/[escript]/branches/clazy/escriptcore/src/DataLazy.cpp
ViewVC logotype

Annotation of /branches/clazy/escriptcore/src/DataLazy.cpp

Parent Directory Parent Directory | Revision Log Revision Log


Revision 6072 - (hide annotations)
Thu Mar 17 00:34:01 2016 UTC (3 years, 1 month ago) by jfenwick
Original Path: trunk/escriptcore/src/DataLazy.cpp
File size: 66465 byte(s)
Remove horrible debug output

1 jfenwick 1865
2 jfenwick 3981 /*****************************************************************************
3 jfenwick 1865 *
4 jfenwick 5863 * Copyright (c) 2003-2016 by The University of Queensland
5 jfenwick 3981 * http://www.uq.edu.au
6 jfenwick 1865 *
7     * Primary Business: Queensland, Australia
8     * Licensed under the Open Software License version 3.0
9     * http://www.opensource.org/licenses/osl-3.0.php
10     *
11 jfenwick 3981 * Development until 2012 by Earth Systems Science Computational Center (ESSCC)
12 jfenwick 4657 * Development 2012-2013 by School of Earth Sciences
13     * Development from 2014 by Centre for Geoscience Computing (GeoComp)
14 jfenwick 3981 *
15     *****************************************************************************/
16 jfenwick 1865
17     #include "DataLazy.h"
18 caltinay 5972 #include "Data.h"
19     #include "DataTypes.h"
20     #include "EscriptParams.h"
21     #include "FunctionSpace.h"
22     #include "UnaryFuncs.h" // for escript::fsign
23     #include "Utils.h"
24 jfenwick 6042 #include "DataMaths.h"
25 caltinay 5972
26 caltinay 3317 #ifdef USE_NETCDF
27     #include <netcdfcpp.h>
28     #endif
29    
30 caltinay 5997 #include <iomanip> // for some fancy formatting in debug
31 jfenwick 2199
32 jfenwick 5938 using namespace escript::DataTypes;
33    
34 caltinay 5972 #define NO_ARG
35    
36 jfenwick 2157 // #define LAZYDEBUG(X) if (privdebug){X;}
37 jfenwick 2092 #define LAZYDEBUG(X)
38 jfenwick 2157 namespace
39     {
40     bool privdebug=false;
41 jfenwick 2092
42 jfenwick 2157 #define ENABLEDEBUG privdebug=true;
43     #define DISABLEDEBUG privdebug=false;
44     }
45    
46 jfenwick 2501 // #define SIZELIMIT if ((m_height>escript::escriptParams.getTOO_MANY_LEVELS()) || (m_children>escript::escriptParams.getTOO_MANY_NODES())) {cerr << "\n!!!!!!! SIZE LIMIT EXCEEDED " << m_children << ";" << m_height << endl << toString() << endl;resolveToIdentity();}
47 jfenwick 2177
48 jfenwick 2795 // #define SIZELIMIT if ((m_height>escript::escriptParams.getTOO_MANY_LEVELS()) || (m_children>escript::escriptParams.getTOO_MANY_NODES())) {cerr << "SIZE LIMIT EXCEEDED " << m_height << endl;resolveToIdentity();}
49 jfenwick 2472
50 jfenwick 2501
51 jfenwick 2795 #define SIZELIMIT if (m_height>escript::escriptParams.getTOO_MANY_LEVELS()) {if (escript::escriptParams.getLAZY_VERBOSE()){cerr << "SIZE LIMIT EXCEEDED height=" << m_height << endl;}resolveToIdentity();}
52    
53 jfenwick 1899 /*
54     How does DataLazy work?
55     ~~~~~~~~~~~~~~~~~~~~~~~
56    
57     Each instance represents a single operation on one or two other DataLazy instances. These arguments are normally
58     denoted left and right.
59    
60     A special operation, IDENTITY, stores an instance of DataReady in the m_id member.
61     This means that all "internal" nodes in the structure are instances of DataLazy.
62    
63     Each operation has a string representation as well as an opgroup - eg G_IDENTITY, G_BINARY, ...
64 caltinay 4286 Note that IDENTITY is not considered a unary operation.
65 jfenwick 1899
66     I am avoiding calling the structure formed a tree because it is not guaranteed to be one (eg c=a+a).
67     It must however form a DAG (directed acyclic graph).
68     I will refer to individual DataLazy objects with the structure as nodes.
69    
70     Each node also stores:
71     - m_readytype \in {'E','T','C','?'} ~ indicates what sort of DataReady would be produced if the expression was
72 caltinay 5972 evaluated.
73 caltinay 4286 - m_buffsrequired ~ the large number of samples which would need to be kept simultaneously in order to
74 caltinay 5972 evaluate the expression.
75 jfenwick 1899 - m_samplesize ~ the number of doubles stored in a sample.
76    
77     When a new node is created, the above values are computed based on the values in the child nodes.
78     Eg: if left requires 4 samples and right requires 6 then left+right requires 7 samples.
79    
80     The resolve method, which produces a DataReady from a DataLazy, does the following:
81     1) Create a DataReady to hold the new result.
82     2) Allocate a vector (v) big enough to hold m_buffsrequired samples.
83     3) For each sample, call resolveSample with v, to get its values and copy them into the result object.
84    
85     (In the case of OMP, multiple samples are resolved in parallel so the vector needs to be larger.)
86    
87     resolveSample returns a Vector* and an offset within that vector where the result is stored.
88     Normally, this would be v, but for identity nodes their internal vector is returned instead.
89    
90     The convention that I use, is that the resolve methods should store their results starting at the offset they are passed.
91    
92     For expressions which evaluate to Constant or Tagged, there is a different evaluation method.
93     The collapse method invokes the (non-lazy) operations on the Data class to evaluate the expression.
94 jfenwick 2037
95 jfenwick 2147 To add a new operator you need to do the following (plus anything I might have forgotten - adding a new group for example):
96 jfenwick 2037 1) Add to the ES_optype.
97     2) determine what opgroup your operation belongs to (X)
98     3) add a string for the op to the end of ES_opstrings
99     4) increase ES_opcount
100     5) add an entry (X) to opgroups
101     6) add an entry to the switch in collapseToReady
102     7) add an entry to resolveX
103 jfenwick 1899 */
104    
105    
106 jfenwick 1865 using namespace std;
107 jfenwick 1868 using namespace boost;
108 jfenwick 1865
109     namespace escript
110     {
111    
112     namespace
113     {
114    
115 jfenwick 2777
116     // enabling this will print out when ever the maximum stacksize used by resolve increases
117     // it assumes _OPENMP is also in use
118     //#define LAZY_STACK_PROF
119    
120    
121    
122     #ifndef _OPENMP
123     #ifdef LAZY_STACK_PROF
124     #undef LAZY_STACK_PROF
125     #endif
126     #endif
127    
128    
129     #ifdef LAZY_STACK_PROF
130     std::vector<void*> stackstart(getNumberOfThreads());
131     std::vector<void*> stackend(getNumberOfThreads());
132     size_t maxstackuse=0;
133     #endif
134    
135 jfenwick 1886 enum ES_opgroup
136     {
137     G_UNKNOWN,
138     G_IDENTITY,
139 caltinay 5972 G_BINARY, // pointwise operations with two arguments
140     G_UNARY, // pointwise operations with one argument
141     G_UNARY_P, // pointwise operations with one argument, requiring a parameter
142     G_NP1OUT, // non-pointwise op with one output
143     G_NP1OUT_P, // non-pointwise op with one output requiring a parameter
144     G_TENSORPROD, // general tensor product
145     G_NP1OUT_2P, // non-pointwise op with one output requiring two params
146     G_REDUCTION, // non-pointwise unary op with a scalar output
147 jfenwick 3035 G_CONDEVAL
148 jfenwick 1886 };
149    
150    
151    
152    
153 jfenwick 1910 string ES_opstrings[]={"UNKNOWN","IDENTITY","+","-","*","/","^",
154 caltinay 5972 "sin","cos","tan",
155     "asin","acos","atan","sinh","cosh","tanh","erf",
156     "asinh","acosh","atanh",
157     "log10","log","sign","abs","neg","pos","exp","sqrt",
158     "1/","where>0","where<0","where>=0","where<=0", "where<>0","where=0",
159     "symmetric","nonsymmetric",
160     "prod",
161     "transpose", "trace",
162     "swapaxes",
163     "minval", "maxval",
164     "condEval"};
165 jfenwick 3035 int ES_opcount=44;
166 jfenwick 1910 ES_opgroup opgroups[]={G_UNKNOWN,G_IDENTITY,G_BINARY,G_BINARY,G_BINARY,G_BINARY, G_BINARY,
167 caltinay 5972 G_UNARY,G_UNARY,G_UNARY, //10
168     G_UNARY,G_UNARY,G_UNARY,G_UNARY,G_UNARY,G_UNARY,G_UNARY, // 17
169     G_UNARY,G_UNARY,G_UNARY, // 20
170     G_UNARY,G_UNARY,G_UNARY,G_UNARY,G_UNARY,G_UNARY,G_UNARY,G_UNARY, // 28
171     G_UNARY,G_UNARY,G_UNARY,G_UNARY,G_UNARY, G_UNARY_P, G_UNARY_P, // 35
172     G_NP1OUT,G_NP1OUT,
173     G_TENSORPROD,
174     G_NP1OUT_P, G_NP1OUT_P,
175     G_NP1OUT_2P,
176     G_REDUCTION, G_REDUCTION,
177     G_CONDEVAL};
178 jfenwick 1886 inline
179     ES_opgroup
180     getOpgroup(ES_optype op)
181     {
182     return opgroups[op];
183     }
184    
185 jfenwick 1865 // return the FunctionSpace of the result of "left op right"
186     FunctionSpace
187     resultFS(DataAbstract_ptr left, DataAbstract_ptr right, ES_optype op)
188     {
189 caltinay 5972 // perhaps this should call interpolate and throw or something?
190     // maybe we need an interpolate node -
191     // that way, if interpolate is required in any other op we can just throw a
192     // programming error exception.
193 jfenwick 1879
194 jfenwick 1943 FunctionSpace l=left->getFunctionSpace();
195     FunctionSpace r=right->getFunctionSpace();
196     if (l!=r)
197     {
198 jfenwick 4264 signed char res=r.getDomain()->preferredInterpolationOnDomain(r.getTypeCode(), l.getTypeCode());
199     if (res==1)
200 jfenwick 1943 {
201 caltinay 5972 return l;
202 jfenwick 1943 }
203 jfenwick 4264 if (res==-1)
204 jfenwick 1943 {
205 caltinay 5972 return r;
206 jfenwick 1943 }
207     throw DataException("Cannot interpolate between the FunctionSpaces given for operation "+opToString(op)+".");
208     }
209     return l;
210 jfenwick 1865 }
211    
212     // return the shape of the result of "left op right"
213 jfenwick 2066 // the shapes resulting from tensor product are more complex to compute so are worked out elsewhere
214 jfenwick 1865 DataTypes::ShapeType
215     resultShape(DataAbstract_ptr left, DataAbstract_ptr right, ES_optype op)
216     {
217 caltinay 5972 if (left->getShape()!=right->getShape())
218     {
219     if ((getOpgroup(op)!=G_BINARY) && (getOpgroup(op)!=G_NP1OUT))
220     {
221     throw DataException("Shapes not the name - shapes must match for (point)binary operations.");
222     }
223 jfenwick 2721
224 caltinay 5972 if (left->getRank()==0) // we need to allow scalar * anything
225     {
226     return right->getShape();
227     }
228     if (right->getRank()==0)
229     {
230     return left->getShape();
231     }
232     throw DataException("Shapes not the same - arguments must have matching shapes (or be scalars) for (point)binary operations on lazy data.");
233     }
234     return left->getShape();
235 jfenwick 1865 }
236    
237 jfenwick 2084 // return the shape for "op left"
238    
239     DataTypes::ShapeType
240 jfenwick 2199 resultShape(DataAbstract_ptr left, ES_optype op, int axis_offset)
241 jfenwick 2084 {
242 caltinay 5972 switch(op)
243     {
244     case TRANS:
245     { // for the scoping of variables
246     const DataTypes::ShapeType& s=left->getShape();
247     DataTypes::ShapeType sh;
248     int rank=left->getRank();
249     if (axis_offset<0 || axis_offset>rank)
250     {
251 caltinay 2779 stringstream e;
252     e << "Error - Data::transpose must have 0 <= axis_offset <= rank=" << rank;
253     throw DataException(e.str());
254 caltinay 5972 }
255     for (int i=0; i<rank; i++)
256     {
257     int index = (axis_offset+i)%rank;
258     sh.push_back(s[index]); // Append to new shape
259     }
260     return sh;
261     }
262     break;
263     case TRACE:
264     {
265     int rank=left->getRank();
266     if (rank<2)
267     {
268     throw DataException("Trace can only be computed for objects with rank 2 or greater.");
269     }
270     if ((axis_offset>rank-2) || (axis_offset<0))
271     {
272     throw DataException("Trace: axis offset must lie between 0 and rank-2 inclusive.");
273     }
274     if (rank==2)
275     {
276     return DataTypes::scalarShape;
277     }
278     else if (rank==3)
279     {
280     DataTypes::ShapeType sh;
281     if (axis_offset==0)
282     {
283     sh.push_back(left->getShape()[2]);
284     }
285     else // offset==1
286     {
287     sh.push_back(left->getShape()[0]);
288     }
289     return sh;
290     }
291     else if (rank==4)
292     {
293     DataTypes::ShapeType sh;
294     const DataTypes::ShapeType& s=left->getShape();
295     if (axis_offset==0)
296     {
297     sh.push_back(s[2]);
298     sh.push_back(s[3]);
299     }
300     else if (axis_offset==1)
301     {
302     sh.push_back(s[0]);
303     sh.push_back(s[3]);
304     }
305     else // offset==2
306     {
307     sh.push_back(s[0]);
308     sh.push_back(s[1]);
309     }
310     return sh;
311     }
312     else // unknown rank
313     {
314     throw DataException("Error - Data::trace can only be calculated for rank 2, 3 or 4 object.");
315     }
316     }
317     break;
318     default:
319     throw DataException("Programmer error - resultShape(left,op) can't compute shapes for operator "+opToString(op)+".");
320     }
321 jfenwick 2084 }
322    
323 jfenwick 2496 DataTypes::ShapeType
324     SwapShape(DataAbstract_ptr left, const int axis0, const int axis1)
325     {
326     // This code taken from the Data.cpp swapaxes() method
327     // Some of the checks are probably redundant here
328     int axis0_tmp,axis1_tmp;
329     const DataTypes::ShapeType& s=left->getShape();
330     DataTypes::ShapeType out_shape;
331     // Here's the equivalent of python s_out=s[axis_offset:]+s[:axis_offset]
332     // which goes thru all shape vector elements starting with axis_offset (at index=rank wrap around to 0)
333     int rank=left->getRank();
334     if (rank<2) {
335     throw DataException("Error - Data::swapaxes argument must have at least rank 2.");
336     }
337     if (axis0<0 || axis0>rank-1) {
338 caltinay 2779 stringstream e;
339     e << "Error - Data::swapaxes: axis0 must be between 0 and rank-1=" << (rank-1);
340     throw DataException(e.str());
341 jfenwick 2496 }
342     if (axis1<0 || axis1>rank-1) {
343 caltinay 2782 stringstream e;
344 caltinay 2779 e << "Error - Data::swapaxes: axis1 must be between 0 and rank-1=" << (rank-1);
345     throw DataException(e.str());
346 jfenwick 2496 }
347     if (axis0 == axis1) {
348     throw DataException("Error - Data::swapaxes: axis indices must be different.");
349     }
350     if (axis0 > axis1) {
351     axis0_tmp=axis1;
352     axis1_tmp=axis0;
353     } else {
354     axis0_tmp=axis0;
355     axis1_tmp=axis1;
356     }
357     for (int i=0; i<rank; i++) {
358     if (i == axis0_tmp) {
359     out_shape.push_back(s[axis1_tmp]);
360     } else if (i == axis1_tmp) {
361     out_shape.push_back(s[axis0_tmp]);
362     } else {
363     out_shape.push_back(s[i]);
364     }
365     }
366     return out_shape;
367     }
368    
369    
370 jfenwick 2066 // determine the output shape for the general tensor product operation
371     // the additional parameters return information required later for the product
372     // the majority of this code is copy pasted from C_General_Tensor_Product
373     DataTypes::ShapeType
374     GTPShape(DataAbstract_ptr left, DataAbstract_ptr right, int axis_offset, int transpose, int& SL, int& SM, int& SR)
375 jfenwick 1865 {
376 caltinay 5972
377 jfenwick 2066 // Get rank and shape of inputs
378     int rank0 = left->getRank();
379     int rank1 = right->getRank();
380     const DataTypes::ShapeType& shape0 = left->getShape();
381     const DataTypes::ShapeType& shape1 = right->getShape();
382    
383     // Prepare for the loops of the product and verify compatibility of shapes
384     int start0=0, start1=0;
385 caltinay 5972 if (transpose == 0) {}
386     else if (transpose == 1) { start0 = axis_offset; }
387     else if (transpose == 2) { start1 = rank1-axis_offset; }
388     else { throw DataException("DataLazy GeneralTensorProduct Constructor: Error - transpose should be 0, 1 or 2"); }
389 jfenwick 2066
390 jfenwick 2085 if (rank0<axis_offset)
391     {
392 caltinay 5972 throw DataException("DataLazy GeneralTensorProduct Constructor: Error - rank of left < axisoffset");
393 jfenwick 2085 }
394 jfenwick 2066
395     // Adjust the shapes for transpose
396 caltinay 5972 DataTypes::ShapeType tmpShape0(rank0); // pre-sizing the vectors rather
397     DataTypes::ShapeType tmpShape1(rank1); // than using push_back
398     for (int i=0; i<rank0; i++) { tmpShape0[i]=shape0[(i+start0)%rank0]; }
399     for (int i=0; i<rank1; i++) { tmpShape1[i]=shape1[(i+start1)%rank1]; }
400 jfenwick 2066
401     // Prepare for the loops of the product
402     SL=1, SM=1, SR=1;
403 caltinay 5972 for (int i=0; i<rank0-axis_offset; i++) {
404 jfenwick 2066 SL *= tmpShape0[i];
405     }
406 caltinay 5972 for (int i=rank0-axis_offset; i<rank0; i++) {
407 jfenwick 2066 if (tmpShape0[i] != tmpShape1[i-(rank0-axis_offset)]) {
408     throw DataException("C_GeneralTensorProduct: Error - incompatible shapes");
409     }
410     SM *= tmpShape0[i];
411     }
412 caltinay 5972 for (int i=axis_offset; i<rank1; i++) {
413 jfenwick 2066 SR *= tmpShape1[i];
414     }
415    
416     // Define the shape of the output (rank of shape is the sum of the loop ranges below)
417 caltinay 5972 DataTypes::ShapeType shape2(rank0+rank1-2*axis_offset);
418     { // block to limit the scope of out_index
419 jfenwick 2066 int out_index=0;
420     for (int i=0; i<rank0-axis_offset; i++, ++out_index) { shape2[out_index]=tmpShape0[i]; } // First part of arg_0_Z
421     for (int i=axis_offset; i<rank1; i++, ++out_index) { shape2[out_index]=tmpShape1[i]; } // Last part of arg_1_Z
422     }
423 jfenwick 2086
424     if (shape2.size()>ESCRIPT_MAX_DATA_RANK)
425     {
426     ostringstream os;
427     os << "C_GeneralTensorProduct: Error - Attempt to create a rank " << shape2.size() << " object. The maximum rank is " << ESCRIPT_MAX_DATA_RANK << ".";
428     throw DataException(os.str());
429     }
430    
431 jfenwick 2066 return shape2;
432 jfenwick 1865 }
433    
434 caltinay 5972 } // end anonymous namespace
435 jfenwick 1865
436    
437 jfenwick 1899
438     // Return a string representing the operation
439 jfenwick 1865 const std::string&
440     opToString(ES_optype op)
441     {
442     if (op<0 || op>=ES_opcount)
443     {
444     op=UNKNOWNOP;
445     }
446     return ES_opstrings[op];
447     }
448    
449 jfenwick 2500 void DataLazy::LazyNodeSetup()
450     {
451     #ifdef _OPENMP
452     int numthreads=omp_get_max_threads();
453     m_samples.resize(numthreads*m_samplesize);
454     m_sampleids=new int[numthreads];
455     for (int i=0;i<numthreads;++i)
456     {
457     m_sampleids[i]=-1;
458     }
459     #else
460     m_samples.resize(m_samplesize);
461     m_sampleids=new int[1];
462     m_sampleids[0]=-1;
463     #endif // _OPENMP
464     }
465 jfenwick 1865
466 jfenwick 2500
467     // Creates an identity node
468 jfenwick 1865 DataLazy::DataLazy(DataAbstract_ptr p)
469 caltinay 5972 : parent(p->getFunctionSpace(),p->getShape())
470     ,m_sampleids(0),
471     m_samples(1)
472 jfenwick 1865 {
473 jfenwick 1879 if (p->isLazy())
474     {
475 caltinay 5972 // I don't want identity of Lazy.
476     // Question: Why would that be so bad?
477     // Answer: We assume that the child of ID is something we can call getVector on
478     throw DataException("Programmer error - attempt to create identity from a DataLazy.");
479 jfenwick 1879 }
480     else
481     {
482 caltinay 5972 p->makeLazyShared();
483     DataReady_ptr dr=dynamic_pointer_cast<DataReady>(p);
484     makeIdentity(dr);
485 jfenwick 2199 LAZYDEBUG(cout << "Wrapping " << dr.get() << " id=" << m_id.get() << endl;)
486 jfenwick 1879 }
487 jfenwick 2092 LAZYDEBUG(cout << "(1)Lazy created with " << m_samplesize << endl;)
488 jfenwick 1865 }
489    
490 jfenwick 1886 DataLazy::DataLazy(DataAbstract_ptr left, ES_optype op)
491 caltinay 5972 : parent(left->getFunctionSpace(),(getOpgroup(op)!=G_REDUCTION)?left->getShape():DataTypes::scalarShape),
492     m_op(op),
493     m_axis_offset(0),
494     m_transpose(0),
495     m_SL(0), m_SM(0), m_SR(0)
496 jfenwick 1886 {
497 jfenwick 2721 if ((getOpgroup(op)!=G_UNARY) && (getOpgroup(op)!=G_NP1OUT) && (getOpgroup(op)!=G_REDUCTION))
498 jfenwick 1886 {
499 caltinay 5972 throw DataException("Programmer error - constructor DataLazy(left, op) will only process UNARY operations.");
500 jfenwick 1886 }
501 jfenwick 2066
502 jfenwick 1886 DataLazy_ptr lleft;
503     if (!left->isLazy())
504     {
505 caltinay 5972 lleft=DataLazy_ptr(new DataLazy(left));
506 jfenwick 1886 }
507     else
508     {
509 caltinay 5972 lleft=dynamic_pointer_cast<DataLazy>(left);
510 jfenwick 1886 }
511 jfenwick 1889 m_readytype=lleft->m_readytype;
512 jfenwick 1886 m_left=lleft;
513     m_samplesize=getNumDPPSample()*getNoValues();
514 jfenwick 2177 m_children=m_left->m_children+1;
515     m_height=m_left->m_height+1;
516 jfenwick 2500 LazyNodeSetup();
517 jfenwick 2177 SIZELIMIT
518 jfenwick 1886 }
519    
520    
521 jfenwick 1943 // In this constructor we need to consider interpolation
522 jfenwick 1879 DataLazy::DataLazy(DataAbstract_ptr left, DataAbstract_ptr right, ES_optype op)
523 caltinay 5972 : parent(resultFS(left,right,op), resultShape(left,right,op)),
524     m_op(op),
525     m_SL(0), m_SM(0), m_SR(0)
526 jfenwick 1879 {
527 jfenwick 2199 LAZYDEBUG(cout << "Forming operator with " << left.get() << " " << right.get() << endl;)
528 jfenwick 2037 if ((getOpgroup(op)!=G_BINARY))
529 jfenwick 1886 {
530 caltinay 5972 throw DataException("Programmer error - constructor DataLazy(left, right, op) will only process BINARY operations.");
531 jfenwick 1886 }
532 jfenwick 1943
533 caltinay 5972 if (getFunctionSpace()!=left->getFunctionSpace()) // left needs to be interpolated
534 jfenwick 1943 {
535 caltinay 5972 FunctionSpace fs=getFunctionSpace();
536     Data ltemp(left);
537     Data tmp(ltemp,fs);
538     left=tmp.borrowDataPtr();
539 jfenwick 1943 }
540 caltinay 5972 if (getFunctionSpace()!=right->getFunctionSpace()) // right needs to be interpolated
541 jfenwick 1943 {
542 caltinay 5972 Data tmp(Data(right),getFunctionSpace());
543     right=tmp.borrowDataPtr();
544 jfenwick 2199 LAZYDEBUG(cout << "Right interpolation required " << right.get() << endl;)
545 jfenwick 1943 }
546     left->operandCheck(*right);
547    
548 caltinay 5972 if (left->isLazy()) // the children need to be DataLazy. Wrap them in IDENTITY if required
549 jfenwick 1879 {
550 caltinay 5972 m_left=dynamic_pointer_cast<DataLazy>(left);
551 jfenwick 2199 LAZYDEBUG(cout << "Left is " << m_left->toString() << endl;)
552 jfenwick 1879 }
553     else
554     {
555 caltinay 5972 m_left=DataLazy_ptr(new DataLazy(left));
556 jfenwick 2199 LAZYDEBUG(cout << "Left " << left.get() << " wrapped " << m_left->m_id.get() << endl;)
557 jfenwick 1879 }
558     if (right->isLazy())
559     {
560 caltinay 5972 m_right=dynamic_pointer_cast<DataLazy>(right);
561 jfenwick 2199 LAZYDEBUG(cout << "Right is " << m_right->toString() << endl;)
562 jfenwick 1879 }
563     else
564     {
565 caltinay 5972 m_right=DataLazy_ptr(new DataLazy(right));
566 jfenwick 2199 LAZYDEBUG(cout << "Right " << right.get() << " wrapped " << m_right->m_id.get() << endl;)
567 jfenwick 1879 }
568 jfenwick 1889 char lt=m_left->m_readytype;
569     char rt=m_right->m_readytype;
570     if (lt=='E' || rt=='E')
571     {
572 caltinay 5972 m_readytype='E';
573 jfenwick 1889 }
574     else if (lt=='T' || rt=='T')
575     {
576 caltinay 5972 m_readytype='T';
577 jfenwick 1889 }
578     else
579     {
580 caltinay 5972 m_readytype='C';
581 jfenwick 1889 }
582 jfenwick 2066 m_samplesize=getNumDPPSample()*getNoValues();
583 jfenwick 2177 m_children=m_left->m_children+m_right->m_children+2;
584     m_height=max(m_left->m_height,m_right->m_height)+1;
585 jfenwick 2500 LazyNodeSetup();
586 jfenwick 2177 SIZELIMIT
587 jfenwick 2092 LAZYDEBUG(cout << "(3)Lazy created with " << m_samplesize << endl;)
588 jfenwick 1879 }
589    
590 jfenwick 2066 DataLazy::DataLazy(DataAbstract_ptr left, DataAbstract_ptr right, ES_optype op, int axis_offset, int transpose)
591 caltinay 5972 : parent(resultFS(left,right,op), GTPShape(left,right, axis_offset, transpose, m_SL,m_SM, m_SR)),
592     m_op(op),
593     m_axis_offset(axis_offset),
594     m_transpose(transpose)
595 jfenwick 2066 {
596     if ((getOpgroup(op)!=G_TENSORPROD))
597     {
598 caltinay 5972 throw DataException("Programmer error - constructor DataLazy(left, right, op, ax, tr) will only process BINARY operations which require parameters.");
599 jfenwick 2066 }
600     if ((transpose>2) || (transpose<0))
601     {
602 caltinay 5972 throw DataException("DataLazy GeneralTensorProduct constructor: Error - transpose should be 0, 1 or 2");
603 jfenwick 2066 }
604 caltinay 5972 if (getFunctionSpace()!=left->getFunctionSpace()) // left needs to be interpolated
605 jfenwick 2066 {
606 caltinay 5972 FunctionSpace fs=getFunctionSpace();
607     Data ltemp(left);
608     Data tmp(ltemp,fs);
609     left=tmp.borrowDataPtr();
610 jfenwick 2066 }
611 caltinay 5972 if (getFunctionSpace()!=right->getFunctionSpace()) // right needs to be interpolated
612 jfenwick 2066 {
613 caltinay 5972 Data tmp(Data(right),getFunctionSpace());
614     right=tmp.borrowDataPtr();
615 jfenwick 2066 }
616 jfenwick 2195 // left->operandCheck(*right);
617 jfenwick 1879
618 caltinay 5972 if (left->isLazy()) // the children need to be DataLazy. Wrap them in IDENTITY if required
619 jfenwick 2066 {
620 caltinay 5972 m_left=dynamic_pointer_cast<DataLazy>(left);
621 jfenwick 2066 }
622     else
623     {
624 caltinay 5972 m_left=DataLazy_ptr(new DataLazy(left));
625 jfenwick 2066 }
626     if (right->isLazy())
627     {
628 caltinay 5972 m_right=dynamic_pointer_cast<DataLazy>(right);
629 jfenwick 2066 }
630     else
631     {
632 caltinay 5972 m_right=DataLazy_ptr(new DataLazy(right));
633 jfenwick 2066 }
634     char lt=m_left->m_readytype;
635     char rt=m_right->m_readytype;
636     if (lt=='E' || rt=='E')
637     {
638 caltinay 5972 m_readytype='E';
639 jfenwick 2066 }
640     else if (lt=='T' || rt=='T')
641     {
642 caltinay 5972 m_readytype='T';
643 jfenwick 2066 }
644     else
645     {
646 caltinay 5972 m_readytype='C';
647 jfenwick 2066 }
648     m_samplesize=getNumDPPSample()*getNoValues();
649 jfenwick 2177 m_children=m_left->m_children+m_right->m_children+2;
650     m_height=max(m_left->m_height,m_right->m_height)+1;
651 jfenwick 2500 LazyNodeSetup();
652 jfenwick 2177 SIZELIMIT
653 jfenwick 2092 LAZYDEBUG(cout << "(4)Lazy created with " << m_samplesize << endl;)
654 jfenwick 2066 }
655    
656    
657 jfenwick 2084 DataLazy::DataLazy(DataAbstract_ptr left, ES_optype op, int axis_offset)
658 caltinay 5972 : parent(left->getFunctionSpace(), resultShape(left,op, axis_offset)),
659     m_op(op),
660     m_axis_offset(axis_offset),
661     m_transpose(0),
662     m_tol(0)
663 jfenwick 2084 {
664     if ((getOpgroup(op)!=G_NP1OUT_P))
665     {
666 caltinay 5972 throw DataException("Programmer error - constructor DataLazy(left, op, ax) will only process UNARY operations which require parameters.");
667 jfenwick 2084 }
668     DataLazy_ptr lleft;
669     if (!left->isLazy())
670     {
671 caltinay 5972 lleft=DataLazy_ptr(new DataLazy(left));
672 jfenwick 2084 }
673     else
674     {
675 caltinay 5972 lleft=dynamic_pointer_cast<DataLazy>(left);
676 jfenwick 2084 }
677     m_readytype=lleft->m_readytype;
678     m_left=lleft;
679     m_samplesize=getNumDPPSample()*getNoValues();
680 jfenwick 2177 m_children=m_left->m_children+1;
681     m_height=m_left->m_height+1;
682 jfenwick 2500 LazyNodeSetup();
683 jfenwick 2177 SIZELIMIT
684 jfenwick 2092 LAZYDEBUG(cout << "(5)Lazy created with " << m_samplesize << endl;)
685 jfenwick 2084 }
686    
687 jfenwick 2147 DataLazy::DataLazy(DataAbstract_ptr left, ES_optype op, double tol)
688 caltinay 5972 : parent(left->getFunctionSpace(), left->getShape()),
689     m_op(op),
690     m_axis_offset(0),
691     m_transpose(0),
692     m_tol(tol)
693 jfenwick 2147 {
694     if ((getOpgroup(op)!=G_UNARY_P))
695     {
696 caltinay 5972 throw DataException("Programmer error - constructor DataLazy(left, op, tol) will only process UNARY operations which require parameters.");
697 jfenwick 2147 }
698     DataLazy_ptr lleft;
699     if (!left->isLazy())
700     {
701 caltinay 5972 lleft=DataLazy_ptr(new DataLazy(left));
702 jfenwick 2147 }
703     else
704     {
705 caltinay 5972 lleft=dynamic_pointer_cast<DataLazy>(left);
706 jfenwick 2147 }
707     m_readytype=lleft->m_readytype;
708     m_left=lleft;
709     m_samplesize=getNumDPPSample()*getNoValues();
710 jfenwick 2177 m_children=m_left->m_children+1;
711     m_height=m_left->m_height+1;
712 jfenwick 2500 LazyNodeSetup();
713 jfenwick 2177 SIZELIMIT
714 jfenwick 2147 LAZYDEBUG(cout << "(6)Lazy created with " << m_samplesize << endl;)
715     }
716 jfenwick 2084
717 jfenwick 2496
718     DataLazy::DataLazy(DataAbstract_ptr left, ES_optype op, const int axis0, const int axis1)
719 caltinay 5972 : parent(left->getFunctionSpace(), SwapShape(left,axis0,axis1)),
720     m_op(op),
721     m_axis_offset(axis0),
722     m_transpose(axis1),
723     m_tol(0)
724 jfenwick 2496 {
725     if ((getOpgroup(op)!=G_NP1OUT_2P))
726     {
727 caltinay 5972 throw DataException("Programmer error - constructor DataLazy(left, op, tol) will only process UNARY operations which require two integer parameters.");
728 jfenwick 2496 }
729     DataLazy_ptr lleft;
730     if (!left->isLazy())
731     {
732 caltinay 5972 lleft=DataLazy_ptr(new DataLazy(left));
733 jfenwick 2496 }
734     else
735     {
736 caltinay 5972 lleft=dynamic_pointer_cast<DataLazy>(left);
737 jfenwick 2496 }
738     m_readytype=lleft->m_readytype;
739     m_left=lleft;
740     m_samplesize=getNumDPPSample()*getNoValues();
741     m_children=m_left->m_children+1;
742     m_height=m_left->m_height+1;
743 jfenwick 2500 LazyNodeSetup();
744 jfenwick 2496 SIZELIMIT
745     LAZYDEBUG(cout << "(7)Lazy created with " << m_samplesize << endl;)
746     }
747    
748 jfenwick 3035
749     namespace
750     {
751    
752     inline int max3(int a, int b, int c)
753     {
754 caltinay 5972 int t=(a>b?a:b);
755     return (t>c?t:c);
756 jfenwick 3035
757     }
758     }
759    
760     DataLazy::DataLazy(DataAbstract_ptr mask, DataAbstract_ptr left, DataAbstract_ptr right/*, double tol*/)
761 caltinay 5972 : parent(left->getFunctionSpace(), left->getShape()),
762     m_op(CONDEVAL),
763     m_axis_offset(0),
764     m_transpose(0),
765     m_tol(0)
766 jfenwick 3035 {
767    
768     DataLazy_ptr lmask;
769     DataLazy_ptr lleft;
770     DataLazy_ptr lright;
771     if (!mask->isLazy())
772     {
773 caltinay 5972 lmask=DataLazy_ptr(new DataLazy(mask));
774 jfenwick 3035 }
775     else
776     {
777 caltinay 5972 lmask=dynamic_pointer_cast<DataLazy>(mask);
778 jfenwick 3035 }
779     if (!left->isLazy())
780     {
781 caltinay 5972 lleft=DataLazy_ptr(new DataLazy(left));
782 jfenwick 3035 }
783     else
784     {
785 caltinay 5972 lleft=dynamic_pointer_cast<DataLazy>(left);
786 jfenwick 3035 }
787     if (!right->isLazy())
788     {
789 caltinay 5972 lright=DataLazy_ptr(new DataLazy(right));
790 jfenwick 3035 }
791     else
792     {
793 caltinay 5972 lright=dynamic_pointer_cast<DataLazy>(right);
794 jfenwick 3035 }
795     m_readytype=lmask->m_readytype;
796     if ((lleft->m_readytype!=lright->m_readytype) || (lmask->m_readytype!=lleft->m_readytype))
797     {
798 caltinay 5972 throw DataException("Programmer Error - condEval arguments must have the same readytype");
799 jfenwick 3035 }
800     m_left=lleft;
801     m_right=lright;
802     m_mask=lmask;
803     m_samplesize=getNumDPPSample()*getNoValues();
804     m_children=m_left->m_children+m_right->m_children+m_mask->m_children+1;
805     m_height=max3(m_left->m_height,m_right->m_height,m_mask->m_height)+1;
806     LazyNodeSetup();
807     SIZELIMIT
808     LAZYDEBUG(cout << "(8)Lazy created with " << m_samplesize << endl;)
809     }
810    
811    
812    
813 jfenwick 1865 DataLazy::~DataLazy()
814     {
815 jfenwick 2500 delete[] m_sampleids;
816 jfenwick 1865 }
817    
818 jfenwick 1879
819 jfenwick 1899 /*
820     \brief Evaluates the expression using methods on Data.
821     This does the work for the collapse method.
822     For reasons of efficiency do not call this method on DataExpanded nodes.
823     */
824 jfenwick 1889 DataReady_ptr
825 jfenwick 4621 DataLazy::collapseToReady() const
826 jfenwick 1889 {
827     if (m_readytype=='E')
828 caltinay 5972 { // this is more an efficiency concern than anything else
829 jfenwick 1889 throw DataException("Programmer Error - do not use collapse on Expanded data.");
830     }
831     if (m_op==IDENTITY)
832     {
833     return m_id;
834     }
835     DataReady_ptr pleft=m_left->collapseToReady();
836     Data left(pleft);
837     Data right;
838 jfenwick 2066 if ((getOpgroup(m_op)==G_BINARY) || (getOpgroup(m_op)==G_TENSORPROD))
839 jfenwick 1889 {
840     right=Data(m_right->collapseToReady());
841     }
842     Data result;
843     switch(m_op)
844     {
845     case ADD:
846 caltinay 5972 result=left+right;
847     break;
848     case SUB:
849     result=left-right;
850     break;
851     case MUL:
852     result=left*right;
853     break;
854     case DIV:
855     result=left/right;
856     break;
857 jfenwick 1889 case SIN:
858 caltinay 5972 result=left.sin();
859     break;
860 jfenwick 1889 case COS:
861 caltinay 5972 result=left.cos();
862     break;
863 jfenwick 1889 case TAN:
864 caltinay 5972 result=left.tan();
865     break;
866 jfenwick 1889 case ASIN:
867 caltinay 5972 result=left.asin();
868     break;
869 jfenwick 1889 case ACOS:
870 caltinay 5972 result=left.acos();
871     break;
872 jfenwick 1889 case ATAN:
873 caltinay 5972 result=left.atan();
874     break;
875 jfenwick 1889 case SINH:
876 caltinay 5972 result=left.sinh();
877     break;
878 jfenwick 1889 case COSH:
879 caltinay 5972 result=left.cosh();
880     break;
881 jfenwick 1889 case TANH:
882 caltinay 5972 result=left.tanh();
883     break;
884 jfenwick 1889 case ERF:
885 caltinay 5972 result=left.erf();
886     break;
887 jfenwick 1889 case ASINH:
888 caltinay 5972 result=left.asinh();
889     break;
890 jfenwick 1889 case ACOSH:
891 caltinay 5972 result=left.acosh();
892     break;
893 jfenwick 1889 case ATANH:
894 caltinay 5972 result=left.atanh();
895     break;
896 jfenwick 1889 case LOG10:
897 caltinay 5972 result=left.log10();
898     break;
899 jfenwick 1889 case LOG:
900 caltinay 5972 result=left.log();
901     break;
902 jfenwick 1889 case SIGN:
903 caltinay 5972 result=left.sign();
904     break;
905 jfenwick 1889 case ABS:
906 caltinay 5972 result=left.abs();
907     break;
908 jfenwick 1889 case NEG:
909 caltinay 5972 result=left.neg();
910     break;
911 jfenwick 1889 case POS:
912 caltinay 5972 // it doesn't mean anything for delayed.
913     // it will just trigger a deep copy of the lazy object
914     throw DataException("Programmer error - POS not supported for lazy data.");
915     break;
916 jfenwick 1889 case EXP:
917 caltinay 5972 result=left.exp();
918     break;
919 jfenwick 1889 case SQRT:
920 caltinay 5972 result=left.sqrt();
921     break;
922 jfenwick 1889 case RECIP:
923 caltinay 5972 result=left.oneOver();
924     break;
925 jfenwick 1889 case GZ:
926 caltinay 5972 result=left.wherePositive();
927     break;
928 jfenwick 1889 case LZ:
929 caltinay 5972 result=left.whereNegative();
930     break;
931 jfenwick 1889 case GEZ:
932 caltinay 5972 result=left.whereNonNegative();
933     break;
934 jfenwick 1889 case LEZ:
935 caltinay 5972 result=left.whereNonPositive();
936     break;
937 jfenwick 2147 case NEZ:
938 caltinay 5972 result=left.whereNonZero(m_tol);
939     break;
940 jfenwick 2147 case EZ:
941 caltinay 5972 result=left.whereZero(m_tol);
942     break;
943 jfenwick 2037 case SYM:
944 caltinay 5972 result=left.symmetric();
945     break;
946 jfenwick 2037 case NSYM:
947 caltinay 5972 result=left.nonsymmetric();
948     break;
949 jfenwick 2066 case PROD:
950 caltinay 5972 result=C_GeneralTensorProduct(left,right,m_axis_offset, m_transpose);
951     break;
952 jfenwick 2084 case TRANS:
953 caltinay 5972 result=left.transpose(m_axis_offset);
954     break;
955 jfenwick 2084 case TRACE:
956 caltinay 5972 result=left.trace(m_axis_offset);
957     break;
958 jfenwick 2496 case SWAP:
959 caltinay 5972 result=left.swapaxes(m_axis_offset, m_transpose);
960     break;
961 jfenwick 2721 case MINVAL:
962 caltinay 5972 result=left.minval();
963     break;
964 jfenwick 2721 case MAXVAL:
965 caltinay 5972 result=left.minval();
966     break;
967 jfenwick 1889 default:
968 caltinay 5972 throw DataException("Programmer error - collapseToReady does not know how to resolve operator "+opToString(m_op)+".");
969 jfenwick 1889 }
970     return result.borrowReadyPtr();
971     }
972    
973 jfenwick 1899 /*
974     \brief Converts the DataLazy into an IDENTITY storing the value of the expression.
975     This method uses the original methods on the Data class to evaluate the expressions.
976     For this reason, it should not be used on DataExpanded instances. (To do so would defeat
977     the purpose of using DataLazy in the first place).
978     */
979 jfenwick 1889 void
980 jfenwick 4621 DataLazy::collapse() const
981 jfenwick 1889 {
982     if (m_op==IDENTITY)
983     {
984 caltinay 5972 return;
985 jfenwick 1889 }
986     if (m_readytype=='E')
987 caltinay 5972 { // this is more an efficiency concern than anything else
988 jfenwick 1889 throw DataException("Programmer Error - do not use collapse on Expanded data.");
989     }
990     m_id=collapseToReady();
991     m_op=IDENTITY;
992     }
993    
994 jfenwick 2500 // The result will be stored in m_samples
995     // The return value is a pointer to the DataVector, offset is the offset within the return value
996 jfenwick 5938 const DataTypes::RealVectorType*
997 jfenwick 4621 DataLazy::resolveNodeSample(int tid, int sampleNo, size_t& roffset) const
998 jfenwick 2500 {
999     LAZYDEBUG(cout << "Resolve sample " << toString() << endl;)
1000 caltinay 5972 // collapse so we have a 'E' node or an IDENTITY for some other type
1001 jfenwick 2500 if (m_readytype!='E' && m_op!=IDENTITY)
1002     {
1003 caltinay 5972 collapse();
1004 jfenwick 2500 }
1005 caltinay 5972 if (m_op==IDENTITY)
1006 jfenwick 2500 {
1007 jfenwick 6042 const RealVectorType& vec=m_id->getVectorRO();
1008 jfenwick 2500 roffset=m_id->getPointOffset(sampleNo, 0);
1009 jfenwick 2777 #ifdef LAZY_STACK_PROF
1010     int x;
1011     if (&x<stackend[omp_get_thread_num()])
1012     {
1013     stackend[omp_get_thread_num()]=&x;
1014     }
1015     #endif
1016 jfenwick 2500 return &(vec);
1017     }
1018     if (m_readytype!='E')
1019     {
1020     throw DataException("Programmer Error - Collapse did not produce an expanded node.");
1021     }
1022 jfenwick 2501 if (m_sampleids[tid]==sampleNo)
1023     {
1024 caltinay 5972 roffset=tid*m_samplesize;
1025     return &(m_samples); // sample is already resolved
1026 jfenwick 2501 }
1027     m_sampleids[tid]=sampleNo;
1028 jfenwick 3035
1029 jfenwick 2500 switch (getOpgroup(m_op))
1030     {
1031     case G_UNARY:
1032     case G_UNARY_P: return resolveNodeUnary(tid, sampleNo, roffset);
1033     case G_BINARY: return resolveNodeBinary(tid, sampleNo, roffset);
1034     case G_NP1OUT: return resolveNodeNP1OUT(tid, sampleNo, roffset);
1035     case G_NP1OUT_P: return resolveNodeNP1OUT_P(tid, sampleNo, roffset);
1036     case G_TENSORPROD: return resolveNodeTProd(tid, sampleNo, roffset);
1037     case G_NP1OUT_2P: return resolveNodeNP1OUT_2P(tid, sampleNo, roffset);
1038 jfenwick 2721 case G_REDUCTION: return resolveNodeReduction(tid, sampleNo, roffset);
1039 jfenwick 3035 case G_CONDEVAL: return resolveNodeCondEval(tid, sampleNo, roffset);
1040 jfenwick 2500 default:
1041     throw DataException("Programmer Error - resolveSample does not know how to process "+opToString(m_op)+".");
1042     }
1043     }
1044    
1045 jfenwick 5938 const DataTypes::RealVectorType*
1046 jfenwick 4621 DataLazy::resolveNodeUnary(int tid, int sampleNo, size_t& roffset) const
1047 jfenwick 2500 {
1048 caltinay 5972 // we assume that any collapsing has been done before we get here
1049     // since we only have one argument we don't need to think about only
1050     // processing single points.
1051     // we will also know we won't get identity nodes
1052 jfenwick 2500 if (m_readytype!='E')
1053     {
1054     throw DataException("Programmer error - resolveUnary should only be called on expanded Data.");
1055     }
1056     if (m_op==IDENTITY)
1057     {
1058     throw DataException("Programmer error - resolveNodeUnary should not be called on identity nodes.");
1059     }
1060 jfenwick 5938 const DataTypes::RealVectorType* leftres=m_left->resolveNodeSample(tid, sampleNo, roffset);
1061 jfenwick 2500 const double* left=&((*leftres)[roffset]);
1062     roffset=m_samplesize*tid;
1063     double* result=&(m_samples[roffset]);
1064 jfenwick 6066 escript::ESFunction operation=SINF;
1065 jfenwick 2500 switch (m_op)
1066     {
1067 jfenwick 6066 case SIN:
1068     operation=SINF;
1069     break;
1070 jfenwick 2500 case COS:
1071 jfenwick 6066 operation=COSF;
1072     break;
1073 jfenwick 2500 case TAN:
1074 jfenwick 6066 operation=TANF;
1075     break;
1076 jfenwick 2500 case ASIN:
1077 jfenwick 6066 operation=ASINF;
1078     break;
1079 jfenwick 2500 case ACOS:
1080 jfenwick 6066 operation=ACOSF;
1081     break;
1082 jfenwick 2500 case ATAN:
1083 jfenwick 6066 operation=ATANF;
1084     break;
1085 jfenwick 2500 case SINH:
1086 jfenwick 6066 operation=SINHF;
1087     break;
1088 jfenwick 2500 case COSH:
1089 jfenwick 6066 operation=COSHF;
1090     break;
1091 jfenwick 2500 case TANH:
1092 jfenwick 6066 operation=TANHF;
1093     break;
1094 jfenwick 2500 case ERF:
1095 jfenwick 6066 operation=ERFF;
1096     break;
1097 jfenwick 2500 case ASINH:
1098 jfenwick 6066 operation=ASINHF;
1099     break;
1100 jfenwick 2500 case ACOSH:
1101 jfenwick 6066 operation=ACOSHF;
1102     break;
1103 jfenwick 2500 case ATANH:
1104 jfenwick 6066 operation=ATANHF;
1105     break;
1106 jfenwick 2500 case LOG10:
1107 jfenwick 6066 operation=LOG10F;
1108     break;
1109 jfenwick 2500 case LOG:
1110 jfenwick 6066 operation=LOGF;
1111     break;
1112 jfenwick 2500 case SIGN:
1113 jfenwick 6066 operation=SIGNF;
1114     break;
1115 jfenwick 2500 case ABS:
1116 jfenwick 6066 operation=ABSF;
1117     break;
1118 jfenwick 2500 case NEG:
1119 jfenwick 6066 operation=NEGF;
1120     break;
1121 jfenwick 2500 case POS:
1122 caltinay 5972 // it doesn't mean anything for delayed.
1123     // it will just trigger a deep copy of the lazy object
1124     throw DataException("Programmer error - POS not supported for lazy data.");
1125     break;
1126 jfenwick 2500 case EXP:
1127 jfenwick 6066 operation=EXPF;
1128     break;
1129 jfenwick 2500 case SQRT:
1130 jfenwick 6066 operation=SQRTF;
1131     break;
1132 jfenwick 2500 case RECIP:
1133 jfenwick 6066 operation=INVF;
1134     break;
1135 jfenwick 2500 case GZ:
1136 jfenwick 6066 operation=GTZEROF;
1137     break;
1138 jfenwick 2500 case LZ:
1139 jfenwick 6066 operation=LTZEROF;
1140     break;
1141 jfenwick 2500 case GEZ:
1142 jfenwick 6066 operation=GEZEROF;
1143     break;
1144 jfenwick 2500 case LEZ:
1145 jfenwick 6066 operation=LEZEROF;
1146     break;
1147 jfenwick 2500 // There are actually G_UNARY_P but I don't see a compelling reason to treat them differently
1148     case NEZ:
1149 jfenwick 6066 operation=NEQZEROF;
1150     break;
1151 jfenwick 2500 case EZ:
1152 jfenwick 6066 operation=EQZEROF;
1153     break;
1154 jfenwick 2500 default:
1155 caltinay 5972 throw DataException("Programmer error - resolveUnary can not resolve operator "+opToString(m_op)+".");
1156 jfenwick 2500 }
1157 jfenwick 6066 tensor_unary_array_operation(m_samplesize,
1158     left,
1159     result,
1160     operation,
1161     m_tol);
1162 jfenwick 2500 return &(m_samples);
1163     }
1164    
1165    
1166 jfenwick 5938 const DataTypes::RealVectorType*
1167 jfenwick 4621 DataLazy::resolveNodeReduction(int tid, int sampleNo, size_t& roffset) const
1168 jfenwick 2721 {
1169 caltinay 5972 // we assume that any collapsing has been done before we get here
1170     // since we only have one argument we don't need to think about only
1171     // processing single points.
1172     // we will also know we won't get identity nodes
1173 jfenwick 2721 if (m_readytype!='E')
1174     {
1175     throw DataException("Programmer error - resolveUnary should only be called on expanded Data.");
1176     }
1177     if (m_op==IDENTITY)
1178     {
1179     throw DataException("Programmer error - resolveNodeUnary should not be called on identity nodes.");
1180     }
1181     size_t loffset=0;
1182 jfenwick 5938 const DataTypes::RealVectorType* leftres=m_left->resolveNodeSample(tid, sampleNo, loffset);
1183 jfenwick 2721
1184     roffset=m_samplesize*tid;
1185 jfenwick 2734 unsigned int ndpps=getNumDPPSample();
1186 jfenwick 3917 unsigned int psize=DataTypes::noValues(m_left->getShape());
1187 jfenwick 2721 double* result=&(m_samples[roffset]);
1188     switch (m_op)
1189     {
1190     case MINVAL:
1191 caltinay 5972 {
1192     for (unsigned int z=0;z<ndpps;++z)
1193     {
1194     FMin op;
1195     *result=DataMaths::reductionOp(*leftres, m_left->getShape(), loffset, op, numeric_limits<double>::max());
1196     loffset+=psize;
1197     result++;
1198     }
1199     }
1200     break;
1201 jfenwick 2721 case MAXVAL:
1202 caltinay 5972 {
1203     for (unsigned int z=0;z<ndpps;++z)
1204     {
1205     FMax op;
1206     *result=DataMaths::reductionOp(*leftres, m_left->getShape(), loffset, op, numeric_limits<double>::max()*-1);
1207     loffset+=psize;
1208     result++;
1209     }
1210     }
1211     break;
1212 jfenwick 2721 default:
1213 caltinay 5972 throw DataException("Programmer error - resolveUnary can not resolve operator "+opToString(m_op)+".");
1214 jfenwick 2721 }
1215     return &(m_samples);
1216     }
1217    
1218 jfenwick 5938 const DataTypes::RealVectorType*
1219 jfenwick 4621 DataLazy::resolveNodeNP1OUT(int tid, int sampleNo, size_t& roffset) const
1220 jfenwick 2500 {
1221 caltinay 5972 // we assume that any collapsing has been done before we get here
1222     // since we only have one argument we don't need to think about only
1223     // processing single points.
1224 jfenwick 2500 if (m_readytype!='E')
1225     {
1226     throw DataException("Programmer error - resolveNodeNP1OUT should only be called on expanded Data.");
1227     }
1228     if (m_op==IDENTITY)
1229     {
1230     throw DataException("Programmer error - resolveNodeNP1OUT should not be called on identity nodes.");
1231     }
1232     size_t subroffset;
1233 jfenwick 6042 const RealVectorType* leftres=m_left->resolveNodeSample(tid, sampleNo, subroffset);
1234 jfenwick 2500 roffset=m_samplesize*tid;
1235     size_t loop=0;
1236     size_t numsteps=(m_readytype=='E')?getNumDPPSample():1;
1237     size_t step=getNoValues();
1238     size_t offset=roffset;
1239     switch (m_op)
1240     {
1241     case SYM:
1242 caltinay 5972 for (loop=0;loop<numsteps;++loop)
1243     {
1244     DataMaths::symmetric(*leftres,m_left->getShape(),subroffset, m_samples, getShape(), offset);
1245     subroffset+=step;
1246     offset+=step;
1247     }
1248     break;
1249 jfenwick 2500 case NSYM:
1250 caltinay 5972 for (loop=0;loop<numsteps;++loop)
1251     {
1252     DataMaths::nonsymmetric(*leftres,m_left->getShape(),subroffset, m_samples, getShape(), offset);
1253     subroffset+=step;
1254     offset+=step;
1255     }
1256     break;
1257 jfenwick 2500 default:
1258 caltinay 5972 throw DataException("Programmer error - resolveNP1OUT can not resolve operator "+opToString(m_op)+".");
1259 jfenwick 2500 }
1260     return &m_samples;
1261     }
1262    
1263 jfenwick 5938 const DataTypes::RealVectorType*
1264 jfenwick 4621 DataLazy::resolveNodeNP1OUT_P(int tid, int sampleNo, size_t& roffset) const
1265 jfenwick 2500 {
1266 caltinay 5972 // we assume that any collapsing has been done before we get here
1267     // since we only have one argument we don't need to think about only
1268     // processing single points.
1269 jfenwick 2500 if (m_readytype!='E')
1270     {
1271     throw DataException("Programmer error - resolveNodeNP1OUT_P should only be called on expanded Data.");
1272     }
1273     if (m_op==IDENTITY)
1274     {
1275     throw DataException("Programmer error - resolveNodeNP1OUT_P should not be called on identity nodes.");
1276     }
1277     size_t subroffset;
1278     size_t offset;
1279 jfenwick 6042 const RealVectorType* leftres=m_left->resolveNodeSample(tid, sampleNo, subroffset);
1280 jfenwick 2500 roffset=m_samplesize*tid;
1281     offset=roffset;
1282     size_t loop=0;
1283     size_t numsteps=(m_readytype=='E')?getNumDPPSample():1;
1284     size_t outstep=getNoValues();
1285     size_t instep=m_left->getNoValues();
1286     switch (m_op)
1287     {
1288     case TRACE:
1289 caltinay 5972 for (loop=0;loop<numsteps;++loop)
1290     {
1291 jfenwick 2500 DataMaths::trace(*leftres,m_left->getShape(),subroffset, m_samples ,getShape(),offset,m_axis_offset);
1292 caltinay 5972 subroffset+=instep;
1293     offset+=outstep;
1294     }
1295     break;
1296 jfenwick 2500 case TRANS:
1297 caltinay 5972 for (loop=0;loop<numsteps;++loop)
1298     {
1299 jfenwick 2500 DataMaths::transpose(*leftres,m_left->getShape(),subroffset, m_samples, getShape(),offset,m_axis_offset);
1300 caltinay 5972 subroffset+=instep;
1301     offset+=outstep;
1302     }
1303     break;
1304 jfenwick 2500 default:
1305 caltinay 5972 throw DataException("Programmer error - resolveNP1OUTP can not resolve operator "+opToString(m_op)+".");
1306 jfenwick 2500 }
1307     return &m_samples;
1308     }
1309    
1310    
1311 jfenwick 5938 const DataTypes::RealVectorType*
1312 jfenwick 4621 DataLazy::resolveNodeNP1OUT_2P(int tid, int sampleNo, size_t& roffset) const
1313 jfenwick 2500 {
1314     if (m_readytype!='E')
1315     {
1316     throw DataException("Programmer error - resolveNodeNP1OUT_2P should only be called on expanded Data.");
1317     }
1318     if (m_op==IDENTITY)
1319     {
1320     throw DataException("Programmer error - resolveNodeNP1OUT_2P should not be called on identity nodes.");
1321     }
1322     size_t subroffset;
1323     size_t offset;
1324 jfenwick 6042 const RealVectorType* leftres=m_left->resolveNodeSample(tid, sampleNo, subroffset);
1325 jfenwick 2500 roffset=m_samplesize*tid;
1326     offset=roffset;
1327     size_t loop=0;
1328     size_t numsteps=(m_readytype=='E')?getNumDPPSample():1;
1329     size_t outstep=getNoValues();
1330     size_t instep=m_left->getNoValues();
1331     switch (m_op)
1332     {
1333     case SWAP:
1334 caltinay 5972 for (loop=0;loop<numsteps;++loop)
1335     {
1336 jfenwick 2500 DataMaths::swapaxes(*leftres,m_left->getShape(),subroffset, m_samples, getShape(),offset, m_axis_offset, m_transpose);
1337 caltinay 5972 subroffset+=instep;
1338     offset+=outstep;
1339     }
1340     break;
1341 jfenwick 2500 default:
1342 caltinay 5972 throw DataException("Programmer error - resolveNodeNP1OUT2P can not resolve operator "+opToString(m_op)+".");
1343 jfenwick 2500 }
1344     return &m_samples;
1345     }
1346    
1347 jfenwick 5938 const DataTypes::RealVectorType*
1348 jfenwick 4621 DataLazy::resolveNodeCondEval(int tid, int sampleNo, size_t& roffset) const
1349 jfenwick 3035 {
1350     if (m_readytype!='E')
1351     {
1352     throw DataException("Programmer error - resolveNodeCondEval should only be called on expanded Data.");
1353     }
1354     if (m_op!=CONDEVAL)
1355     {
1356     throw DataException("Programmer error - resolveNodeCondEval should only be called on CONDEVAL nodes.");
1357     }
1358     size_t subroffset;
1359 jfenwick 2500
1360 jfenwick 6042 const RealVectorType* maskres=m_mask->resolveNodeSample(tid, sampleNo, subroffset);
1361     const RealVectorType* srcres=0;
1362 jfenwick 3035 if ((*maskres)[subroffset]>0)
1363     {
1364 caltinay 5972 srcres=m_left->resolveNodeSample(tid, sampleNo, subroffset);
1365 jfenwick 3035 }
1366     else
1367     {
1368 caltinay 5972 srcres=m_right->resolveNodeSample(tid, sampleNo, subroffset);
1369 jfenwick 3035 }
1370    
1371     // Now we need to copy the result
1372    
1373     roffset=m_samplesize*tid;
1374     for (int i=0;i<m_samplesize;++i)
1375     {
1376 caltinay 5972 m_samples[roffset+i]=(*srcres)[subroffset+i];
1377 jfenwick 3035 }
1378    
1379     return &m_samples;
1380     }
1381    
1382 jfenwick 2500 // This method assumes that any subexpressions which evaluate to Constant or Tagged Data
1383     // have already been collapsed to IDENTITY. So we must have at least one expanded child.
1384     // If both children are expanded, then we can process them in a single operation (we treat
1385     // the whole sample as one big datapoint.
1386     // If one of the children is not expanded, then we need to treat each point in the sample
1387     // individually.
1388     // There is an additional complication when scalar operations are considered.
1389     // For example, 2+Vector.
1390     // In this case each double within the point is treated individually
1391 jfenwick 5938 const DataTypes::RealVectorType*
1392 jfenwick 4621 DataLazy::resolveNodeBinary(int tid, int sampleNo, size_t& roffset) const
1393 jfenwick 2500 {
1394     LAZYDEBUG(cout << "Resolve binary: " << toString() << endl;)
1395    
1396 caltinay 5972 size_t lroffset=0, rroffset=0; // offsets in the left and right result vectors
1397     // first work out which of the children are expanded
1398 jfenwick 2500 bool leftExp=(m_left->m_readytype=='E');
1399     bool rightExp=(m_right->m_readytype=='E');
1400     if (!leftExp && !rightExp)
1401     {
1402 caltinay 5972 throw DataException("Programmer Error - please use collapse if neither argument has type 'E'.");
1403 jfenwick 2500 }
1404     bool leftScalar=(m_left->getRank()==0);
1405     bool rightScalar=(m_right->getRank()==0);
1406     if ((m_left->getRank()!=m_right->getRank()) && (!leftScalar && !rightScalar))
1407     {
1408 caltinay 5972 throw DataException("resolveBinary - ranks of arguments must match unless one of them is scalar.");
1409 jfenwick 2500 }
1410     size_t leftsize=m_left->getNoValues();
1411     size_t rightsize=m_right->getNoValues();
1412 caltinay 5972 size_t chunksize=1; // how many doubles will be processed in one go
1413     int leftstep=0; // how far should the left offset advance after each step
1414 jfenwick 2500 int rightstep=0;
1415 caltinay 5972 int numsteps=0; // total number of steps for the inner loop
1416     int oleftstep=0; // the o variables refer to the outer loop
1417     int orightstep=0; // The outer loop is only required in cases where there is an extended scalar
1418 jfenwick 2500 int onumsteps=1;
1419    
1420 caltinay 5972 bool LES=(leftExp && leftScalar); // Left is an expanded scalar
1421 jfenwick 2500 bool RES=(rightExp && rightScalar);
1422 caltinay 5972 bool LS=(!leftExp && leftScalar); // left is a single scalar
1423 jfenwick 2500 bool RS=(!rightExp && rightScalar);
1424 caltinay 5972 bool LN=(!leftExp && !leftScalar); // left is a single non-scalar
1425 jfenwick 2500 bool RN=(!rightExp && !rightScalar);
1426 caltinay 5972 bool LEN=(leftExp && !leftScalar); // left is an expanded non-scalar
1427 jfenwick 2500 bool REN=(rightExp && !rightScalar);
1428    
1429 caltinay 5972 if ((LES && RES) || (LEN && REN)) // both are Expanded scalars or both are expanded non-scalars
1430 jfenwick 2500 {
1431 caltinay 5972 chunksize=m_left->getNumDPPSample()*leftsize;
1432     leftstep=0;
1433     rightstep=0;
1434     numsteps=1;
1435 jfenwick 2500 }
1436     else if (LES || RES)
1437     {
1438 caltinay 5972 chunksize=1;
1439     if (LES) // left is an expanded scalar
1440     {
1441     if (RS)
1442     {
1443     leftstep=1;
1444     rightstep=0;
1445     numsteps=m_left->getNumDPPSample();
1446     }
1447     else // RN or REN
1448     {
1449     leftstep=0;
1450     oleftstep=1;
1451     rightstep=1;
1452     orightstep=(RN ? -(int)rightsize : 0);
1453     numsteps=rightsize;
1454     onumsteps=m_left->getNumDPPSample();
1455     }
1456     }
1457     else // right is an expanded scalar
1458     {
1459     if (LS)
1460     {
1461     rightstep=1;
1462     leftstep=0;
1463     numsteps=m_right->getNumDPPSample();
1464     }
1465     else
1466     {
1467     rightstep=0;
1468     orightstep=1;
1469     leftstep=1;
1470     oleftstep=(LN ? -(int)leftsize : 0);
1471     numsteps=leftsize;
1472     onumsteps=m_right->getNumDPPSample();
1473     }
1474     }
1475 jfenwick 2500 }
1476 caltinay 5972 else // this leaves (LEN, RS), (LEN, RN) and their transposes
1477 jfenwick 2500 {
1478 caltinay 5972 if (LEN) // and Right will be a single value
1479     {
1480     chunksize=rightsize;
1481     leftstep=rightsize;
1482     rightstep=0;
1483     numsteps=m_left->getNumDPPSample();
1484     if (RS)
1485     {
1486     numsteps*=leftsize;
1487     }
1488     }
1489     else // REN
1490     {
1491     chunksize=leftsize;
1492     rightstep=leftsize;
1493     leftstep=0;
1494     numsteps=m_right->getNumDPPSample();
1495     if (LS)
1496     {
1497     numsteps*=rightsize;
1498     }
1499     }
1500 jfenwick 2500 }
1501    
1502 caltinay 5972 int resultStep=max(leftstep,rightstep); // only one (at most) should be !=0
1503     // Get the values of sub-expressions
1504 jfenwick 6042 const RealVectorType* left=m_left->resolveNodeSample(tid,sampleNo,lroffset);
1505     const RealVectorType* right=m_right->resolveNodeSample(tid,sampleNo,rroffset);
1506 jfenwick 2500 LAZYDEBUG(cout << "Post sub calls in " << toString() << endl;)
1507     LAZYDEBUG(cout << "shapes=" << DataTypes::shapeToString(m_left->getShape()) << "," << DataTypes::shapeToString(m_right->getShape()) << endl;)
1508     LAZYDEBUG(cout << "chunksize=" << chunksize << endl << "leftstep=" << leftstep << " rightstep=" << rightstep;)
1509     LAZYDEBUG(cout << " numsteps=" << numsteps << endl << "oleftstep=" << oleftstep << " orightstep=" << orightstep;)
1510     LAZYDEBUG(cout << "onumsteps=" << onumsteps << endl;)
1511     LAZYDEBUG(cout << " DPPS=" << m_left->getNumDPPSample() << "," <<m_right->getNumDPPSample() << endl;)
1512     LAZYDEBUG(cout << "" << LS << RS << LN << RN << LES << RES <<LEN << REN << endl;)
1513    
1514     LAZYDEBUG(cout << "Left res["<< lroffset<< "]=" << (*left)[lroffset] << endl;)
1515     LAZYDEBUG(cout << "Right res["<< rroffset<< "]=" << (*right)[rroffset] << endl;)
1516    
1517    
1518     roffset=m_samplesize*tid;
1519 caltinay 5972 double* resultp=&(m_samples[roffset]); // results are stored at the vector offset we received
1520 jfenwick 2500 switch(m_op)
1521     {
1522     case ADD:
1523 jfenwick 6042 //PROC_OP(NO_ARG,plus<double>());
1524     DataMaths::binaryOpVectorLazyHelper<real_t, real_t, real_t>(resultp,
1525     &(*left)[0],
1526     &(*right)[0],
1527     chunksize,
1528     onumsteps,
1529     numsteps,
1530     resultStep,
1531     leftstep,
1532     rightstep,
1533     oleftstep,
1534     orightstep,
1535 jfenwick 6056 lroffset,
1536     rroffset,
1537 jfenwick 6042 escript::ESFunction::PLUSF);
1538 caltinay 5972 break;
1539 jfenwick 2500 case SUB:
1540 jfenwick 6057 DataMaths::binaryOpVectorLazyHelper<real_t, real_t, real_t>(resultp,
1541     &(*left)[0],
1542     &(*right)[0],
1543     chunksize,
1544     onumsteps,
1545     numsteps,
1546     resultStep,
1547     leftstep,
1548     rightstep,
1549     oleftstep,
1550     orightstep,
1551     lroffset,
1552     rroffset,
1553     escript::ESFunction::MINUSF);
1554     //PROC_OP(NO_ARG,minus<double>());
1555 caltinay 5972 break;
1556 jfenwick 2500 case MUL:
1557 jfenwick 6057 //PROC_OP(NO_ARG,multiplies<double>());
1558     DataMaths::binaryOpVectorLazyHelper<real_t, real_t, real_t>(resultp,
1559     &(*left)[0],
1560     &(*right)[0],
1561     chunksize,
1562     onumsteps,
1563     numsteps,
1564     resultStep,
1565     leftstep,
1566     rightstep,
1567     oleftstep,
1568     orightstep,
1569     lroffset,
1570     rroffset,
1571     escript::ESFunction::MULTIPLIESF);
1572 caltinay 5972 break;
1573 jfenwick 2500 case DIV:
1574 jfenwick 6057 //PROC_OP(NO_ARG,divides<double>());
1575     DataMaths::binaryOpVectorLazyHelper<real_t, real_t, real_t>(resultp,
1576     &(*left)[0],
1577     &(*right)[0],
1578     chunksize,
1579     onumsteps,
1580     numsteps,
1581     resultStep,
1582     leftstep,
1583     rightstep,
1584     oleftstep,
1585     orightstep,
1586     lroffset,
1587     rroffset,
1588     escript::ESFunction::DIVIDESF);
1589 caltinay 5972 break;
1590 jfenwick 2500 case POW:
1591 jfenwick 6057 //PROC_OP(double (double,double),::pow);
1592     DataMaths::binaryOpVectorLazyHelper<real_t, real_t, real_t>(resultp,
1593     &(*left)[0],
1594     &(*right)[0],
1595     chunksize,
1596     onumsteps,
1597     numsteps,
1598     resultStep,
1599     leftstep,
1600     rightstep,
1601     oleftstep,
1602     orightstep,
1603     lroffset,
1604     rroffset,
1605     escript::ESFunction::POWF);
1606 caltinay 5972 break;
1607 jfenwick 2500 default:
1608 caltinay 5972 throw DataException("Programmer error - resolveBinary can not resolve operator "+opToString(m_op)+".");
1609 jfenwick 2500 }
1610     LAZYDEBUG(cout << "Result res[" << roffset<< "]" << m_samples[roffset] << endl;)
1611     return &m_samples;
1612     }
1613    
1614    
1615     // This method assumes that any subexpressions which evaluate to Constant or Tagged Data
1616     // have already been collapsed to IDENTITY. So we must have at least one expanded child.
1617     // unlike the other resolve helpers, we must treat these datapoints separately.
1618 jfenwick 5938 const DataTypes::RealVectorType*
1619 jfenwick 4621 DataLazy::resolveNodeTProd(int tid, int sampleNo, size_t& roffset) const
1620 jfenwick 2500 {
1621     LAZYDEBUG(cout << "Resolve TensorProduct: " << toString() << endl;)
1622    
1623 caltinay 5972 size_t lroffset=0, rroffset=0; // offsets in the left and right result vectors
1624     // first work out which of the children are expanded
1625 jfenwick 2500 bool leftExp=(m_left->m_readytype=='E');
1626     bool rightExp=(m_right->m_readytype=='E');
1627     int steps=getNumDPPSample();
1628 caltinay 5972 int leftStep=(leftExp? m_left->getNoValues() : 0); // do not have scalars as input to this method
1629 jfenwick 2500 int rightStep=(rightExp?m_right->getNoValues() : 0);
1630    
1631     int resultStep=getNoValues();
1632     roffset=m_samplesize*tid;
1633     size_t offset=roffset;
1634    
1635 jfenwick 6042 const RealVectorType* left=m_left->resolveNodeSample(tid, sampleNo, lroffset);
1636 jfenwick 2500
1637 jfenwick 6042 const RealVectorType* right=m_right->resolveNodeSample(tid, sampleNo, rroffset);
1638 jfenwick 2500
1639     LAZYDEBUG(cerr << "[Left shape]=" << DataTypes::shapeToString(m_left->getShape()) << "\n[Right shape]=" << DataTypes::shapeToString(m_right->getShape()) << " result=" <<DataTypes::shapeToString(getShape()) << endl;
1640     cout << getNoValues() << endl;)
1641    
1642    
1643     LAZYDEBUG(cerr << "Post sub calls: " << toString() << endl;)
1644     LAZYDEBUG(cout << "LeftExp=" << leftExp << " rightExp=" << rightExp << endl;)
1645     LAZYDEBUG(cout << "LeftR=" << m_left->getRank() << " rightExp=" << m_right->getRank() << endl;)
1646     LAZYDEBUG(cout << "LeftSize=" << m_left->getNoValues() << " RightSize=" << m_right->getNoValues() << endl;)
1647     LAZYDEBUG(cout << "m_samplesize=" << m_samplesize << endl;)
1648     LAZYDEBUG(cout << "outputshape=" << DataTypes::shapeToString(getShape()) << endl;)
1649     LAZYDEBUG(cout << "DPPS=" << m_right->getNumDPPSample() <<"."<<endl;)
1650    
1651 caltinay 5972 double* resultp=&(m_samples[offset]); // results are stored at the vector offset we received
1652 jfenwick 2500 switch(m_op)
1653     {
1654     case PROD:
1655 caltinay 5972 for (int i=0;i<steps;++i,resultp+=resultStep)
1656     {
1657     const double *ptr_0 = &((*left)[lroffset]);
1658     const double *ptr_1 = &((*right)[rroffset]);
1659 jfenwick 2500
1660     LAZYDEBUG(cout << DataTypes::pointToString(*left, m_left->getShape(),lroffset,"LEFT") << endl;)
1661     LAZYDEBUG(cout << DataTypes::pointToString(*right,m_right->getShape(),rroffset, "RIGHT") << endl;)
1662    
1663 caltinay 5972 matrix_matrix_product(m_SL, m_SM, m_SR, ptr_0, ptr_1, resultp, m_transpose);
1664 jfenwick 2500
1665 caltinay 5972 lroffset+=leftStep;
1666     rroffset+=rightStep;
1667     }
1668     break;
1669 jfenwick 2500 default:
1670 caltinay 5972 throw DataException("Programmer error - resolveTProduct can not resolve operator "+opToString(m_op)+".");
1671 jfenwick 2500 }
1672     roffset=offset;
1673     return &m_samples;
1674     }
1675    
1676 jfenwick 1898
1677 jfenwick 5938 const DataTypes::RealVectorType*
1678 jfenwick 4621 DataLazy::resolveSample(int sampleNo, size_t& roffset) const
1679 jfenwick 1879 {
1680 jfenwick 2271 #ifdef _OPENMP
1681 caltinay 5972 int tid=omp_get_thread_num();
1682 jfenwick 2271 #else
1683 caltinay 5972 int tid=0;
1684 jfenwick 2271 #endif
1685 jfenwick 2777
1686     #ifdef LAZY_STACK_PROF
1687 caltinay 5972 stackstart[tid]=&tid;
1688     stackend[tid]=&tid;
1689     const DataTypes::RealVectorType* r=resolveNodeSample(tid, sampleNo, roffset);
1690     size_t d=(size_t)stackstart[tid]-(size_t)stackend[tid];
1691     #pragma omp critical
1692     if (d>maxstackuse)
1693     {
1694 jfenwick 2777 cout << "Max resolve Stack use " << d << endl;
1695 caltinay 5972 maxstackuse=d;
1696     }
1697     return r;
1698 jfenwick 2777 #else
1699 caltinay 5972 return resolveNodeSample(tid, sampleNo, roffset);
1700 jfenwick 2777 #endif
1701 jfenwick 2271 }
1702    
1703    
1704 jfenwick 2497 // This needs to do the work of the identity constructor
1705 jfenwick 2177 void
1706     DataLazy::resolveToIdentity()
1707     {
1708     if (m_op==IDENTITY)
1709 caltinay 5972 return;
1710 jfenwick 2500 DataReady_ptr p=resolveNodeWorker();
1711 jfenwick 2177 makeIdentity(p);
1712     }
1713 jfenwick 1889
1714 jfenwick 2177 void DataLazy::makeIdentity(const DataReady_ptr& p)
1715     {
1716     m_op=IDENTITY;
1717     m_axis_offset=0;
1718     m_transpose=0;
1719     m_SL=m_SM=m_SR=0;
1720     m_children=m_height=0;
1721     m_id=p;
1722     if(p->isConstant()) {m_readytype='C';}
1723     else if(p->isExpanded()) {m_readytype='E';}
1724     else if (p->isTagged()) {m_readytype='T';}
1725     else {throw DataException("Unknown DataReady instance in convertToIdentity constructor.");}
1726     m_samplesize=p->getNumDPPSample()*p->getNoValues();
1727     m_left.reset();
1728     m_right.reset();
1729     }
1730    
1731 jfenwick 2497
1732     DataReady_ptr
1733     DataLazy::resolve()
1734     {
1735     resolveToIdentity();
1736     return m_id;
1737     }
1738    
1739 jfenwick 2799
1740     /* This is really a static method but I think that caused problems in windows */
1741     void
1742     DataLazy::resolveGroupWorker(std::vector<DataLazy*>& dats)
1743     {
1744     if (dats.empty())
1745     {
1746 caltinay 5972 return;
1747 jfenwick 2799 }
1748     vector<DataLazy*> work;
1749     FunctionSpace fs=dats[0]->getFunctionSpace();
1750     bool match=true;
1751 jfenwick 2824 for (int i=dats.size()-1;i>=0;--i)
1752 jfenwick 2799 {
1753 caltinay 5972 if (dats[i]->m_readytype!='E')
1754     {
1755     dats[i]->collapse();
1756     }
1757     if (dats[i]->m_op!=IDENTITY)
1758     {
1759     work.push_back(dats[i]);
1760     if (fs!=dats[i]->getFunctionSpace())
1761     {
1762     match=false;
1763     }
1764     }
1765 jfenwick 2799 }
1766     if (work.empty())
1767     {
1768 caltinay 5972 return; // no work to do
1769 jfenwick 2799 }
1770 caltinay 5972 if (match) // all functionspaces match. Yes I realise this is overly strict
1771     { // it is possible that dats[0] is one of the objects which we discarded and
1772     // all the other functionspaces match.
1773     vector<DataExpanded*> dep;
1774 jfenwick 6042 vector<RealVectorType*> vecs;
1775 caltinay 5972 for (int i=0;i<work.size();++i)
1776     {
1777 jfenwick 6042 dep.push_back(new DataExpanded(fs,work[i]->getShape(), RealVectorType(work[i]->getNoValues())));
1778 caltinay 5972 vecs.push_back(&(dep[i]->getVectorRW()));
1779     }
1780     int totalsamples=work[0]->getNumSamples();
1781 jfenwick 6042 const RealVectorType* res=0; // Storage for answer
1782 caltinay 5972 int sample;
1783     #pragma omp parallel private(sample, res)
1784     {
1785     size_t roffset=0;
1786     #pragma omp for schedule(static)
1787     for (sample=0;sample<totalsamples;++sample)
1788     {
1789     roffset=0;
1790     int j;
1791     for (j=work.size()-1;j>=0;--j)
1792     {
1793 jfenwick 2799 #ifdef _OPENMP
1794 caltinay 5972 res=work[j]->resolveNodeSample(omp_get_thread_num(),sample,roffset);
1795 jfenwick 2799 #else
1796 caltinay 5972 res=work[j]->resolveNodeSample(0,sample,roffset);
1797 jfenwick 2799 #endif
1798 caltinay 5972 RealVectorType::size_type outoffset=dep[j]->getPointOffset(sample,0);
1799     memcpy(&((*vecs[j])[outoffset]),&((*res)[roffset]),work[j]->m_samplesize*sizeof(RealVectorType::ElementType));
1800     }
1801     }
1802     }
1803     // Now we need to load the new results as identity ops into the lazy nodes
1804     for (int i=work.size()-1;i>=0;--i)
1805     {
1806 jfenwick 5985 work[i]->makeIdentity(REFCOUNTNS::dynamic_pointer_cast<DataReady>(dep[i]->getPtr()));
1807 caltinay 5972 }
1808 jfenwick 2799 }
1809 caltinay 5972 else // functionspaces do not match
1810 jfenwick 2799 {
1811 caltinay 5972 for (int i=0;i<work.size();++i)
1812     {
1813     work[i]->resolveToIdentity();
1814     }
1815 jfenwick 2799 }
1816     }
1817    
1818    
1819    
1820 jfenwick 2500 // This version of resolve uses storage in each node to hold results
1821     DataReady_ptr
1822     DataLazy::resolveNodeWorker()
1823     {
1824 caltinay 5972 if (m_readytype!='E') // if the whole sub-expression is Constant or Tagged, then evaluate it normally
1825 jfenwick 2500 {
1826     collapse();
1827     }
1828 caltinay 5972 if (m_op==IDENTITY) // So a lazy expression of Constant or Tagged data will be returned here.
1829 jfenwick 2500 {
1830     return m_id;
1831     }
1832 caltinay 5972 // from this point on we must have m_op!=IDENTITY and m_readytype=='E'
1833 jfenwick 6042 DataExpanded* result=new DataExpanded(getFunctionSpace(),getShape(), RealVectorType(getNoValues()));
1834     RealVectorType& resvec=result->getVectorRW();
1835 jfenwick 2500 DataReady_ptr resptr=DataReady_ptr(result);
1836    
1837     int sample;
1838     int totalsamples=getNumSamples();
1839 jfenwick 6042 const RealVectorType* res=0; // Storage for answer
1840 jfenwick 2500 LAZYDEBUG(cout << "Total number of samples=" <<totalsamples << endl;)
1841 jfenwick 2777 #pragma omp parallel private(sample,res)
1842 jfenwick 2500 {
1843 caltinay 5972 size_t roffset=0;
1844 jfenwick 2777 #ifdef LAZY_STACK_PROF
1845 caltinay 5972 stackstart[omp_get_thread_num()]=&roffset;
1846     stackend[omp_get_thread_num()]=&roffset;
1847 jfenwick 2777 #endif
1848 caltinay 5972 #pragma omp for schedule(static)
1849     for (sample=0;sample<totalsamples;++sample)
1850     {
1851     roffset=0;
1852 jfenwick 2500 #ifdef _OPENMP
1853 caltinay 5972 res=resolveNodeSample(omp_get_thread_num(),sample,roffset);
1854 jfenwick 2500 #else
1855 caltinay 5972 res=resolveNodeSample(0,sample,roffset);
1856 jfenwick 2500 #endif
1857     LAZYDEBUG(cout << "Sample #" << sample << endl;)
1858     LAZYDEBUG(cout << "Final res[" << roffset<< "]=" << (*res)[roffset] << (*res)[roffset]<< endl; )
1859 caltinay 5972 RealVectorType::size_type outoffset=result->getPointOffset(sample,0);
1860     memcpy(&(resvec[outoffset]),&((*res)[roffset]),m_samplesize*sizeof(RealVectorType::ElementType));
1861     }
1862 jfenwick 2500 }
1863 jfenwick 2777 #ifdef LAZY_STACK_PROF
1864     for (int i=0;i<getNumberOfThreads();++i)
1865     {
1866 caltinay 5972 size_t r=((size_t)stackstart[i] - (size_t)stackend[i]);
1867     // cout << i << " " << stackstart[i] << " .. " << stackend[i] << " = " << r << endl;
1868     if (r>maxstackuse)
1869     {
1870     maxstackuse=r;
1871     }
1872 jfenwick 2777 }
1873     cout << "Max resolve Stack use=" << maxstackuse << endl;
1874     #endif
1875 jfenwick 2500 return resptr;
1876     }
1877    
1878 jfenwick 1865 std::string
1879     DataLazy::toString() const
1880     {
1881 jfenwick 1886 ostringstream oss;
1882 jfenwick 2791 oss << "Lazy Data: [depth=" << m_height<< "] ";
1883 jfenwick 2795 switch (escriptParams.getLAZY_STR_FMT())
1884 jfenwick 2737 {
1885 caltinay 5972 case 1: // tree format
1886     oss << endl;
1887     intoTreeString(oss,"");
1888     break;
1889     case 2: // just the depth
1890     break;
1891 jfenwick 2795 default:
1892 caltinay 5972 intoString(oss);
1893     break;
1894 jfenwick 2737 }
1895 jfenwick 1886 return oss.str();
1896 jfenwick 1865 }
1897    
1898 jfenwick 1899
1899 jfenwick 1886 void
1900     DataLazy::intoString(ostringstream& oss) const
1901     {
1902 jfenwick 2271 // oss << "[" << m_children <<";"<<m_height <<"]";
1903 jfenwick 1886 switch (getOpgroup(m_op))
1904     {
1905 jfenwick 1889 case G_IDENTITY:
1906 caltinay 5972 if (m_id->isExpanded())
1907     {
1908     oss << "E";
1909     }
1910     else if (m_id->isTagged())
1911     {
1912     oss << "T";
1913     }
1914     else if (m_id->isConstant())
1915     {
1916     oss << "C";
1917     }
1918     else
1919     {
1920     oss << "?";
1921     }
1922     oss << '@' << m_id.get();
1923     break;
1924 jfenwick 1886 case G_BINARY:
1925 caltinay 5972 oss << '(';
1926     m_left->intoString(oss);
1927     oss << ' ' << opToString(m_op) << ' ';
1928     m_right->intoString(oss);
1929     oss << ')';
1930     break;
1931 jfenwick 1886 case G_UNARY:
1932 jfenwick 2147 case G_UNARY_P:
1933 jfenwick 2037 case G_NP1OUT:
1934 jfenwick 2084 case G_NP1OUT_P:
1935 jfenwick 2721 case G_REDUCTION:
1936 caltinay 5972 oss << opToString(m_op) << '(';
1937     m_left->intoString(oss);
1938     oss << ')';
1939     break;
1940 jfenwick 2066 case G_TENSORPROD:
1941 caltinay 5972 oss << opToString(m_op) << '(';
1942     m_left->intoString(oss);
1943     oss << ", ";
1944     m_right->intoString(oss);
1945     oss << ')';
1946     break;
1947 jfenwick 2496 case G_NP1OUT_2P:
1948 caltinay 5972 oss << opToString(m_op) << '(';
1949     m_left->intoString(oss);
1950     oss << ", " << m_axis_offset << ", " << m_transpose;
1951     oss << ')';
1952     break;
1953 jfenwick 3035 case G_CONDEVAL:
1954 caltinay 5972 oss << opToString(m_op)<< '(' ;
1955     m_mask->intoString(oss);
1956     oss << " ? ";
1957     m_left->intoString(oss);
1958     oss << " : ";
1959     m_right->intoString(oss);
1960     oss << ')';
1961     break;
1962 jfenwick 1886 default:
1963 caltinay 5972 oss << "UNKNOWN";
1964 jfenwick 1886 }
1965     }
1966    
1967 jfenwick 2737
1968     void
1969     DataLazy::intoTreeString(ostringstream& oss, string indent) const
1970     {
1971     oss << '[' << m_rank << ':' << setw(3) << m_samplesize << "] " << indent;
1972     switch (getOpgroup(m_op))
1973     {
1974     case G_IDENTITY:
1975 caltinay 5972 if (m_id->isExpanded())
1976     {
1977     oss << "E";
1978     }
1979     else if (m_id->isTagged())
1980     {
1981     oss << "T";
1982     }
1983     else if (m_id->isConstant())
1984     {
1985     oss << "C";
1986     }
1987     else
1988     {
1989     oss << "?";
1990     }
1991     oss << '@' << m_id.get() << endl;
1992     break;
1993 jfenwick 2737 case G_BINARY:
1994 caltinay 5972 oss << opToString(m_op) << endl;
1995     indent+='.';
1996     m_left->intoTreeString(oss, indent);
1997     m_right->intoTreeString(oss, indent);
1998     break;
1999 jfenwick 2737 case G_UNARY:
2000     case G_UNARY_P:
2001     case G_NP1OUT:
2002     case G_NP1OUT_P:
2003     case G_REDUCTION:
2004 caltinay 5972 oss << opToString(m_op) << endl;
2005     indent+='.';
2006     m_left->intoTreeString(oss, indent);
2007     break;
2008 jfenwick 2737 case G_TENSORPROD:
2009 caltinay 5972 oss << opToString(m_op) << endl;
2010     indent+='.';
2011     m_left->intoTreeString(oss, indent);
2012     m_right->intoTreeString(oss, indent);
2013     break;
2014 jfenwick 2737 case G_NP1OUT_2P:
2015 caltinay 5972 oss << opToString(m_op) << ", " << m_axis_offset << ", " << m_transpose<< endl;
2016     indent+='.';
2017     m_left->intoTreeString(oss, indent);
2018     break;
2019 jfenwick 2737 default:
2020 caltinay 5972 oss << "UNKNOWN";
2021 jfenwick 2737 }
2022     }
2023    
2024    
2025 jfenwick 1865 DataAbstract*
2026 jfenwick 5938 DataLazy::deepCopy() const
2027 jfenwick 1865 {
2028 jfenwick 1935 switch (getOpgroup(m_op))
2029 jfenwick 1865 {
2030 jfenwick 1935 case G_IDENTITY: return new DataLazy(m_id->deepCopy()->getPtr());
2031 caltinay 5972 case G_UNARY:
2032 jfenwick 2721 case G_REDUCTION: return new DataLazy(m_left->deepCopy()->getPtr(),m_op);
2033 caltinay 5972 case G_UNARY_P: return new DataLazy(m_left->deepCopy()->getPtr(), m_op, m_tol);
2034     case G_BINARY: return new DataLazy(m_left->deepCopy()->getPtr(),m_right->deepCopy()->getPtr(),m_op);
2035 jfenwick 2066 case G_NP1OUT: return new DataLazy(m_left->deepCopy()->getPtr(), m_right->deepCopy()->getPtr(),m_op);
2036     case G_TENSORPROD: return new DataLazy(m_left->deepCopy()->getPtr(), m_right->deepCopy()->getPtr(), m_op, m_axis_offset, m_transpose);
2037 jfenwick 2721 case G_NP1OUT_P: return new DataLazy(m_left->deepCopy()->getPtr(),m_op, m_axis_offset);
2038     case G_NP1OUT_2P: return new DataLazy(m_left->deepCopy()->getPtr(), m_op, m_axis_offset, m_transpose);
2039 jfenwick 1935 default:
2040 caltinay 5972 throw DataException("Programmer error - do not know how to deepcopy operator "+opToString(m_op)+".");
2041 jfenwick 1865 }
2042     }
2043    
2044    
2045 jfenwick 2721
2046 jfenwick 2066 // There is no single, natural interpretation of getLength on DataLazy.
2047     // Instances of DataReady can look at the size of their vectors.
2048     // For lazy though, it could be the size the data would be if it were resolved;
2049     // or it could be some function of the lengths of the DataReady instances which
2050     // form part of the expression.
2051     // Rather than have people making assumptions, I have disabled the method.
2052 jfenwick 5938 DataTypes::RealVectorType::size_type
2053 jfenwick 1865 DataLazy::getLength() const
2054     {
2055 jfenwick 2066 throw DataException("getLength() does not make sense for lazy data.");
2056 jfenwick 1865 }
2057    
2058    
2059     DataAbstract*
2060     DataLazy::getSlice(const DataTypes::RegionType& region) const
2061     {
2062 jfenwick 1879 throw DataException("getSlice - not implemented for Lazy objects.");
2063 jfenwick 1865 }
2064    
2065 jfenwick 1935
2066     // To do this we need to rely on our child nodes
2067 jfenwick 5938 DataTypes::RealVectorType::size_type
2068 jfenwick 1865 DataLazy::getPointOffset(int sampleNo,
2069 jfenwick 1935 int dataPointNo)
2070     {
2071     if (m_op==IDENTITY)
2072     {
2073 caltinay 5972 return m_id->getPointOffset(sampleNo,dataPointNo);
2074 jfenwick 1935 }
2075     if (m_readytype!='E')
2076     {
2077 caltinay 5972 collapse();
2078     return m_id->getPointOffset(sampleNo,dataPointNo);
2079 jfenwick 1935 }
2080     // at this point we do not have an identity node and the expression will be Expanded
2081     // so we only need to know which child to ask
2082     if (m_left->m_readytype=='E')
2083     {
2084 caltinay 5972 return m_left->getPointOffset(sampleNo,dataPointNo);
2085 jfenwick 1935 }
2086     else
2087     {
2088 caltinay 5972 return m_right->getPointOffset(sampleNo,dataPointNo);
2089 jfenwick 1935 }
2090     }
2091    
2092     // To do this we need to rely on our child nodes
2093 jfenwick 5938 DataTypes::RealVectorType::size_type
2094 jfenwick 1935 DataLazy::getPointOffset(int sampleNo,
2095 jfenwick 1865 int dataPointNo) const
2096     {
2097 jfenwick 1935 if (m_op==IDENTITY)
2098     {
2099 caltinay 5972 return m_id->getPointOffset(sampleNo,dataPointNo);
2100 jfenwick 1935 }
2101     if (m_readytype=='E')
2102     {
2103     // at this point we do not have an identity node and the expression will be Expanded
2104     // so we only need to know which child to ask
2105     if (m_left->m_readytype=='E')
2106     {
2107 caltinay 5972 return m_left->getPointOffset(sampleNo,dataPointNo);
2108 jfenwick 1935 }
2109     else
2110     {
2111 caltinay 5972 return m_right->getPointOffset(sampleNo,dataPointNo);
2112 jfenwick 1935 }
2113     }
2114     if (m_readytype=='C')
2115     {
2116 caltinay 5972 return m_left->getPointOffset(sampleNo,dataPointNo); // which child doesn't matter
2117 jfenwick 1935 }
2118     throw DataException("Programmer error - getPointOffset on lazy data may require collapsing (but this object is marked const).");
2119 jfenwick 1865 }
2120    
2121 jfenwick 2271
2122     // I have decided to let Data:: handle this issue.
2123 jfenwick 1901 void
2124     DataLazy::setToZero()
2125     {
2126 jfenwick 5938 // DataTypes::RealVectorType v(getNoValues(),0);
2127 jfenwick 2271 // m_id=DataReady_ptr(new DataConstant(getFunctionSpace(),getShape(),v));
2128     // m_op=IDENTITY;
2129     // m_right.reset();
2130     // m_left.reset();
2131     // m_readytype='C';
2132     // m_buffsRequired=1;
2133    
2134 jfenwick 4634 (void)privdebug; // to stop the compiler complaining about unused privdebug
2135 jfenwick 2271 throw DataException("Programmer error - setToZero not supported for DataLazy (DataLazy objects should be read only).");
2136 jfenwick 1901 }
2137    
2138 jfenwick 2271 bool
2139     DataLazy::actsExpanded() const
2140     {
2141 caltinay 5972 return (m_readytype=='E');
2142 jfenwick 2271 }
2143    
2144 caltinay 5997 } // end namespace
2145 caltinay 5972

  ViewVC Help
Powered by ViewVC 1.1.26