagged() && arg_1_Z.isExpanded()) { |
2489 |
|
2490 |
// After finding a common function space above the two inputs have the same numSamples and num DPPS |
2491 |
res = Data(0.0, shape1, arg_1_Z.getFunctionSpace(),true); // DataExpanded output |
2492 |
DataTagged* tmp_0=dynamic_cast<DataTagged*>(arg_0_Z.borrowData()); |
2493 |
DataExpanded* tmp_1=dynamic_cast<DataExpanded*>(arg_1_Z.borrowData()); |
2494 |
DataExpanded* tmp_2=dynamic_cast<DataExpanded*>(res.borrowData()); |
2495 |
|
2496 |
int sampleNo_0,dataPointNo_0; |
2497 |
int numSamples_0 = arg_0_Z.getNumSamples(); |
2498 |
int numDataPointsPerSample_0 = arg_0_Z.getNumDataPointsPerSample(); |
2499 |
#pragma omp parallel for private(sampleNo_0,dataPointNo_0) schedule(static) |
2500 |
for (sampleNo_0 = 0; sampleNo_0 < numSamples_0; sampleNo_0++) { |
2501 |
int offset_0 = tmp_0->getPointOffset(sampleNo_0,0); // They're all the same, so just use #0 |
2502 |
double *ptr_0 = &(arg_0_Z.getDataAtOffset(offset_0)); |
2503 |
for (dataPointNo_0 = 0; dataPointNo_0 < numDataPointsPerSample_0; dataPointNo_0++) { |
2504 |
int offset_1 = tmp_1->getPointOffset(sampleNo_0,dataPointNo_0); |
2505 |
int offset_2 = tmp_2->getPointOffset(sampleNo_0,dataPointNo_0); |
2506 |
double *ptr_1 = &(arg_1_Z.getDataAtOffset(offset_1)); |
2507 |
double *ptr_2 = &(res.getDataAtOffset(offset_2)); |
2508 |
tensor_binary_operation(size1, ptr_0[0], ptr_1, ptr_2, operation); |
2509 |
} |
2510 |
} |
2511 |
|
2512 |
} |
2513 |
else if (arg_0_Z.isExpanded() && arg_1_Z.isConstant()) { |
2514 |
|
2515 |
res = Data(0.0, shape1, arg_1_Z.getFunctionSpace(),true); // DataExpanded output |
2516 |
DataExpanded* tmp_0=dynamic_cast<DataExpanded*>(arg_0_Z.borrowData()); |
2517 |
DataConstant* tmp_1=dynamic_cast<DataConstant*>(arg_1_Z.borrowData()); |
2518 |
DataExpanded* tmp_2=dynamic_cast<DataExpanded*>(res.borrowData()); |
2519 |
|
2520 |
int sampleNo_0,dataPointNo_0; |
2521 |
int numSamples_0 = arg_0_Z.getNumSamples(); |
2522 |
int numDataPointsPerSample_0 = arg_0_Z.getNumDataPointsPerSample(); |
2523 |
int offset_1 = tmp_1->getPointOffset(0,0); |
2524 |
#pragma omp parallel for private(sampleNo_0,dataPointNo_0) schedule(static) |
2525 |
for (sampleNo_0 = 0; sampleNo_0 < numSamples_0; sampleNo_0++) { |
2526 |
for (dataPointNo_0 = 0; dataPointNo_0 < numDataPointsPerSample_0; dataPointNo_0++) { |
2527 |
int offset_0 = tmp_0->getPointOffset(sampleNo_0,dataPointNo_0); |
2528 |
int offset_2 = tmp_2->getPointOffset(sampleNo_0,dataPointNo_0); |
2529 |
double *ptr_0 = &(arg_0_Z.getDataAtOffset(offset_0)); |
2530 |
double *ptr_1 = &(arg_1_Z.getDataAtOffset(offset_1)); |
2531 |
double *ptr_2 = &(res.getDataAtOffset(offset_2)); |
2532 |
tensor_binary_operation(size1, ptr_0[0], ptr_1, ptr_2, operation); |
2533 |
} |
2534 |
} |
2535 |
|
2536 |
|
2537 |
} |
2538 |
else if (arg_0_Z.isExpanded() && arg_1_Z.isTagged()) { |
2539 |
|
2540 |
// After finding a common function space above the two inputs have the same numSamples and num DPPS |
2541 |
res = Data(0.0, shape1, arg_1_Z.getFunctionSpace(),true); // DataExpanded output |
2542 |
DataExpanded* tmp_0=dynamic_cast<DataExpanded*>(arg_0_Z.borrowData()); |
2543 |
DataTagged* tmp_1=dynamic_cast<DataTagged*>(arg_1_Z.borrowData()); |
2544 |
DataExpanded* tmp_2=dynamic_cast<DataExpanded*>(res.borrowData()); |
2545 |
|
2546 |
int sampleNo_0,dataPointNo_0; |
2547 |
int numSamples_0 = arg_0_Z.getNumSamples(); |
2548 |
int numDataPointsPerSample_0 = arg_0_Z.getNumDataPointsPerSample(); |
2549 |
#pragma omp parallel for private(sampleNo_0,dataPointNo_0) schedule(static) |
2550 |
for (sampleNo_0 = 0; sampleNo_0 < numSamples_0; sampleNo_0++) { |
2551 |
int offset_1 = tmp_1->getPointOffset(sampleNo_0,0); |
2552 |
double *ptr_1 = &(arg_1_Z.getDataAtOffset(offset_1)); |
2553 |
for (dataPointNo_0 = 0; dataPointNo_0 < numDataPointsPerSample_0; dataPointNo_0++) { |
2554 |
int offset_0 = tmp_0->getPointOffset(sampleNo_0,dataPointNo_0); |
2555 |
int offset_2 = tmp_2->getPointOffset(sampleNo_0,dataPointNo_0); |
2556 |
double *ptr_0 = &(arg_0_Z.getDataAtOffset(offset_0)); |
2557 |
double *ptr_2 = &(res.getDataAtOffset(offset_2)); |
2558 |
tensor_binary_operation(size1, ptr_0[0], ptr_1, ptr_2, operation); |
2559 |
} |
2560 |
} |
2561 |
|
2562 |
} |
2563 |
else if (arg_0_Z.isExpanded() && arg_1_Z.isExpanded()) { |
2564 |
|
2565 |
// After finding a common function space above the two inputs have the same numSamples and num DPPS |
2566 |
res = Data(0.0, shape1, arg_1_Z.getFunctionSpace(),true); // DataExpanded output |
2567 |
DataExpanded* tmp_0=dynamic_cast<DataExpanded*>(arg_0_Z.borrowData()); |
2568 |
DataExpanded* tmp_1=dynamic_cast<DataExpanded*>(arg_1_Z.borrowData()); |
2569 |
DataExpanded* tmp_2=dynamic_cast<DataExpanded*>(res.borrowData()); |
2570 |
|
2571 |
int sampleNo_0,dataPointNo_0; |
2572 |
int numSamples_0 = arg_0_Z.getNumSamples(); |
2573 |
int numDataPointsPerSample_0 = arg_0_Z.getNumDataPointsPerSample(); |
2574 |
#pragma omp parallel for private(sampleNo_0,dataPointNo_0) schedule(static) |
2575 |
for (sampleNo_0 = 0; sampleNo_0 < numSamples_0; sampleNo_0++) { |
2576 |
for (dataPointNo_0 = 0; dataPointNo_0 < numDataPointsPerSample_0; dataPointNo_0++) { |
2577 |
int offset_0 = tmp_0->getPointOffset(sampleNo_0,dataPointNo_0); |
2578 |
int offset_1 = tmp_1->getPointOffset(sampleNo_0,dataPointNo_0); |
2579 |
int offset_2 = tmp_2->getPointOffset(sampleNo_0,dataPointNo_0); |
2580 |
double *ptr_0 = &(arg_0_Z.getDataAtOffset(offset_0)); |
2581 |
double *ptr_1 = &(arg_1_Z.getDataAtOffset(offset_1)); |
2582 |
double *ptr_2 = &(res.getDataAtOffset(offset_2)); |
2583 |
tensor_binary_operation(size1, ptr_0[0], ptr_1, ptr_2, operation); |
2584 |
} |
2585 |
} |
2586 |
|
2587 |
} |
2588 |
else { |
2589 |
throw DataException("Error - C_TensorBinaryOperation: unknown combination of inputs"); |
2590 |
} |
2591 |
|
2592 |
} else if (0 == rank1) { |
2593 |
|
2594 |
if (arg_0_Z.isConstant() && arg_1_Z.isConstant()) { |
2595 |
res = Data(0.0, shape0, arg_1_Z.getFunctionSpace()); // DataConstant output |
2596 |
double *ptr_0 = &(arg_0_Z.getDataAtOffset(0)); |
2597 |
double *ptr_1 = &(arg_1_Z.getDataAtOffset(0)); |
2598 |
double *ptr_2 = &(res.getDataAtOffset(0)); |
2599 |
tensor_binary_operation(size0, ptr_0, ptr_1[0], ptr_2, operation); |
2600 |
} |
2601 |
else if (arg_0_Z.isConstant() && arg_1_Z.isTagged()) { |
2602 |
|
2603 |
// Prepare the DataConstant input |
2604 |
DataConstant* tmp_0=dynamic_cast<DataConstant*>(arg_0_Z.borrowData()); |
2605 |
|
2606 |
// Borrow DataTagged input from Data object |
2607 |
DataTagged* tmp_1=dynamic_cast<DataTagged*>(arg_1_Z.borrowData()); |
2608 |
|
2609 |
// Prepare a DataTagged output 2 |
2610 |
res = Data(0.0, shape0, arg_1_Z.getFunctionSpace()); // DataTagged output |
2611 |
res.tag(); |
2612 |
DataTagged* tmp_2=dynamic_cast<DataTagged*>(res.borrowData()); |
2613 |
|
2614 |
// Prepare offset into DataConstant |
2615 |
int offset_0 = tmp_0->getPointOffset(0,0); |
2616 |
double *ptr_0 = &(arg_0_Z.getDataAtOffset(offset_0)); |
2617 |
// Get the views |
2618 |
/* DataArrayView view_1 = tmp_1->getDefaultValue(); |
2619 |
DataArrayView view_2 = tmp_2->getDefaultValue(); |
2620 |
// Get the pointers to the actual data |
2621 |
double *ptr_1 = &((view_1.getData())[0]); |
2622 |
double *ptr_2 = &((view_2.getData())[0]);*/ |
2623 |
//Get the pointers to the actual data |
2624 |
double *ptr_1 = &(tmp_1->getDefaultValue(0)); |
2625 |
double *ptr_2 = &(tmp_2->getDefaultValue(0)); |
2626 |
|
2627 |
// Compute a result for the default |
2628 |
tensor_binary_operation(size0, ptr_0, ptr_1[0], ptr_2, operation); |
2629 |
// Compute a result for each tag |
2630 |
const DataTagged::DataMapType& lookup_1=tmp_1->getTagLookup(); |
2631 |
DataTagged::DataMapType::const_iterator i; // i->first is a tag, i->second is an offset into memory |
2632 |
for (i=lookup_1.begin();i!=lookup_1.end();i++) { |
2633 |
tmp_2->addTag(i->first); |
2634 |
// DataArrayView view_1 = tmp_1->getDataPointByTag(i->first); |
2635 |
// DataArrayView view_2 = tmp_2->getDataPointByTag(i->first); |
2636 |
// double *ptr_1 = &view_1.getData(0); |
2637 |
// double *ptr_2 = &view_2.getData(0); |
2638 |
double *ptr_1 = &(tmp_1->getDataByTag(i->first,0)); |
2639 |
double *ptr_2 = &(tmp_2->getDataByTag(i->first,0)); |
2640 |
|
2641 |
|
2642 |
tensor_binary_operation(size0, ptr_0, ptr_1[0], ptr_2, operation); |
2643 |
} |
2644 |
|
2645 |
} |
2646 |
else if (arg_0_Z.isConstant() && arg_1_Z.isExpanded()) { |
2647 |
|
2648 |
res = Data(0.0, shape0, arg_1_Z.getFunctionSpace(),true); // DataExpanded output |
2649 |
DataConstant* tmp_0=dynamic_cast<DataConstant*>(arg_0_Z.borrowData()); |
2650 |
DataExpanded* tmp_1=dynamic_cast<DataExpanded*>(arg_1_Z.borrowData()); |
2651 |
DataExpanded* tmp_2=dynamic_cast<DataExpanded*>(res.borrowData()); |
2652 |
|
2653 |
int sampleNo_1,dataPointNo_1; |
2654 |
int numSamples_1 = arg_1_Z.getNumSamples(); |
2655 |
int numDataPointsPerSample_1 = arg_1_Z.getNumDataPointsPerSample(); |
2656 |
int offset_0 = tmp_0->getPointOffset(0,0); |
2657 |
#pragma omp parallel for private(sampleNo_1,dataPointNo_1) schedule(static) |
2658 |
for (sampleNo_1 = 0; sampleNo_1 < numSamples_1; sampleNo_1++) { |
2659 |
for (dataPointNo_1 = 0; dataPointNo_1 < numDataPointsPerSample_1; dataPointNo_1++) { |
2660 |
int offset_1 = tmp_1->getPointOffset(sampleNo_1,dataPointNo_1); |
2661 |
int offset_2 = tmp_2->getPointOffset(sampleNo_1,dataPointNo_1); |
2662 |
double *ptr_0 = &(arg_0_Z.getDataAtOffset(offset_0)); |
2663 |
double *ptr_1 = &(arg_1_Z.getDataAtOffset(offset_1)); |
2664 |
double *ptr_2 = &(res.getDataAtOffset(offset_2)); |
2665 |
tensor_binary_operation(size0, ptr_0, ptr_1[0], ptr_2, operation); |
2666 |
} |
2667 |
} |
2668 |
|
2669 |
} |
2670 |
else if (arg_0_Z.isTagged() && arg_1_Z.isConstant()) { |
2671 |
|
2672 |
// Borrow DataTagged input from Data object |
2673 |
DataTagged* tmp_0=dynamic_cast<DataTagged*>(arg_0_Z.borrowData()); |
2674 |
|
2675 |
// Prepare the DataConstant input |
2676 |
DataConstant* tmp_1=dynamic_cast<DataConstant*>(arg_1_Z.borrowData()); |
2677 |
|
2678 |
// Prepare a DataTagged output 2 |
2679 |
res = Data(0.0, shape0, arg_0_Z.getFunctionSpace()); // DataTagged output |
2680 |
res.tag(); |
2681 |
DataTagged* tmp_2=dynamic_cast<DataTagged*>(res.borrowData()); |
2682 |
|
2683 |
// Prepare offset into DataConstant |
2684 |
int offset_1 = tmp_1->getPointOffset(0,0); |
2685 |
double *ptr_1 = &(arg_1_Z.getDataAtOffset(offset_1)); |
2686 |
// Get the views |
2687 |
// DataArrayView view_0 = tmp_0->getDefaultValue(); |
2688 |
// DataArrayView view_2 = tmp_2->getDefaultValue(); |
2689 |
// // Get the pointers to the actual data |
2690 |
// double *ptr_0 = &((view_0.getData())[0]); |
2691 |
// double *ptr_2 = &((view_2.getData())[0]); |
2692 |
// Get the pointers to the actual data |
2693 |
double *ptr_0 = &(tmp_0->getDefaultValue(0)); |
2694 |
double *ptr_2 = &(tmp_2->getDefaultValue(0)); |
2695 |
// Compute a result for the default |
2696 |
tensor_binary_operation(size0, ptr_0, ptr_1[0], ptr_2, operation); |
2697 |
// Compute a result for each tag |
2698 |
const DataTagged::DataMapType& lookup_0=tmp_0->getTagLookup(); |
2699 |
DataTagged::DataMapType::const_iterator i; // i->first is a tag, i->second is an offset into memory |
2700 |
for (i=lookup_0.begin();i!=lookup_0.end();i++) { |
2701 |
tmp_2->addTag(i->first); |
2702 |
/* DataArrayView view_0 = tmp_0->getDataPointByTag(i->first); |
2703 |
DataArrayView view_2 = tmp_2->getDataPointByTag(i->first); |
2704 |
double *ptr_0 = &view_0.getData(0); |
2705 |
double *ptr_2 = &view_2.getData(0);*/ |
2706 |
double *ptr_0 = &(tmp_0->getDataByTag(i->first,0)); |
2707 |
double *ptr_2 = &(tmp_2->getDataByTag(i->first,0)); |
2708 |
tensor_binary_operation(size0, ptr_0, ptr_1[0], ptr_2, operation); |
2709 |
} |
2710 |
|
2711 |
} |
2712 |
else if (arg_0_Z.isTagged() && arg_1_Z.isTagged()) { |
2713 |
|
2714 |
// Borrow DataTagged input from Data object |
2715 |
DataTagged* tmp_0=dynamic_cast<DataTagged*>(arg_0_Z.borrowData()); |
2716 |
|
2717 |
// Borrow DataTagged input from Data object |
2718 |
DataTagged* tmp_1=dynamic_cast<DataTagged*>(arg_1_Z.borrowData()); |
2719 |
|
2720 |
// Prepare a DataTagged output 2 |
2721 |
res = Data(0.0, shape0, arg_1_Z.getFunctionSpace()); |
2722 |
res.tag(); // DataTagged output |
2723 |
DataTagged* tmp_2=dynamic_cast<DataTagged*>(res.borrowData()); |
2724 |
|
2725 |
// Get the views |
2726 |
// DataArrayView view_0 = tmp_0->getDefaultValue(); |
2727 |
// DataArrayView view_1 = tmp_1->getDefaultValue(); |
2728 |
// DataArrayView view_2 = tmp_2->getDefaultValue(); |
2729 |
// // Get the pointers to the actual data |
2730 |
// double *ptr_0 = &((view_0.getData())[0]); |
2731 |
// double *ptr_1 = &((view_1.getData())[0]); |
2732 |
// double *ptr_2 = &((view_2.getData())[0]); |
2733 |
|
2734 |
// Get the pointers to the actual data |
2735 |
double *ptr_0 = &(tmp_0->getDefaultValue(0)); |
2736 |
double *ptr_1 = &(tmp_1->getDefaultValue(0)); |
2737 |
double *ptr_2 = &(tmp_2->getDefaultValue(0)); |
2738 |
|
2739 |
// Compute a result for the default |
2740 |
tensor_binary_operation(size0, ptr_0, ptr_1[0], ptr_2, operation); |
2741 |
// Merge the tags |
2742 |
DataTagged::DataMapType::const_iterator i; // i->first is a tag, i->second is an offset into memory |
2743 |
const DataTagged::DataMapType& lookup_0=tmp_0->getTagLookup(); |
2744 |
const DataTagged::DataMapType& lookup_1=tmp_1->getTagLookup(); |
2745 |
for (i=lookup_0.begin();i!=lookup_0.end();i++) { |
2746 |
tmp_2->addTag(i->first); // use tmp_2 to get correct shape |
2747 |
} |
2748 |
for (i=lookup_1.begin();i!=lookup_1.end();i++) { |
2749 |
tmp_2->addTag(i->first); |
2750 |
} |
2751 |
// Compute a result for each tag |
2752 |
const DataTagged::DataMapType& lookup_2=tmp_2->getTagLookup(); |
2753 |
for (i=lookup_2.begin();i!=lookup_2.end();i++) { |
2754 |
// DataArrayView view_0 = tmp_0->getDataPointByTag(i->first); |
2755 |
// DataArrayView view_1 = tmp_1->getDataPointByTag(i->first); |
2756 |
// DataArrayView view_2 = tmp_2->getDataPointByTag(i->first); |
2757 |
// double *ptr_0 = &view_0.getData(0); |
2758 |
// double *ptr_1 = &view_1.getData(0); |
2759 |
// double *ptr_2 = &view_2.getData(0); |
2760 |
|
2761 |
double *ptr_0 = &(tmp_0->getDataByTag(i->first,0)); |
2762 |
double *ptr_1 = &(tmp_1->getDataByTag(i->first,0)); |
2763 |
double *ptr_2 = &(tmp_2->getDataByTag(i->first,0)); |
2764 |
tensor_binary_operation(size0, ptr_0, ptr_1[0], ptr_2, operation); |
2765 |
} |
2766 |
|
2767 |
} |
2768 |
else if (arg_0_Z.isTagged() && arg_1_Z.isExpanded()) { |
2769 |
|
2770 |
// After finding a common function space above the two inputs have the same numSamples and num DPPS |
2771 |
res = Data(0.0, shape0, arg_1_Z.getFunctionSpace(),true); // DataExpanded output |
2772 |
DataTagged* tmp_0=dynamic_cast<DataTagged*>(arg_0_Z.borrowData()); |
2773 |
DataExpanded* tmp_1=dynamic_cast<DataExpanded*>(arg_1_Z.borrowData()); |
2774 |
DataExpanded* tmp_2=dynamic_cast<DataExpanded*>(res.borrowData()); |
2775 |
|
2776 |
int sampleNo_0,dataPointNo_0; |
2777 |
int numSamples_0 = arg_0_Z.getNumSamples(); |
2778 |
int numDataPointsPerSample_0 = arg_0_Z.getNumDataPointsPerSample(); |
2779 |
#pragma omp parallel for private(sampleNo_0,dataPointNo_0) schedule(static) |
2780 |
for (sampleNo_0 = 0; sampleNo_0 < numSamples_0; sampleNo_0++) { |
2781 |
int offset_0 = tmp_0->getPointOffset(sampleNo_0,0); // They're all the same, so just use #0 |
2782 |
double *ptr_0 = &(arg_0_Z.getDataAtOffset(offset_0)); |
2783 |
for (dataPointNo_0 = 0; dataPointNo_0 < numDataPointsPerSample_0; dataPointNo_0++) { |
2784 |
int offset_1 = tmp_1->getPointOffset(sampleNo_0,dataPointNo_0); |
2785 |
int offset_2 = tmp_2->getPointOffset(sampleNo_0,dataPointNo_0); |
2786 |
double *ptr_1 = &(arg_1_Z.getDataAtOffset(offset_1)); |
2787 |
double *ptr_2 = &(res.getDataAtOffset(offset_2)); |
2788 |
tensor_binary_operation(size0, ptr_0, ptr_1[0], ptr_2, operation); |
2789 |
} |
2790 |
} |
2791 |
|
2792 |
} |
2793 |
else if (arg_0_Z.isExpanded() && arg_1_Z.isConstant()) { |
2794 |
|
2795 |
res = Data(0.0, shape0, arg_1_Z.getFunctionSpace(),true); // DataExpanded output |
2796 |
DataExpanded* tmp_0=dynamic_cast<DataExpanded*>(arg_0_Z.borrowData()); |
2797 |
DataConstant* tmp_1=dynamic_cast<DataConstant*>(arg_1_Z.borrowData()); |
2798 |
DataExpanded* tmp_2=dynamic_cast<DataExpanded*>(res.borrowData()); |
2799 |
|
2800 |
int sampleNo_0,dataPointNo_0; |
2801 |
int numSamples_0 = arg_0_Z.getNumSamples(); |
2802 |
int numDataPointsPerSample_0 = arg_0_Z.getNumDataPointsPerSample(); |
2803 |
int offset_1 = tmp_1->getPointOffset(0,0); |
2804 |
#pragma omp parallel for private(sampleNo_0,dataPointNo_0) schedule(static) |
2805 |
for (sampleNo_0 = 0; sampleNo_0 < numSamples_0; sampleNo_0++) { |
2806 |
for (dataPointNo_0 = 0; dataPointNo_0 < numDataPointsPerSample_0; dataPointNo_0++) { |
2807 |
int offset_0 = tmp_0->getPointOffset(sampleNo_0,dataPointNo_0); |
2808 |
int offset_2 = tmp_2->getPointOffset(sampleNo_0,dataPointNo_0); |
2809 |
double *ptr_0 = &(arg_0_Z.getDataAtOffset(offset_0)); |
2810 |
double *ptr_1 = &(arg_1_Z.getDataAtOffset(offset_1)); |
2811 |
double *ptr_2 = &(res.getDataAtOffset(offset_2)); |
2812 |
tensor_binary_operation(size0, ptr_0, ptr_1[0], ptr_2, operation); |
2813 |
} |
2814 |
} |
2815 |
|
2816 |
|
2817 |
} |
2818 |
else if (arg_0_Z.isExpanded() && arg_1_Z.isTagged()) { |
2819 |
|
2820 |
// After finding a common function space above the two inputs have the same numSamples and num DPPS |
2821 |
res = Data(0.0, shape0, arg_1_Z.getFunctionSpace(),true); // DataExpanded output |
2822 |
DataExpanded* tmp_0=dynamic_cast<DataExpanded*>(arg_0_Z.borrowData()); |
2823 |
DataTagged* tmp_1=dynamic_cast<DataTagged*>(arg_1_Z.borrowData()); |
2824 |
DataExpanded* tmp_2=dynamic_cast<DataExpanded*>(res.borrowData()); |
2825 |
|
2826 |
int sampleNo_0,dataPointNo_0; |
2827 |
int numSamples_0 = arg_0_Z.getNumSamples(); |
2828 |
int numDataPointsPerSample_0 = arg_0_Z.getNumDataPointsPerSample(); |
2829 |
#pragma omp parallel for private(sampleNo_0,dataPointNo_0) schedule(static) |
2830 |
for (sampleNo_0 = 0; sampleNo_0 < numSamples_0; sampleNo_0++) { |
2831 |
int offset_1 = tmp_1->getPointOffset(sampleNo_0,0); |
2832 |
double *ptr_1 = &(arg_1_Z.getDataAtOffset(offset_1)); |
2833 |
for (dataPointNo_0 = 0; dataPointNo_0 < numDataPointsPerSample_0; dataPointNo_0++) { |
2834 |
int offset_0 = tmp_0->getPointOffset(sampleNo_0,dataPointNo_0); |
2835 |
int offset_2 = tmp_2->getPointOffset(sampleNo_0,dataPointNo_0); |
2836 |
double *ptr_0 = &(arg_0_Z.getDataAtOffset(offset_0)); |
2837 |
double *ptr_2 = &(res.getDataAtOffset(offset_2)); |
2838 |
tensor_binary_operation(size0, ptr_0, ptr_1[0], ptr_2, operation); |
2839 |
} |
2840 |
} |
2841 |
|
2842 |
} |
2843 |
else if (arg_0_Z.isExpanded() && arg_1_Z.isExpanded()) { |
2844 |
|
2845 |
// After finding a common function space above the two inputs have the same numSamples and num DPPS |
2846 |
res = Data(0.0, shape0, arg_1_Z.getFunctionSpace(),true); // DataExpanded output |
2847 |
DataExpanded* tmp_0=dynamic_cast<DataExpanded*>(arg_0_Z.borrowData()); |
2848 |
DataExpanded* tmp_1=dynamic_cast<DataExpanded*>(arg_1_Z.borrowData()); |
2849 |
DataExpanded* tmp_2=dynamic_cast<DataExpanded*>(res.borrowData()); |
2850 |
|
2851 |
int sampleNo_0,dataPointNo_0; |
2852 |
int numSamples_0 = arg_0_Z.getNumSamples(); |
2853 |
int numDataPointsPerSample_0 = arg_0_Z.getNumDataPointsPerSample(); |
2854 |
#pragma omp parallel for private(sampleNo_0,dataPointNo_0) schedule(static) |
2855 |
for (sampleNo_0 = 0; sampleNo_0 < numSamples_0; sampleNo_0++) { |
2856 |
for (dataPointNo_0 = 0; dataPointNo_0 < numDataPointsPerSample_0; dataPointNo_0++) { |
2857 |
int offset_0 = tmp_0->getPointOffset(sampleNo_0,dataPointNo_0); |
2858 |
int offset_1 = tmp_1->getPointOffset(sampleNo_0,dataPointNo_0); |
2859 |
int offset_2 = tmp_2->getPointOffset(sampleNo_0,dataPointNo_0); |
2860 |
double *ptr_0 = &(arg_0_Z.getDataAtOffset(offset_0)); |
2861 |
double *ptr_1 = &(arg_1_Z.getDataAtOffset(offset_1)); |
2862 |
double *ptr_2 = &(res.getDataAtOffset(offset_2)); |
2863 |
tensor_binary_operation(size0, ptr_0, ptr_1[0], ptr_2, operation); |
2864 |
} |
2865 |
} |
2866 |
|
2867 |
} |
2868 |
else { |
2869 |
throw DataException("Error - C_TensorBinaryOperation: unknown combination of inputs"); |
2870 |
} |
2871 |
|
2872 |
} else { |
2873 |
throw DataException("Error - C_TensorBinaryOperation: arguments have incompatible shapes"); |
2874 |
} |
2875 |
|
2876 |
return res; |
2877 |
} |
2878 |
|
2879 |
template <typename UnaryFunction> |
2880 |
Data |
2881 |
C_TensorUnaryOperation(Data const &arg_0, |
2882 |
UnaryFunction operation) |
2883 |
{ |
2884 |
if (arg_0.isEmpty()) // do this before we attempt to interpolate |
2885 |
{ |
2886 |
throw DataException("Error - Operations not permitted on instances of DataEmpty."); |
2887 |
} |
2888 |
if (arg_0.isLazy()) |
2889 |
{ |
2890 |
throw DataException("Error - Operations not permitted on lazy data."); |
2891 |
} |
2892 |
// Interpolate if necessary and find an appropriate function space |
2893 |
Data arg_0_Z = Data(arg_0); |
2894 |
|
2895 |
// Get rank and shape of inputs |
2896 |
// int rank0 = arg_0_Z.getDataPointRank(); |
2897 |
const DataTypes::ShapeType& shape0 = arg_0_Z.getDataPointShape(); |
2898 |
int size0 = arg_0_Z.getDataPointSize(); |
2899 |
|
2900 |
// Declare output Data object |
2901 |
Data res; |
2902 |
|
2903 |
if (arg_0_Z.isConstant()) { |
2904 |
res = Data(0.0, shape0, arg_0_Z.getFunctionSpace()); // DataConstant output |
2905 |
// double *ptr_0 = &((arg_0_Z.getPointDataView().getData())[0]); |
2906 |
// double *ptr_2 = &((res.getPointDataView().getData())[0]); |
2907 |
double *ptr_0 = &(arg_0_Z.getDataAtOffset(0)); |
2908 |
double *ptr_2 = &(res.getDataAtOffset(0)); |
2909 |
tensor_unary_operation(size0, ptr_0, ptr_2, operation); |
2910 |
} |
2911 |
else if (arg_0_Z.isTagged()) { |
2912 |
|
2913 |
// Borrow DataTagged input from Data object |
2914 |
DataTagged* tmp_0=dynamic_cast<DataTagged*>(arg_0_Z.borrowData()); |
2915 |
|
2916 |
// Prepare a DataTagged output 2 |
2917 |
res = Data(0.0, shape0, arg_0_Z.getFunctionSpace()); // DataTagged output |
2918 |
res.tag(); |
2919 |
DataTagged* tmp_2=dynamic_cast<DataTagged*>(res.borrowData()); |
2920 |
|
2921 |
// // Get the views |
2922 |
// DataArrayView view_0 = tmp_0->getDefaultValue(); |
2923 |
// DataArrayView view_2 = tmp_2->getDefaultValue(); |
2924 |
// // Get the pointers to the actual data |
2925 |
// double *ptr_0 = &((view_0.getData())[0]); |
2926 |
// double *ptr_2 = &((view_2.getData())[0]); |
2927 |
// Get the pointers to the actual data |
2928 |
double *ptr_0 = &(tmp_0->getDefaultValue(0)); |
2929 |
double *ptr_2 = &(tmp_2->getDefaultValue(0)); |
2930 |
// Compute a result for the default |
2931 |
tensor_unary_operation(size0, ptr_0, ptr_2, operation); |
2932 |
// Compute a result for each tag |
2933 |
const DataTagged::DataMapType& lookup_0=tmp_0->getTagLookup(); |
2934 |
DataTagged::DataMapType::const_iterator i; // i->first is a tag, i->second is an offset into memory |
2935 |
for (i=lookup_0.begin();i!=lookup_0.end();i++) { |
2936 |
tmp_2->addTag(i->first); |
2937 |
// DataArrayView view_0 = tmp_0->getDataPointByTag(i->first); |
2938 |
// DataArrayView view_2 = tmp_2->getDataPointByTag(i->first); |
2939 |
// double *ptr_0 = &view_0.getData(0); |
2940 |
// double *ptr_2 = &view_2.getData(0); |
2941 |
double *ptr_0 = &(tmp_0->getDataByTag(i->first,0)); |
2942 |
double *ptr_2 = &(tmp_2->getDataByTag(i->first,0)); |
2943 |
tensor_unary_operation(size0, ptr_0, ptr_2, operation); |
2944 |
} |
2945 |
|
2946 |
} |
2947 |
else if (arg_0_Z.isExpanded()) { |
2948 |
|
2949 |
res = Data(0.0, shape0, arg_0_Z.getFunctionSpace(),true); // DataExpanded output |
2950 |
DataExpanded* tmp_0=dynamic_cast<DataExpanded*>(arg_0_Z.borrowData()); |
2951 |
DataExpanded* tmp_2=dynamic_cast<DataExpanded*>(res.borrowData()); |
2952 |
|
2953 |
int sampleNo_0,dataPointNo_0; |
2954 |
int numSamples_0 = arg_0_Z.getNumSamples(); |
2955 |
int numDataPointsPerSample_0 = arg_0_Z.getNumDataPointsPerSample(); |
2956 |
#pragma omp parallel for private(sampleNo_0,dataPointNo_0) schedule(static) |
2957 |
for (sampleNo_0 = 0; sampleNo_0 < numSamples_0; sampleNo_0++) { |
2958 |
for (dataPointNo_0 = 0; dataPointNo_0 < numDataPointsPerSample_0; dataPointNo_0++) { |
2959 |
// int offset_0 = tmp_0->getPointOffset(sampleNo_0,dataPointNo_0); |
2960 |
// int offset_2 = tmp_2->getPointOffset(sampleNo_0,dataPointNo_0); |
2961 |
// double *ptr_0 = &((arg_0_Z.getPointDataView().getData())[offset_0]); |
2962 |
// double *ptr_2 = &((res.getPointDataView().getData())[offset_2]); |
2963 |
int offset_0 = tmp_0->getPointOffset(sampleNo_0,dataPointNo_0); |
2964 |
int offset_2 = tmp_2->getPointOffset(sampleNo_0,dataPointNo_0); |
2965 |
double *ptr_0 = &(arg_0_Z.getDataAtOffset(offset_0)); |
2966 |
double *ptr_2 = &(res.getDataAtOffset(offset_2)); |
2967 |
tensor_unary_operation(size0, ptr_0, ptr_2, operation); |
2968 |
} |
2969 |
} |
2970 |
} |
2971 |
else { |
2972 |
throw DataException("Error - C_TensorUnaryOperation: unknown combination of inputs"); |
2973 |
} |
2974 |
|
2975 |
return res; |
2976 |
} |
2977 |
|
2978 |
} |
2979 |
#endif |