/[escript]/branches/clazy/escriptcore/src/DataLazy.cpp
ViewVC logotype

Diff of /branches/clazy/escriptcore/src/DataLazy.cpp

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

branches/schroedinger/escript/src/DataLazy.cpp revision 1888 by jfenwick, Wed Oct 15 04:00:21 2008 UTC trunk/escriptcore/src/DataLazy.cpp revision 6042 by jfenwick, Wed Mar 9 04:30:36 2016 UTC
# Line 1  Line 1 
1    
2  /*******************************************************  /*****************************************************************************
3  *  *
4  * Copyright (c) 2003-2008 by University of Queensland  * Copyright (c) 2003-2016 by The University of Queensland
5  * Earth Systems Science Computational Center (ESSCC)  * http://www.uq.edu.au
 * http://www.uq.edu.au/esscc  
6  *  *
7  * Primary Business: Queensland, Australia  * Primary Business: Queensland, Australia
8  * Licensed under the Open Software License version 3.0  * Licensed under the Open Software License version 3.0
9  * http://www.opensource.org/licenses/osl-3.0.php  * http://www.opensource.org/licenses/osl-3.0.php
10  *  *
11  *******************************************************/  * Development until 2012 by Earth Systems Science Computational Center (ESSCC)
12    * Development 2012-2013 by School of Earth Sciences
13    * Development from 2014 by Centre for Geoscience Computing (GeoComp)
14    *
15    *****************************************************************************/
16    
17  #include "DataLazy.h"  #include "DataLazy.h"
18    #include "Data.h"
19    #include "DataTypes.h"
20    #include "EscriptParams.h"
21    #include "FunctionSpace.h"
22    #include "UnaryFuncs.h"    // for escript::fsign
23    #include "Utils.h"
24    #include "DataMaths.h"
25    
26  #ifdef USE_NETCDF  #ifdef USE_NETCDF
27  #include <netcdfcpp.h>  #include <netcdfcpp.h>
28  #endif  #endif
29  #ifdef PASO_MPI  
30  #include <mpi.h>  #include <iomanip> // for some fancy formatting in debug
31  #endif  
32  #ifdef _OPENMP  using namespace escript::DataTypes;
33  #include <omp.h>  
34  #endif  #define NO_ARG
35  #include "FunctionSpace.h"  
36  #include "DataTypes.h"  // #define LAZYDEBUG(X) if (privdebug){X;}
37  #include "Data.h"  #define LAZYDEBUG(X)
38  #include "UnaryFuncs.h"     // for escript::fsign  namespace
39    {
40    bool privdebug=false;
41    
42    #define ENABLEDEBUG privdebug=true;
43    #define DISABLEDEBUG privdebug=false;
44    }
45    
46    // #define SIZELIMIT if ((m_height>escript::escriptParams.getTOO_MANY_LEVELS()) || (m_children>escript::escriptParams.getTOO_MANY_NODES())) {cerr << "\n!!!!!!! SIZE LIMIT EXCEEDED " << m_children << ";" << m_height << endl << toString() << endl;resolveToIdentity();}
47    
48    // #define SIZELIMIT if ((m_height>escript::escriptParams.getTOO_MANY_LEVELS()) || (m_children>escript::escriptParams.getTOO_MANY_NODES())) {cerr << "SIZE LIMIT EXCEEDED " << m_height << endl;resolveToIdentity();}
49    
50    
51    #define SIZELIMIT if (m_height>escript::escriptParams.getTOO_MANY_LEVELS())  {if (escript::escriptParams.getLAZY_VERBOSE()){cerr << "SIZE LIMIT EXCEEDED height=" << m_height << endl;}resolveToIdentity();}
52    
53    /*
54    How does DataLazy work?
55    ~~~~~~~~~~~~~~~~~~~~~~~
56    
57    Each instance represents a single operation on one or two other DataLazy instances. These arguments are normally
58    denoted left and right.
59    
60    A special operation, IDENTITY, stores an instance of DataReady in the m_id member.
61    This means that all "internal" nodes in the structure are instances of DataLazy.
62    
63    Each operation has a string representation as well as an opgroup - eg G_IDENTITY, G_BINARY, ...
64    Note that IDENTITY is not considered a unary operation.
65    
66    I am avoiding calling the structure formed a tree because it is not guaranteed to be one (eg c=a+a).
67    It must however form a DAG (directed acyclic graph).
68    I will refer to individual DataLazy objects with the structure as nodes.
69    
70    Each node also stores:
71    - m_readytype \in {'E','T','C','?'} ~ indicates what sort of DataReady would be produced if the expression was
72            evaluated.
73    - m_buffsrequired ~ the large number of samples which would need to be kept simultaneously in order to
74            evaluate the expression.
75    - m_samplesize ~ the number of doubles stored in a sample.
76    
77    When a new node is created, the above values are computed based on the values in the child nodes.
78    Eg: if left requires 4 samples and right requires 6 then left+right requires 7 samples.
79    
80    The resolve method, which produces a DataReady from a DataLazy, does the following:
81    1) Create a DataReady to hold the new result.
82    2) Allocate a vector (v) big enough to hold m_buffsrequired samples.
83    3) For each sample, call resolveSample with v, to get its values and copy them into the result object.
84    
85    (In the case of OMP, multiple samples are resolved in parallel so the vector needs to be larger.)
86    
87    resolveSample returns a Vector* and an offset within that vector where the result is stored.
88    Normally, this would be v, but for identity nodes their internal vector is returned instead.
89    
90    The convention that I use, is that the resolve methods should store their results starting at the offset they are passed.
91    
92    For expressions which evaluate to Constant or Tagged, there is a different evaluation method.
93    The collapse method invokes the (non-lazy) operations on the Data class to evaluate the expression.
94    
95    To add a new operator you need to do the following (plus anything I might have forgotten - adding a new group for example):
96    1) Add to the ES_optype.
97    2) determine what opgroup your operation belongs to (X)
98    3) add a string for the op to the end of ES_opstrings
99    4) increase ES_opcount
100    5) add an entry (X) to opgroups
101    6) add an entry to the switch in collapseToReady
102    7) add an entry to resolveX
103    */
104    
105    
106  using namespace std;  using namespace std;
107  using namespace boost;  using namespace boost;
# Line 33  using namespace boost; Line 109  using namespace boost;
109  namespace escript  namespace escript
110  {  {
111    
 const std::string&  
 opToString(ES_optype op);  
   
112  namespace  namespace
113  {  {
114    
115    
116    // enabling this will print out when ever the maximum stacksize used by resolve increases
117    // it assumes _OPENMP is also in use
118    //#define LAZY_STACK_PROF
119    
120    
121    
122    #ifndef _OPENMP
123      #ifdef LAZY_STACK_PROF
124      #undef LAZY_STACK_PROF
125      #endif
126    #endif
127    
128    
129    #ifdef LAZY_STACK_PROF
130    std::vector<void*> stackstart(getNumberOfThreads());
131    std::vector<void*> stackend(getNumberOfThreads());
132    size_t maxstackuse=0;
133    #endif
134    
135  enum ES_opgroup  enum ES_opgroup
136  {  {
137     G_UNKNOWN,     G_UNKNOWN,
138     G_IDENTITY,     G_IDENTITY,
139     G_BINARY,     G_BINARY,            // pointwise operations with two arguments
140     G_UNARY     G_UNARY,             // pointwise operations with one argument
141       G_UNARY_P,           // pointwise operations with one argument, requiring a parameter
142       G_NP1OUT,            // non-pointwise op with one output
143       G_NP1OUT_P,          // non-pointwise op with one output requiring a parameter
144       G_TENSORPROD,        // general tensor product
145       G_NP1OUT_2P,         // non-pointwise op with one output requiring two params
146       G_REDUCTION,         // non-pointwise unary op with a scalar output
147       G_CONDEVAL
148  };  };
149    
150    
151    
152    
153  string ES_opstrings[]={"UNKNOWN","IDENTITY","+","-","*","/","sin","cos","tan",  string ES_opstrings[]={"UNKNOWN","IDENTITY","+","-","*","/","^",
154              "asin","acos","atan","sinh","cosh","tanh","erf",                          "sin","cos","tan",
155              "asinh","acosh","atanh",                          "asin","acos","atan","sinh","cosh","tanh","erf",
156              "log10","log","sign","abs","neg","pos","exp","sqrt",                          "asinh","acosh","atanh",
157              "1/","where>0","where<0","where>=0","where<=0"};                          "log10","log","sign","abs","neg","pos","exp","sqrt",
158  int ES_opcount=32;                          "1/","where>0","where<0","where>=0","where<=0", "where<>0","where=0",
159  ES_opgroup opgroups[]={G_UNKNOWN,G_IDENTITY,G_BINARY,G_BINARY,G_BINARY,G_BINARY,G_UNARY,G_UNARY,G_UNARY, //9                          "symmetric","nonsymmetric",
160              G_UNARY,G_UNARY,G_UNARY,G_UNARY,G_UNARY,G_UNARY,G_UNARY,    // 16                          "prod",
161              G_UNARY,G_UNARY,G_UNARY,                    // 19                          "transpose", "trace",
162              G_UNARY,G_UNARY,G_UNARY,G_UNARY,G_UNARY,G_UNARY,G_UNARY,G_UNARY,        // 27                          "swapaxes",
163              G_UNARY,G_UNARY,G_UNARY,G_UNARY,G_UNARY};                          "minval", "maxval",
164                            "condEval"};
165    int ES_opcount=44;
166    ES_opgroup opgroups[]={G_UNKNOWN,G_IDENTITY,G_BINARY,G_BINARY,G_BINARY,G_BINARY, G_BINARY,
167                            G_UNARY,G_UNARY,G_UNARY, //10
168                            G_UNARY,G_UNARY,G_UNARY,G_UNARY,G_UNARY,G_UNARY,G_UNARY,        // 17
169                            G_UNARY,G_UNARY,G_UNARY,                                        // 20
170                            G_UNARY,G_UNARY,G_UNARY,G_UNARY,G_UNARY,G_UNARY,G_UNARY,G_UNARY,        // 28
171                            G_UNARY,G_UNARY,G_UNARY,G_UNARY,G_UNARY, G_UNARY_P, G_UNARY_P,          // 35
172                            G_NP1OUT,G_NP1OUT,
173                            G_TENSORPROD,
174                            G_NP1OUT_P, G_NP1OUT_P,
175                            G_NP1OUT_2P,
176                            G_REDUCTION, G_REDUCTION,
177                            G_CONDEVAL};
178  inline  inline
179  ES_opgroup  ES_opgroup
180  getOpgroup(ES_optype op)  getOpgroup(ES_optype op)
# Line 74  getOpgroup(ES_optype op) Line 186  getOpgroup(ES_optype op)
186  FunctionSpace  FunctionSpace
187  resultFS(DataAbstract_ptr left, DataAbstract_ptr right, ES_optype op)  resultFS(DataAbstract_ptr left, DataAbstract_ptr right, ES_optype op)
188  {  {
189      // perhaps this should call interpolate and throw or something?          // perhaps this should call interpolate and throw or something?
190      // maybe we need an interpolate node -          // maybe we need an interpolate node -
191      // that way, if interpolate is required in any other op we can just throw a          // that way, if interpolate is required in any other op we can just throw a
192      // programming error exception.          // programming error exception.
193    
194      FunctionSpace l=left->getFunctionSpace();
195      if (left->getFunctionSpace()!=right->getFunctionSpace())    FunctionSpace r=right->getFunctionSpace();
196      {    if (l!=r)
197          throw DataException("FunctionSpaces not equal - interpolation not supported on lazy data.");    {
198      }      signed char res=r.getDomain()->preferredInterpolationOnDomain(r.getTypeCode(), l.getTypeCode());
199      return left->getFunctionSpace();      if (res==1)
200        {
201            return l;
202        }
203        if (res==-1)
204        {
205            return r;
206        }
207        throw DataException("Cannot interpolate between the FunctionSpaces given for operation "+opToString(op)+".");
208      }
209      return l;
210  }  }
211    
212  // return the shape of the result of "left op right"  // return the shape of the result of "left op right"
213    // the shapes resulting from tensor product are more complex to compute so are worked out elsewhere
214  DataTypes::ShapeType  DataTypes::ShapeType
215  resultShape(DataAbstract_ptr left, DataAbstract_ptr right, ES_optype op)  resultShape(DataAbstract_ptr left, DataAbstract_ptr right, ES_optype op)
216  {  {
217      if (left->getShape()!=right->getShape())          if (left->getShape()!=right->getShape())
218      {          {
219          throw DataException("Shapes not the same - shapes must match for lazy data.");            if ((getOpgroup(op)!=G_BINARY) && (getOpgroup(op)!=G_NP1OUT))
220      }            {
221      return left->getShape();                  throw DataException("Shapes not the name - shapes must match for (point)binary operations.");
222              }
223    
224              if (left->getRank()==0)       // we need to allow scalar * anything
225              {
226                    return right->getShape();
227              }
228              if (right->getRank()==0)
229              {
230                    return left->getShape();
231              }
232              throw DataException("Shapes not the same - arguments must have matching shapes (or be scalars) for (point)binary operations on lazy data.");
233            }
234            return left->getShape();
235  }  }
236    
237  size_t  // return the shape for "op left"
238  resultLength(DataAbstract_ptr left, DataAbstract_ptr right, ES_optype op)  
239    DataTypes::ShapeType
240    resultShape(DataAbstract_ptr left, ES_optype op, int axis_offset)
241  {  {
242     switch (getOpgroup(op))          switch(op)
243     {          {
244     case G_BINARY: return left->getLength();          case TRANS:
245     case G_UNARY: return left->getLength();             {                    // for the scoping of variables
246     default:                  const DataTypes::ShapeType& s=left->getShape();
247      throw DataException("Programmer Error - attempt to getLength() for operator "+opToString(op)+".");                  DataTypes::ShapeType sh;
248     }                  int rank=left->getRank();
249                    if (axis_offset<0 || axis_offset>rank)
250                    {
251                stringstream e;
252                e << "Error - Data::transpose must have 0 <= axis_offset <= rank=" << rank;
253                throw DataException(e.str());
254            }
255            for (int i=0; i<rank; i++)
256                    {
257                       int index = (axis_offset+i)%rank;
258               sh.push_back(s[index]); // Append to new shape
259            }
260                    return sh;
261               }
262            break;
263            case TRACE:
264               {
265                    int rank=left->getRank();
266                    if (rank<2)
267                    {
268                       throw DataException("Trace can only be computed for objects with rank 2 or greater.");
269                    }
270                    if ((axis_offset>rank-2) || (axis_offset<0))
271                    {
272                       throw DataException("Trace: axis offset must lie between 0 and rank-2 inclusive.");
273                    }
274                    if (rank==2)
275                    {
276                       return DataTypes::scalarShape;
277                    }
278                    else if (rank==3)
279                    {
280                       DataTypes::ShapeType sh;
281                       if (axis_offset==0)
282                       {
283                            sh.push_back(left->getShape()[2]);
284                       }
285                       else         // offset==1
286                       {
287                            sh.push_back(left->getShape()[0]);
288                       }
289                       return sh;
290                    }
291                    else if (rank==4)
292                    {
293                       DataTypes::ShapeType sh;
294                       const DataTypes::ShapeType& s=left->getShape();
295                       if (axis_offset==0)
296                       {
297                            sh.push_back(s[2]);
298                            sh.push_back(s[3]);
299                       }
300                       else if (axis_offset==1)
301                       {
302                            sh.push_back(s[0]);
303                            sh.push_back(s[3]);
304                       }
305                       else         // offset==2
306                       {
307                            sh.push_back(s[0]);
308                            sh.push_back(s[1]);
309                       }
310                       return sh;
311                    }
312                    else            // unknown rank
313                    {
314                       throw DataException("Error - Data::trace can only be calculated for rank 2, 3 or 4 object.");
315                    }
316               }
317            break;
318            default:
319            throw DataException("Programmer error - resultShape(left,op) can't compute shapes for operator "+opToString(op)+".");
320            }
321  }  }
322    
323  int  DataTypes::ShapeType
324  calcBuffs(const DataLazy_ptr& left, const DataLazy_ptr& right, ES_optype op)  SwapShape(DataAbstract_ptr left, const int axis0, const int axis1)
325  {  {
326     switch(getOpgroup(op))       // This code taken from the Data.cpp swapaxes() method
327     {       // Some of the checks are probably redundant here
328     case G_IDENTITY: return 1;       int axis0_tmp,axis1_tmp;
329     case G_BINARY: return max(left->getBuffsRequired(),right->getBuffsRequired()+1);       const DataTypes::ShapeType& s=left->getShape();
330     case G_UNARY: return max(left->getBuffsRequired(),1);       DataTypes::ShapeType out_shape;
331     default:       // Here's the equivalent of python s_out=s[axis_offset:]+s[:axis_offset]
332      throw DataException("Programmer Error - attempt to calcBuffs() for operator "+opToString(op)+".");       // which goes thru all shape vector elements starting with axis_offset (at index=rank wrap around to 0)
333     }       int rank=left->getRank();
334         if (rank<2) {
335            throw DataException("Error - Data::swapaxes argument must have at least rank 2.");
336         }
337         if (axis0<0 || axis0>rank-1) {
338            stringstream e;
339            e << "Error - Data::swapaxes: axis0 must be between 0 and rank-1=" << (rank-1);
340            throw DataException(e.str());
341         }
342         if (axis1<0 || axis1>rank-1) {
343            stringstream e;
344            e << "Error - Data::swapaxes: axis1 must be between 0 and rank-1=" << (rank-1);
345            throw DataException(e.str());
346         }
347         if (axis0 == axis1) {
348             throw DataException("Error - Data::swapaxes: axis indices must be different.");
349         }
350         if (axis0 > axis1) {
351             axis0_tmp=axis1;
352             axis1_tmp=axis0;
353         } else {
354             axis0_tmp=axis0;
355             axis1_tmp=axis1;
356         }
357         for (int i=0; i<rank; i++) {
358           if (i == axis0_tmp) {
359              out_shape.push_back(s[axis1_tmp]);
360           } else if (i == axis1_tmp) {
361              out_shape.push_back(s[axis0_tmp]);
362           } else {
363              out_shape.push_back(s[i]);
364           }
365         }
366        return out_shape;
367  }  }
368    
369    
370    // determine the output shape for the general tensor product operation
371    // the additional parameters return information required later for the product
372    // the majority of this code is copy pasted from C_General_Tensor_Product
373    DataTypes::ShapeType
374    GTPShape(DataAbstract_ptr left, DataAbstract_ptr right, int axis_offset, int transpose, int& SL, int& SM, int& SR)
375    {
376            
377      // Get rank and shape of inputs
378      int rank0 = left->getRank();
379      int rank1 = right->getRank();
380      const DataTypes::ShapeType& shape0 = left->getShape();
381      const DataTypes::ShapeType& shape1 = right->getShape();
382    
383      // Prepare for the loops of the product and verify compatibility of shapes
384      int start0=0, start1=0;
385      if (transpose == 0)           {}
386      else if (transpose == 1)      { start0 = axis_offset; }
387      else if (transpose == 2)      { start1 = rank1-axis_offset; }
388      else                          { throw DataException("DataLazy GeneralTensorProduct Constructor: Error - transpose should be 0, 1 or 2"); }
389    
390      if (rank0<axis_offset)
391      {
392            throw DataException("DataLazy GeneralTensorProduct Constructor: Error - rank of left < axisoffset");
393      }
394    
395      // Adjust the shapes for transpose
396      DataTypes::ShapeType tmpShape0(rank0);        // pre-sizing the vectors rather
397      DataTypes::ShapeType tmpShape1(rank1);        // than using push_back
398      for (int i=0; i<rank0; i++)   { tmpShape0[i]=shape0[(i+start0)%rank0]; }
399      for (int i=0; i<rank1; i++)   { tmpShape1[i]=shape1[(i+start1)%rank1]; }
400    
401      // Prepare for the loops of the product
402      SL=1, SM=1, SR=1;
403      for (int i=0; i<rank0-axis_offset; i++)       {
404        SL *= tmpShape0[i];
405      }
406      for (int i=rank0-axis_offset; i<rank0; i++)   {
407        if (tmpShape0[i] != tmpShape1[i-(rank0-axis_offset)]) {
408          throw DataException("C_GeneralTensorProduct: Error - incompatible shapes");
409        }
410        SM *= tmpShape0[i];
411      }
412      for (int i=axis_offset; i<rank1; i++)         {
413        SR *= tmpShape1[i];
414      }
415    
416      // Define the shape of the output (rank of shape is the sum of the loop ranges below)
417      DataTypes::ShapeType shape2(rank0+rank1-2*axis_offset);      
418      {                     // block to limit the scope of out_index
419         int out_index=0;
420         for (int i=0; i<rank0-axis_offset; i++, ++out_index) { shape2[out_index]=tmpShape0[i]; } // First part of arg_0_Z
421         for (int i=axis_offset; i<rank1; i++, ++out_index)   { shape2[out_index]=tmpShape1[i]; } // Last part of arg_1_Z
422      }
423    
424      if (shape2.size()>ESCRIPT_MAX_DATA_RANK)
425      {
426         ostringstream os;
427         os << "C_GeneralTensorProduct: Error - Attempt to create a rank " << shape2.size() << " object. The maximum rank is " << ESCRIPT_MAX_DATA_RANK << ".";
428         throw DataException(os.str());
429      }
430    
431      return shape2;
432    }
433    
434    }       // end anonymous namespace
435    
 }   // end anonymous namespace  
436    
437    
438    // Return a string representing the operation
439  const std::string&  const std::string&
440  opToString(ES_optype op)  opToString(ES_optype op)
441  {  {
# Line 138  opToString(ES_optype op) Line 446  opToString(ES_optype op)
446    return ES_opstrings[op];    return ES_opstrings[op];
447  }  }
448    
449    void DataLazy::LazyNodeSetup()
450    {
451    #ifdef _OPENMP
452        int numthreads=omp_get_max_threads();
453        m_samples.resize(numthreads*m_samplesize);
454        m_sampleids=new int[numthreads];
455        for (int i=0;i<numthreads;++i)
456        {
457            m_sampleids[i]=-1;  
458        }
459    #else
460        m_samples.resize(m_samplesize);
461        m_sampleids=new int[1];
462        m_sampleids[0]=-1;
463    #endif  // _OPENMP
464    }
465    
466    
467    // Creates an identity node
468  DataLazy::DataLazy(DataAbstract_ptr p)  DataLazy::DataLazy(DataAbstract_ptr p)
469      : parent(p->getFunctionSpace(),p->getShape()),          : parent(p->getFunctionSpace(),p->getShape())
470      m_op(IDENTITY)          ,m_sampleids(0),
471            m_samples(1)
472  {  {
473     if (p->isLazy())     if (p->isLazy())
474     {     {
475      // TODO: fix this.   We could make the new node a copy of p?          // I don't want identity of Lazy.
476      // I don't want identity of Lazy.          // Question: Why would that be so bad?
477      // Question: Why would that be so bad?          // Answer: We assume that the child of ID is something we can call getVector on
478      // Answer: We assume that the child of ID is something we can call getVector on          throw DataException("Programmer error - attempt to create identity from a DataLazy.");
     throw DataException("Programmer error - attempt to create identity from a DataLazy.");  
479     }     }
480     else     else
481     {     {
482      m_id=dynamic_pointer_cast<DataReady>(p);          p->makeLazyShared();
483            DataReady_ptr dr=dynamic_pointer_cast<DataReady>(p);
484            makeIdentity(dr);
485    LAZYDEBUG(cout << "Wrapping " << dr.get() << " id=" << m_id.get() << endl;)
486     }     }
487     m_length=p->getLength();  LAZYDEBUG(cout << "(1)Lazy created with " << m_samplesize << endl;)
    m_buffsRequired=1;  
    m_samplesize=getNumDPPSample()*getNoValues();  
 cout << "(1)Lazy created with " << m_samplesize << endl;  
488  }  }
489    
490  DataLazy::DataLazy(DataAbstract_ptr left, ES_optype op)  DataLazy::DataLazy(DataAbstract_ptr left, ES_optype op)
491      : parent(left->getFunctionSpace(),left->getShape()),          : parent(left->getFunctionSpace(),(getOpgroup(op)!=G_REDUCTION)?left->getShape():DataTypes::scalarShape),
492      m_op(op)          m_op(op),
493            m_axis_offset(0),
494            m_transpose(0),
495            m_SL(0), m_SM(0), m_SR(0)
496  {  {
497     if (getOpgroup(op)!=G_UNARY)     if ((getOpgroup(op)!=G_UNARY) && (getOpgroup(op)!=G_NP1OUT) && (getOpgroup(op)!=G_REDUCTION))
498     {     {
499      throw DataException("Programmer error - constructor DataLazy(left, op) will only process UNARY operations.");          throw DataException("Programmer error - constructor DataLazy(left, op) will only process UNARY operations.");
500     }     }
501    
502     DataLazy_ptr lleft;     DataLazy_ptr lleft;
503     if (!left->isLazy())     if (!left->isLazy())
504     {     {
505      lleft=DataLazy_ptr(new DataLazy(left));          lleft=DataLazy_ptr(new DataLazy(left));
506     }     }
507     else     else
508     {     {
509      lleft=dynamic_pointer_cast<DataLazy>(left);          lleft=dynamic_pointer_cast<DataLazy>(left);
510     }     }
511     m_length=left->getLength();     m_readytype=lleft->m_readytype;
512     m_left=lleft;     m_left=lleft;
    m_buffsRequired=1;  
513     m_samplesize=getNumDPPSample()*getNoValues();     m_samplesize=getNumDPPSample()*getNoValues();
514       m_children=m_left->m_children+1;
515       m_height=m_left->m_height+1;
516       LazyNodeSetup();
517       SIZELIMIT
518  }  }
519    
520    
521  DataLazy::DataLazy(DataLazy_ptr left, DataLazy_ptr right, ES_optype op)  // In this constructor we need to consider interpolation
522      : parent(resultFS(left,right,op), resultShape(left,right,op)),  DataLazy::DataLazy(DataAbstract_ptr left, DataAbstract_ptr right, ES_optype op)
523      m_left(left),          : parent(resultFS(left,right,op), resultShape(left,right,op)),
524      m_right(right),          m_op(op),
525      m_op(op)          m_SL(0), m_SM(0), m_SR(0)
526  {  {
527     if (getOpgroup(op)!=G_BINARY)  LAZYDEBUG(cout << "Forming operator with " << left.get() << " " << right.get() << endl;)
528       if ((getOpgroup(op)!=G_BINARY))
529     {     {
530      throw DataException("Programmer error - constructor DataLazy(left, right, op) will only process BINARY operations.");          throw DataException("Programmer error - constructor DataLazy(left, right, op) will only process BINARY operations.");
531       }
532    
533       if (getFunctionSpace()!=left->getFunctionSpace())    // left needs to be interpolated
534       {
535            FunctionSpace fs=getFunctionSpace();
536            Data ltemp(left);
537            Data tmp(ltemp,fs);
538            left=tmp.borrowDataPtr();
539       }
540       if (getFunctionSpace()!=right->getFunctionSpace())   // right needs to be interpolated
541       {
542            Data tmp(Data(right),getFunctionSpace());
543            right=tmp.borrowDataPtr();
544    LAZYDEBUG(cout << "Right interpolation required " << right.get() << endl;)
545       }
546       left->operandCheck(*right);
547    
548       if (left->isLazy())                  // the children need to be DataLazy. Wrap them in IDENTITY if required
549       {
550            m_left=dynamic_pointer_cast<DataLazy>(left);
551    LAZYDEBUG(cout << "Left is " << m_left->toString() << endl;)
552       }
553       else
554       {
555            m_left=DataLazy_ptr(new DataLazy(left));
556    LAZYDEBUG(cout << "Left " << left.get() << " wrapped " << m_left->m_id.get() << endl;)
557       }
558       if (right->isLazy())
559       {
560            m_right=dynamic_pointer_cast<DataLazy>(right);
561    LAZYDEBUG(cout << "Right is " << m_right->toString() << endl;)
562       }
563       else
564       {
565            m_right=DataLazy_ptr(new DataLazy(right));
566    LAZYDEBUG(cout << "Right " << right.get() << " wrapped " << m_right->m_id.get() << endl;)
567       }
568       char lt=m_left->m_readytype;
569       char rt=m_right->m_readytype;
570       if (lt=='E' || rt=='E')
571       {
572            m_readytype='E';
573       }
574       else if (lt=='T' || rt=='T')
575       {
576            m_readytype='T';
577       }
578       else
579       {
580            m_readytype='C';
581     }     }
    m_length=resultLength(m_left,m_right,m_op);  
582     m_samplesize=getNumDPPSample()*getNoValues();     m_samplesize=getNumDPPSample()*getNoValues();
583     m_buffsRequired=calcBuffs(m_left, m_right, m_op);     m_children=m_left->m_children+m_right->m_children+2;
584  cout << "(2)Lazy created with " << m_samplesize << endl;     m_height=max(m_left->m_height,m_right->m_height)+1;
585       LazyNodeSetup();
586       SIZELIMIT
587    LAZYDEBUG(cout << "(3)Lazy created with " << m_samplesize << endl;)
588  }  }
589    
590  DataLazy::DataLazy(DataAbstract_ptr left, DataAbstract_ptr right, ES_optype op)  DataLazy::DataLazy(DataAbstract_ptr left, DataAbstract_ptr right, ES_optype op, int axis_offset, int transpose)
591      : parent(resultFS(left,right,op), resultShape(left,right,op)),          : parent(resultFS(left,right,op), GTPShape(left,right, axis_offset, transpose, m_SL,m_SM, m_SR)),
592      m_op(op)          m_op(op),
593            m_axis_offset(axis_offset),
594            m_transpose(transpose)
595  {  {
596     if (getOpgroup(op)!=G_BINARY)     if ((getOpgroup(op)!=G_TENSORPROD))
597       {
598            throw DataException("Programmer error - constructor DataLazy(left, right, op, ax, tr) will only process BINARY operations which require parameters.");
599       }
600       if ((transpose>2) || (transpose<0))
601       {
602            throw DataException("DataLazy GeneralTensorProduct constructor: Error - transpose should be 0, 1 or 2");
603       }
604       if (getFunctionSpace()!=left->getFunctionSpace())    // left needs to be interpolated
605     {     {
606      throw DataException("Programmer error - constructor DataLazy(left, op) will only process BINARY operations.");          FunctionSpace fs=getFunctionSpace();
607            Data ltemp(left);
608            Data tmp(ltemp,fs);
609            left=tmp.borrowDataPtr();
610     }     }
611     if (left->isLazy())     if (getFunctionSpace()!=right->getFunctionSpace())   // right needs to be interpolated
612     {     {
613      m_left=dynamic_pointer_cast<DataLazy>(left);          Data tmp(Data(right),getFunctionSpace());
614            right=tmp.borrowDataPtr();
615       }
616    //    left->operandCheck(*right);
617    
618       if (left->isLazy())                  // the children need to be DataLazy. Wrap them in IDENTITY if required
619       {
620            m_left=dynamic_pointer_cast<DataLazy>(left);
621     }     }
622     else     else
623     {     {
624      m_left=DataLazy_ptr(new DataLazy(left));          m_left=DataLazy_ptr(new DataLazy(left));
625     }     }
626     if (right->isLazy())     if (right->isLazy())
627     {     {
628      m_right=dynamic_pointer_cast<DataLazy>(right);          m_right=dynamic_pointer_cast<DataLazy>(right);
629     }     }
630     else     else
631     {     {
632      m_right=DataLazy_ptr(new DataLazy(right));          m_right=DataLazy_ptr(new DataLazy(right));
633       }
634       char lt=m_left->m_readytype;
635       char rt=m_right->m_readytype;
636       if (lt=='E' || rt=='E')
637       {
638            m_readytype='E';
639       }
640       else if (lt=='T' || rt=='T')
641       {
642            m_readytype='T';
643     }     }
644       else
645       {
646            m_readytype='C';
647       }
648       m_samplesize=getNumDPPSample()*getNoValues();
649       m_children=m_left->m_children+m_right->m_children+2;
650       m_height=max(m_left->m_height,m_right->m_height)+1;
651       LazyNodeSetup();
652       SIZELIMIT
653    LAZYDEBUG(cout << "(4)Lazy created with " << m_samplesize << endl;)
654    }
655    
656     m_length=resultLength(m_left,m_right,m_op);  
657    DataLazy::DataLazy(DataAbstract_ptr left, ES_optype op, int axis_offset)
658            : parent(left->getFunctionSpace(), resultShape(left,op, axis_offset)),
659            m_op(op),
660            m_axis_offset(axis_offset),
661            m_transpose(0),
662            m_tol(0)
663    {
664       if ((getOpgroup(op)!=G_NP1OUT_P))
665       {
666            throw DataException("Programmer error - constructor DataLazy(left, op, ax) will only process UNARY operations which require parameters.");
667       }
668       DataLazy_ptr lleft;
669       if (!left->isLazy())
670       {
671            lleft=DataLazy_ptr(new DataLazy(left));
672       }
673       else
674       {
675            lleft=dynamic_pointer_cast<DataLazy>(left);
676       }
677       m_readytype=lleft->m_readytype;
678       m_left=lleft;
679     m_samplesize=getNumDPPSample()*getNoValues();     m_samplesize=getNumDPPSample()*getNoValues();
680     m_buffsRequired=calcBuffs(m_left, m_right,m_op);     m_children=m_left->m_children+1;
681  cout << "(3)Lazy created with " << m_samplesize << endl;     m_height=m_left->m_height+1;
682       LazyNodeSetup();
683       SIZELIMIT
684    LAZYDEBUG(cout << "(5)Lazy created with " << m_samplesize << endl;)
685  }  }
686    
687    DataLazy::DataLazy(DataAbstract_ptr left, ES_optype op, double tol)
688            : parent(left->getFunctionSpace(), left->getShape()),
689            m_op(op),
690            m_axis_offset(0),
691            m_transpose(0),
692            m_tol(tol)
693    {
694       if ((getOpgroup(op)!=G_UNARY_P))
695       {
696            throw DataException("Programmer error - constructor DataLazy(left, op, tol) will only process UNARY operations which require parameters.");
697       }
698       DataLazy_ptr lleft;
699       if (!left->isLazy())
700       {
701            lleft=DataLazy_ptr(new DataLazy(left));
702       }
703       else
704       {
705            lleft=dynamic_pointer_cast<DataLazy>(left);
706       }
707       m_readytype=lleft->m_readytype;
708       m_left=lleft;
709       m_samplesize=getNumDPPSample()*getNoValues();
710       m_children=m_left->m_children+1;
711       m_height=m_left->m_height+1;
712       LazyNodeSetup();
713       SIZELIMIT
714    LAZYDEBUG(cout << "(6)Lazy created with " << m_samplesize << endl;)
715    }
716    
717  DataLazy::~DataLazy()  
718    DataLazy::DataLazy(DataAbstract_ptr left, ES_optype op, const int axis0, const int axis1)
719            : parent(left->getFunctionSpace(), SwapShape(left,axis0,axis1)),
720            m_op(op),
721            m_axis_offset(axis0),
722            m_transpose(axis1),
723            m_tol(0)
724    {
725       if ((getOpgroup(op)!=G_NP1OUT_2P))
726       {
727            throw DataException("Programmer error - constructor DataLazy(left, op, tol) will only process UNARY operations which require two integer parameters.");
728       }
729       DataLazy_ptr lleft;
730       if (!left->isLazy())
731       {
732            lleft=DataLazy_ptr(new DataLazy(left));
733       }
734       else
735       {
736            lleft=dynamic_pointer_cast<DataLazy>(left);
737       }
738       m_readytype=lleft->m_readytype;
739       m_left=lleft;
740       m_samplesize=getNumDPPSample()*getNoValues();
741       m_children=m_left->m_children+1;
742       m_height=m_left->m_height+1;
743       LazyNodeSetup();
744       SIZELIMIT
745    LAZYDEBUG(cout << "(7)Lazy created with " << m_samplesize << endl;)
746    }
747    
748    
749    namespace
750    {
751    
752        inline int max3(int a, int b, int c)
753        {
754            int t=(a>b?a:b);
755            return (t>c?t:c);
756    
757        }
758    }
759    
760    DataLazy::DataLazy(DataAbstract_ptr mask, DataAbstract_ptr left, DataAbstract_ptr right/*, double tol*/)
761            : parent(left->getFunctionSpace(), left->getShape()),
762            m_op(CONDEVAL),
763            m_axis_offset(0),
764            m_transpose(0),
765            m_tol(0)
766  {  {
767    
768       DataLazy_ptr lmask;
769       DataLazy_ptr lleft;
770       DataLazy_ptr lright;
771       if (!mask->isLazy())
772       {
773            lmask=DataLazy_ptr(new DataLazy(mask));
774       }
775       else
776       {
777            lmask=dynamic_pointer_cast<DataLazy>(mask);
778       }
779       if (!left->isLazy())
780       {
781            lleft=DataLazy_ptr(new DataLazy(left));
782       }
783       else
784       {
785            lleft=dynamic_pointer_cast<DataLazy>(left);
786       }
787       if (!right->isLazy())
788       {
789            lright=DataLazy_ptr(new DataLazy(right));
790       }
791       else
792       {
793            lright=dynamic_pointer_cast<DataLazy>(right);
794       }
795       m_readytype=lmask->m_readytype;
796       if ((lleft->m_readytype!=lright->m_readytype) || (lmask->m_readytype!=lleft->m_readytype))
797       {
798            throw DataException("Programmer Error - condEval arguments must have the same readytype");
799       }
800       m_left=lleft;
801       m_right=lright;
802       m_mask=lmask;
803       m_samplesize=getNumDPPSample()*getNoValues();
804       m_children=m_left->m_children+m_right->m_children+m_mask->m_children+1;
805       m_height=max3(m_left->m_height,m_right->m_height,m_mask->m_height)+1;
806       LazyNodeSetup();
807       SIZELIMIT
808    LAZYDEBUG(cout << "(8)Lazy created with " << m_samplesize << endl;)
809  }  }
810    
811    
812  int  
813  DataLazy::getBuffsRequired() const  DataLazy::~DataLazy()
814  {  {
815      return m_buffsRequired;     delete[] m_sampleids;
816  }  }
817    
818    
819  // the vector and the offset are a place where the method could write its data if it wishes  /*
820  // it is not obligated to do so. For example, if it has its own storage already, it can use that.    \brief Evaluates the expression using methods on Data.
821  // Hence the return value to indicate where the data is actually stored.    This does the work for the collapse method.
822  // Regardless, the storage should be assumed to be used, even if it isn't.    For reasons of efficiency do not call this method on DataExpanded nodes.
823  const double*  */
824  DataLazy::resolveSample(ValueType& v,int sampleNo,  size_t offset ) const  DataReady_ptr
825    DataLazy::collapseToReady() const
826  {  {
827    if (m_op==IDENTITY)      if (m_readytype=='E')
828      {     // this is more an efficiency concern than anything else
829        throw DataException("Programmer Error - do not use collapse on Expanded data.");
830      }
831      if (m_op==IDENTITY)
832    {    {
833      const ValueType& vec=m_id->getVector();      return m_id;
     return &(vec[m_id->getPointOffset(sampleNo, 0)]);  
834    }    }
835    size_t rightoffset=offset+m_samplesize;    DataReady_ptr pleft=m_left->collapseToReady();
836    const double* left=m_left->resolveSample(v,sampleNo,offset);    Data left(pleft);
837    const double* right=0;    Data right;
838    if (getOpgroup(m_op)==G_BINARY)    if ((getOpgroup(m_op)==G_BINARY) || (getOpgroup(m_op)==G_TENSORPROD))
839    {    {
840      right=m_right->resolveSample(v,sampleNo,rightoffset);      right=Data(m_right->collapseToReady());
841    }    }
842    double* result=&(v[offset]);    Data result;
843      switch(m_op)
844    {    {
845      switch(m_op)      case ADD:
846      {          result=left+right;
847      case ADD:       // since these are pointwise ops, pretend each sample is one point          break;
848      tensor_binary_operation(m_samplesize, left, right, result, plus<double>());      case SUB:          
849      break;          result=left-right;
850      case SUB:                break;
851      tensor_binary_operation(m_samplesize, left, right, result, minus<double>());      case MUL:          
852      break;          result=left*right;
853      case MUL:                break;
854      tensor_binary_operation(m_samplesize, left, right, result, multiplies<double>());      case DIV:          
855      break;          result=left/right;
856      case DIV:                break;
     tensor_binary_operation(m_samplesize, left, right, result, divides<double>());  
     break;  
 // unary ops  
857      case SIN:      case SIN:
858      tensor_unary_operation(m_samplesize, left, result, ::sin);          result=left.sin();      
859      break;          break;
860      case COS:      case COS:
861      tensor_unary_operation(m_samplesize, left, result, ::cos);          result=left.cos();
862      break;          break;
863      case TAN:      case TAN:
864      tensor_unary_operation(m_samplesize, left, result, ::tan);          result=left.tan();
865      break;          break;
866      case ASIN:      case ASIN:
867      tensor_unary_operation(m_samplesize, left, result, ::asin);          result=left.asin();
868      break;          break;
869      case ACOS:      case ACOS:
870      tensor_unary_operation(m_samplesize, left, result, ::acos);          result=left.acos();
871      break;          break;
872      case ATAN:      case ATAN:
873      tensor_unary_operation(m_samplesize, left, result, ::atan);          result=left.atan();
874      break;          break;
875      case SINH:      case SINH:
876      tensor_unary_operation(m_samplesize, left, result, ::sinh);          result=left.sinh();
877      break;          break;
878      case COSH:      case COSH:
879      tensor_unary_operation(m_samplesize, left, result, ::cosh);          result=left.cosh();
880      break;          break;
881      case TANH:      case TANH:
882      tensor_unary_operation(m_samplesize, left, result, ::tanh);          result=left.tanh();
883      break;          break;
884      case ERF:      case ERF:
885  #ifdef _WIN32          result=left.erf();
886      throw DataException("Error - Data:: erf function is not supported on _WIN32 platforms.");          break;
887       case ASINH:
888            result=left.asinh();
889            break;
890       case ACOSH:
891            result=left.acosh();
892            break;
893       case ATANH:
894            result=left.atanh();
895            break;
896        case LOG10:
897            result=left.log10();
898            break;
899        case LOG:
900            result=left.log();
901            break;
902        case SIGN:
903            result=left.sign();
904            break;
905        case ABS:
906            result=left.abs();
907            break;
908        case NEG:
909            result=left.neg();
910            break;
911        case POS:
912            // it doesn't mean anything for delayed.
913            // it will just trigger a deep copy of the lazy object
914            throw DataException("Programmer error - POS not supported for lazy data.");
915            break;
916        case EXP:
917            result=left.exp();
918            break;
919        case SQRT:
920            result=left.sqrt();
921            break;
922        case RECIP:
923            result=left.oneOver();
924            break;
925        case GZ:
926            result=left.wherePositive();
927            break;
928        case LZ:
929            result=left.whereNegative();
930            break;
931        case GEZ:
932            result=left.whereNonNegative();
933            break;
934        case LEZ:
935            result=left.whereNonPositive();
936            break;
937        case NEZ:
938            result=left.whereNonZero(m_tol);
939            break;
940        case EZ:
941            result=left.whereZero(m_tol);
942            break;
943        case SYM:
944            result=left.symmetric();
945            break;
946        case NSYM:
947            result=left.nonsymmetric();
948            break;
949        case PROD:
950            result=C_GeneralTensorProduct(left,right,m_axis_offset, m_transpose);
951            break;
952        case TRANS:
953            result=left.transpose(m_axis_offset);
954            break;
955        case TRACE:
956            result=left.trace(m_axis_offset);
957            break;
958        case SWAP:
959            result=left.swapaxes(m_axis_offset, m_transpose);
960            break;
961        case MINVAL:
962            result=left.minval();
963            break;
964        case MAXVAL:
965            result=left.minval();
966            break;
967        default:
968            throw DataException("Programmer error - collapseToReady does not know how to resolve operator "+opToString(m_op)+".");
969      }
970      return result.borrowReadyPtr();
971    }
972    
973    /*
974       \brief Converts the DataLazy into an IDENTITY storing the value of the expression.
975       This method uses the original methods on the Data class to evaluate the expressions.
976       For this reason, it should not be used on DataExpanded instances. (To do so would defeat
977       the purpose of using DataLazy in the first place).
978    */
979    void
980    DataLazy::collapse() const
981    {
982      if (m_op==IDENTITY)
983      {
984            return;
985      }
986      if (m_readytype=='E')
987      {     // this is more an efficiency concern than anything else
988        throw DataException("Programmer Error - do not use collapse on Expanded data.");
989      }
990      m_id=collapseToReady();
991      m_op=IDENTITY;
992    }
993    
994    
995    
996    
997    
998    
999    #define PROC_OP(TYPE,X)                               \
1000            for (int j=0;j<onumsteps;++j)\
1001            {\
1002              for (int i=0;i<numsteps;++i,resultp+=resultStep) \
1003              { \
1004    LAZYDEBUG(cout << "[left,right]=[" << lroffset << "," << rroffset << "]" << endl;)\
1005    LAZYDEBUG(cout << "{left,right}={" << (*left)[lroffset] << "," << (*right)[rroffset] << "}\n";)\
1006                 tensor_binary_operation< TYPE >(chunksize, &((*left)[lroffset]), &((*right)[rroffset]), resultp, X); \
1007    LAZYDEBUG(cout << " result=      " << resultp[0] << endl;) \
1008                 lroffset+=leftstep; \
1009                 rroffset+=rightstep; \
1010              }\
1011              lroffset+=oleftstep;\
1012              rroffset+=orightstep;\
1013            }
1014    
1015    
1016    // The result will be stored in m_samples
1017    // The return value is a pointer to the DataVector, offset is the offset within the return value
1018    const DataTypes::RealVectorType*
1019    DataLazy::resolveNodeSample(int tid, int sampleNo, size_t& roffset) const
1020    {
1021    LAZYDEBUG(cout << "Resolve sample " << toString() << endl;)
1022            // collapse so we have a 'E' node or an IDENTITY for some other type
1023      if (m_readytype!='E' && m_op!=IDENTITY)
1024      {
1025            collapse();
1026      }
1027      if (m_op==IDENTITY)  
1028      {
1029        const RealVectorType& vec=m_id->getVectorRO();
1030        roffset=m_id->getPointOffset(sampleNo, 0);
1031    #ifdef LAZY_STACK_PROF
1032    int x;
1033    if (&x<stackend[omp_get_thread_num()])
1034    {
1035           stackend[omp_get_thread_num()]=&x;
1036    }
1037    #endif
1038        return &(vec);
1039      }
1040      if (m_readytype!='E')
1041      {
1042        throw DataException("Programmer Error - Collapse did not produce an expanded node.");
1043      }
1044      if (m_sampleids[tid]==sampleNo)
1045      {
1046            roffset=tid*m_samplesize;
1047            return &(m_samples);            // sample is already resolved
1048      }
1049      m_sampleids[tid]=sampleNo;
1050    
1051      switch (getOpgroup(m_op))
1052      {
1053      case G_UNARY:
1054      case G_UNARY_P: return resolveNodeUnary(tid, sampleNo, roffset);
1055      case G_BINARY: return resolveNodeBinary(tid, sampleNo, roffset);
1056      case G_NP1OUT: return resolveNodeNP1OUT(tid, sampleNo, roffset);
1057      case G_NP1OUT_P: return resolveNodeNP1OUT_P(tid, sampleNo, roffset);
1058      case G_TENSORPROD: return resolveNodeTProd(tid, sampleNo, roffset);
1059      case G_NP1OUT_2P: return resolveNodeNP1OUT_2P(tid, sampleNo, roffset);
1060      case G_REDUCTION: return resolveNodeReduction(tid, sampleNo, roffset);
1061      case G_CONDEVAL: return resolveNodeCondEval(tid, sampleNo, roffset);
1062      default:
1063        throw DataException("Programmer Error - resolveSample does not know how to process "+opToString(m_op)+".");
1064      }
1065    }
1066    
1067    const DataTypes::RealVectorType*
1068    DataLazy::resolveNodeUnary(int tid, int sampleNo, size_t& roffset) const
1069    {
1070            // we assume that any collapsing has been done before we get here
1071            // since we only have one argument we don't need to think about only
1072            // processing single points.
1073            // we will also know we won't get identity nodes
1074      if (m_readytype!='E')
1075      {
1076        throw DataException("Programmer error - resolveUnary should only be called on expanded Data.");
1077      }
1078      if (m_op==IDENTITY)
1079      {
1080        throw DataException("Programmer error - resolveNodeUnary should not be called on identity nodes.");
1081      }
1082      const DataTypes::RealVectorType* leftres=m_left->resolveNodeSample(tid, sampleNo, roffset);
1083      const double* left=&((*leftres)[roffset]);
1084      roffset=m_samplesize*tid;
1085      double* result=&(m_samples[roffset]);
1086      switch (m_op)
1087      {
1088        case SIN:  
1089            tensor_unary_operation<double (*)(double)>(m_samplesize, left, result, ::sin);
1090            break;
1091        case COS:
1092            tensor_unary_operation<double (*)(double)>(m_samplesize, left, result, ::cos);
1093            break;
1094        case TAN:
1095            tensor_unary_operation<double (*)(double)>(m_samplesize, left, result, ::tan);
1096            break;
1097        case ASIN:
1098            tensor_unary_operation<double (*)(double)>(m_samplesize, left, result, ::asin);
1099            break;
1100        case ACOS:
1101            tensor_unary_operation<double (*)(double)>(m_samplesize, left, result, ::acos);
1102            break;
1103        case ATAN:
1104            tensor_unary_operation<double (*)(double)>(m_samplesize, left, result, ::atan);
1105            break;
1106        case SINH:
1107            tensor_unary_operation<double (*)(double)>(m_samplesize, left, result, ::sinh);
1108            break;
1109        case COSH:
1110            tensor_unary_operation<double (*)(double)>(m_samplesize, left, result, ::cosh);
1111            break;
1112        case TANH:
1113            tensor_unary_operation<double (*)(double)>(m_samplesize, left, result, ::tanh);
1114            break;
1115        case ERF:
1116    #if defined (_WIN32) && !defined(__INTEL_COMPILER)
1117            throw DataException("Error - Data:: erf function is not supported on _WIN32 platforms.");
1118  #else  #else
1119      tensor_unary_operation(m_samplesize, left, result, ::erf);          tensor_unary_operation(m_samplesize, left, result, ::erf);
1120      break;          break;
1121  #endif  #endif
1122     case ASINH:     case ASINH:
1123  #ifdef _WIN32  #if defined (_WIN32) && !defined(__INTEL_COMPILER)
1124      tensor_unary_operation(m_samplesize, left, result, escript::asinh_substitute);          tensor_unary_operation(m_samplesize, left, result, escript::asinh_substitute);
1125  #else  #else
1126      tensor_unary_operation(m_samplesize, left, result, ::asinh);          tensor_unary_operation(m_samplesize, left, result, ::asinh);
1127  #endif    #endif  
1128      break;          break;
1129     case ACOSH:     case ACOSH:
1130  #ifdef _WIN32  #if defined (_WIN32) && !defined(__INTEL_COMPILER)
1131      tensor_unary_operation(m_samplesize, left, result, escript::acosh_substitute);          tensor_unary_operation(m_samplesize, left, result, escript::acosh_substitute);
1132  #else  #else
1133      tensor_unary_operation(m_samplesize, left, result, ::acosh);          tensor_unary_operation(m_samplesize, left, result, ::acosh);
1134  #endif    #endif  
1135      break;          break;
1136     case ATANH:     case ATANH:
1137  #ifdef _WIN32  #if defined (_WIN32) && !defined(__INTEL_COMPILER)
1138      tensor_unary_operation(m_samplesize, left, result, escript::atanh_substitute);          tensor_unary_operation(m_samplesize, left, result, escript::atanh_substitute);
1139  #else  #else
1140      tensor_unary_operation(m_samplesize, left, result, ::atanh);          tensor_unary_operation(m_samplesize, left, result, ::atanh);
1141  #endif    #endif  
1142      break;          break;
1143      case LOG10:      case LOG10:
1144      tensor_unary_operation(m_samplesize, left, result, ::log10);          tensor_unary_operation<double (*)(double)>(m_samplesize, left, result, ::log10);
1145      break;          break;
1146      case LOG:      case LOG:
1147      tensor_unary_operation(m_samplesize, left, result, ::log);          tensor_unary_operation<double (*)(double)>(m_samplesize, left, result, ::log);
1148      break;          break;
1149      case SIGN:      case SIGN:
1150      tensor_unary_operation(m_samplesize, left, result, escript::fsign);          tensor_unary_operation(m_samplesize, left, result, escript::fsign);
1151      break;          break;
1152      case ABS:      case ABS:
1153      tensor_unary_operation(m_samplesize, left, result, ::fabs);          tensor_unary_operation<double (*)(double)>(m_samplesize, left, result, ::fabs);
1154      break;          break;
1155      case NEG:      case NEG:
1156      tensor_unary_operation(m_samplesize, left, result, negate<double>());          tensor_unary_operation(m_samplesize, left, result, negate<double>());
1157      break;          break;
1158      case POS:      case POS:
1159      // it doesn't mean anything for delayed.          // it doesn't mean anything for delayed.
1160      // it will just trigger a deep copy of the lazy object          // it will just trigger a deep copy of the lazy object
1161      throw DataException("Programmer error - POS not supported for lazy data.");          throw DataException("Programmer error - POS not supported for lazy data.");
1162      break;          break;
1163      case EXP:      case EXP:
1164      tensor_unary_operation(m_samplesize, left, result, ::exp);          tensor_unary_operation<double (*)(double)>(m_samplesize, left, result, ::exp);
1165      break;          break;
1166      case SQRT:      case SQRT:
1167      tensor_unary_operation(m_samplesize, left, result, ::sqrt);          tensor_unary_operation<double (*)(double)>(m_samplesize, left, result, ::sqrt);
1168      break;          break;
1169      case RECIP:      case RECIP:
1170      tensor_unary_operation(m_samplesize, left, result, bind1st(divides<double>(),1.));          tensor_unary_operation(m_samplesize, left, result, bind1st(divides<double>(),1.));
1171      break;          break;
1172      case GZ:      case GZ:
1173      tensor_unary_operation(m_samplesize, left, result, bind2nd(greater<double>(),0.0));          tensor_unary_operation(m_samplesize, left, result, bind2nd(greater<double>(),0.0));
1174      break;          break;
1175      case LZ:      case LZ:
1176      tensor_unary_operation(m_samplesize, left, result, bind2nd(less<double>(),0.0));          tensor_unary_operation(m_samplesize, left, result, bind2nd(less<double>(),0.0));
1177      break;          break;
1178      case GEZ:      case GEZ:
1179      tensor_unary_operation(m_samplesize, left, result, bind2nd(greater_equal<double>(),0.0));          tensor_unary_operation(m_samplesize, left, result, bind2nd(greater_equal<double>(),0.0));
1180      break;          break;
1181      case LEZ:      case LEZ:
1182      tensor_unary_operation(m_samplesize, left, result, bind2nd(less_equal<double>(),0.0));          tensor_unary_operation(m_samplesize, left, result, bind2nd(less_equal<double>(),0.0));
1183      break;          break;
1184    // There are actually G_UNARY_P but I don't see a compelling reason to treat them differently
1185        case NEZ:
1186            tensor_unary_operation(m_samplesize, left, result, bind2nd(AbsGT(),m_tol));
1187            break;
1188        case EZ:
1189            tensor_unary_operation(m_samplesize, left, result, bind2nd(AbsLTE(),m_tol));
1190            break;
1191    
1192      default:      default:
1193      throw DataException("Programmer error - do not know how to resolve operator "+opToString(m_op)+".");          throw DataException("Programmer error - resolveUnary can not resolve operator "+opToString(m_op)+".");
1194      }    }
1195      return &(m_samples);
1196    }
1197    
1198    
1199    const DataTypes::RealVectorType*
1200    DataLazy::resolveNodeReduction(int tid, int sampleNo, size_t& roffset) const
1201    {
1202            // we assume that any collapsing has been done before we get here
1203            // since we only have one argument we don't need to think about only
1204            // processing single points.
1205            // we will also know we won't get identity nodes
1206      if (m_readytype!='E')
1207      {
1208        throw DataException("Programmer error - resolveUnary should only be called on expanded Data.");
1209      }
1210      if (m_op==IDENTITY)
1211      {
1212        throw DataException("Programmer error - resolveNodeUnary should not be called on identity nodes.");
1213      }
1214      size_t loffset=0;
1215      const DataTypes::RealVectorType* leftres=m_left->resolveNodeSample(tid, sampleNo, loffset);
1216    
1217      roffset=m_samplesize*tid;
1218      unsigned int ndpps=getNumDPPSample();
1219      unsigned int psize=DataTypes::noValues(m_left->getShape());
1220      double* result=&(m_samples[roffset]);
1221      switch (m_op)
1222      {
1223        case MINVAL:
1224            {
1225              for (unsigned int z=0;z<ndpps;++z)
1226              {
1227                FMin op;
1228                *result=DataMaths::reductionOp(*leftres, m_left->getShape(), loffset, op, numeric_limits<double>::max());
1229                loffset+=psize;
1230                result++;
1231              }
1232            }
1233            break;
1234        case MAXVAL:
1235            {
1236              for (unsigned int z=0;z<ndpps;++z)
1237              {
1238              FMax op;
1239              *result=DataMaths::reductionOp(*leftres, m_left->getShape(), loffset, op, numeric_limits<double>::max()*-1);
1240              loffset+=psize;
1241              result++;
1242              }
1243            }
1244            break;
1245        default:
1246            throw DataException("Programmer error - resolveUnary can not resolve operator "+opToString(m_op)+".");
1247      }
1248      return &(m_samples);
1249    }
1250    
1251    const DataTypes::RealVectorType*
1252    DataLazy::resolveNodeNP1OUT(int tid, int sampleNo, size_t& roffset) const
1253    {
1254            // we assume that any collapsing has been done before we get here
1255            // since we only have one argument we don't need to think about only
1256            // processing single points.
1257      if (m_readytype!='E')
1258      {
1259        throw DataException("Programmer error - resolveNodeNP1OUT should only be called on expanded Data.");
1260    }    }
1261    return result;    if (m_op==IDENTITY)
1262      {
1263        throw DataException("Programmer error - resolveNodeNP1OUT should not be called on identity nodes.");
1264      }
1265      size_t subroffset;
1266      const RealVectorType* leftres=m_left->resolveNodeSample(tid, sampleNo, subroffset);
1267      roffset=m_samplesize*tid;
1268      size_t loop=0;
1269      size_t numsteps=(m_readytype=='E')?getNumDPPSample():1;
1270      size_t step=getNoValues();
1271      size_t offset=roffset;
1272      switch (m_op)
1273      {
1274        case SYM:
1275            for (loop=0;loop<numsteps;++loop)
1276            {
1277                DataMaths::symmetric(*leftres,m_left->getShape(),subroffset, m_samples, getShape(), offset);
1278                subroffset+=step;
1279                offset+=step;
1280            }
1281            break;
1282        case NSYM:
1283            for (loop=0;loop<numsteps;++loop)
1284            {
1285                DataMaths::nonsymmetric(*leftres,m_left->getShape(),subroffset, m_samples, getShape(), offset);
1286                subroffset+=step;
1287                offset+=step;
1288            }
1289            break;
1290        default:
1291            throw DataException("Programmer error - resolveNP1OUT can not resolve operator "+opToString(m_op)+".");
1292      }
1293      return &m_samples;
1294    }
1295    
1296    const DataTypes::RealVectorType*
1297    DataLazy::resolveNodeNP1OUT_P(int tid, int sampleNo, size_t& roffset) const
1298    {
1299            // we assume that any collapsing has been done before we get here
1300            // since we only have one argument we don't need to think about only
1301            // processing single points.
1302      if (m_readytype!='E')
1303      {
1304        throw DataException("Programmer error - resolveNodeNP1OUT_P should only be called on expanded Data.");
1305      }
1306      if (m_op==IDENTITY)
1307      {
1308        throw DataException("Programmer error - resolveNodeNP1OUT_P should not be called on identity nodes.");
1309      }
1310      size_t subroffset;
1311      size_t offset;
1312      const RealVectorType* leftres=m_left->resolveNodeSample(tid, sampleNo, subroffset);
1313      roffset=m_samplesize*tid;
1314      offset=roffset;
1315      size_t loop=0;
1316      size_t numsteps=(m_readytype=='E')?getNumDPPSample():1;
1317      size_t outstep=getNoValues();
1318      size_t instep=m_left->getNoValues();
1319      switch (m_op)
1320      {
1321        case TRACE:
1322            for (loop=0;loop<numsteps;++loop)
1323            {
1324                DataMaths::trace(*leftres,m_left->getShape(),subroffset, m_samples ,getShape(),offset,m_axis_offset);
1325                subroffset+=instep;
1326                offset+=outstep;
1327            }
1328            break;
1329        case TRANS:
1330            for (loop=0;loop<numsteps;++loop)
1331            {
1332                DataMaths::transpose(*leftres,m_left->getShape(),subroffset, m_samples, getShape(),offset,m_axis_offset);
1333                subroffset+=instep;
1334                offset+=outstep;
1335            }
1336            break;
1337        default:
1338            throw DataException("Programmer error - resolveNP1OUTP can not resolve operator "+opToString(m_op)+".");
1339      }
1340      return &m_samples;
1341  }  }
1342    
1343    
1344    const DataTypes::RealVectorType*
1345    DataLazy::resolveNodeNP1OUT_2P(int tid, int sampleNo, size_t& roffset) const
1346    {
1347      if (m_readytype!='E')
1348      {
1349        throw DataException("Programmer error - resolveNodeNP1OUT_2P should only be called on expanded Data.");
1350      }
1351      if (m_op==IDENTITY)
1352      {
1353        throw DataException("Programmer error - resolveNodeNP1OUT_2P should not be called on identity nodes.");
1354      }
1355      size_t subroffset;
1356      size_t offset;
1357      const RealVectorType* leftres=m_left->resolveNodeSample(tid, sampleNo, subroffset);
1358      roffset=m_samplesize*tid;
1359      offset=roffset;
1360      size_t loop=0;
1361      size_t numsteps=(m_readytype=='E')?getNumDPPSample():1;
1362      size_t outstep=getNoValues();
1363      size_t instep=m_left->getNoValues();
1364      switch (m_op)
1365      {
1366        case SWAP:
1367            for (loop=0;loop<numsteps;++loop)
1368            {
1369                DataMaths::swapaxes(*leftres,m_left->getShape(),subroffset, m_samples, getShape(),offset, m_axis_offset, m_transpose);
1370                subroffset+=instep;
1371                offset+=outstep;
1372            }
1373            break;
1374        default:
1375            throw DataException("Programmer error - resolveNodeNP1OUT2P can not resolve operator "+opToString(m_op)+".");
1376      }
1377      return &m_samples;
1378    }
1379    
1380    const DataTypes::RealVectorType*
1381    DataLazy::resolveNodeCondEval(int tid, int sampleNo, size_t& roffset) const
1382    {
1383      if (m_readytype!='E')
1384      {
1385        throw DataException("Programmer error - resolveNodeCondEval should only be called on expanded Data.");
1386      }
1387      if (m_op!=CONDEVAL)
1388      {
1389        throw DataException("Programmer error - resolveNodeCondEval should only be called on CONDEVAL nodes.");
1390      }
1391      size_t subroffset;
1392    
1393      const RealVectorType* maskres=m_mask->resolveNodeSample(tid, sampleNo, subroffset);
1394      const RealVectorType* srcres=0;
1395      if ((*maskres)[subroffset]>0)
1396      {
1397            srcres=m_left->resolveNodeSample(tid, sampleNo, subroffset);
1398      }
1399      else
1400      {
1401            srcres=m_right->resolveNodeSample(tid, sampleNo, subroffset);
1402      }
1403    
1404      // Now we need to copy the result
1405    
1406      roffset=m_samplesize*tid;
1407      for (int i=0;i<m_samplesize;++i)
1408      {
1409            m_samples[roffset+i]=(*srcres)[subroffset+i];  
1410      }
1411    
1412      return &m_samples;
1413    }
1414    
1415    // This method assumes that any subexpressions which evaluate to Constant or Tagged Data
1416    // have already been collapsed to IDENTITY. So we must have at least one expanded child.
1417    // If both children are expanded, then we can process them in a single operation (we treat
1418    // the whole sample as one big datapoint.
1419    // If one of the children is not expanded, then we need to treat each point in the sample
1420    // individually.
1421    // There is an additional complication when scalar operations are considered.
1422    // For example, 2+Vector.
1423    // In this case each double within the point is treated individually
1424    const DataTypes::RealVectorType*
1425    DataLazy::resolveNodeBinary(int tid, int sampleNo, size_t& roffset) const
1426    {
1427    LAZYDEBUG(cout << "Resolve binary: " << toString() << endl;)
1428    
1429      size_t lroffset=0, rroffset=0;        // offsets in the left and right result vectors
1430            // first work out which of the children are expanded
1431      bool leftExp=(m_left->m_readytype=='E');
1432      bool rightExp=(m_right->m_readytype=='E');
1433      if (!leftExp && !rightExp)
1434      {
1435            throw DataException("Programmer Error - please use collapse if neither argument has type 'E'.");
1436      }
1437      bool leftScalar=(m_left->getRank()==0);
1438      bool rightScalar=(m_right->getRank()==0);
1439      if ((m_left->getRank()!=m_right->getRank()) && (!leftScalar && !rightScalar))
1440      {
1441            throw DataException("resolveBinary - ranks of arguments must match unless one of them is scalar.");
1442      }
1443      size_t leftsize=m_left->getNoValues();
1444      size_t rightsize=m_right->getNoValues();
1445      size_t chunksize=1;                   // how many doubles will be processed in one go
1446      int leftstep=0;               // how far should the left offset advance after each step
1447      int rightstep=0;
1448      int numsteps=0;               // total number of steps for the inner loop
1449      int oleftstep=0;      // the o variables refer to the outer loop
1450      int orightstep=0;     // The outer loop is only required in cases where there is an extended scalar
1451      int onumsteps=1;
1452      
1453      bool LES=(leftExp && leftScalar);     // Left is an expanded scalar
1454      bool RES=(rightExp && rightScalar);
1455      bool LS=(!leftExp && leftScalar);     // left is a single scalar
1456      bool RS=(!rightExp && rightScalar);
1457      bool LN=(!leftExp && !leftScalar);    // left is a single non-scalar
1458      bool RN=(!rightExp && !rightScalar);
1459      bool LEN=(leftExp && !leftScalar);    // left is an expanded non-scalar
1460      bool REN=(rightExp && !rightScalar);
1461    
1462      if ((LES && RES) || (LEN && REN))     // both are Expanded scalars or both are expanded non-scalars
1463      {
1464            chunksize=m_left->getNumDPPSample()*leftsize;
1465            leftstep=0;
1466            rightstep=0;
1467            numsteps=1;
1468      }
1469      else if (LES || RES)
1470      {
1471            chunksize=1;
1472            if (LES)                // left is an expanded scalar
1473            {
1474                    if (RS)
1475                    {
1476                       leftstep=1;
1477                       rightstep=0;
1478                       numsteps=m_left->getNumDPPSample();
1479                    }
1480                    else            // RN or REN
1481                    {
1482                       leftstep=0;
1483                       oleftstep=1;
1484                       rightstep=1;
1485                       orightstep=(RN ? -(int)rightsize : 0);
1486                       numsteps=rightsize;
1487                       onumsteps=m_left->getNumDPPSample();
1488                    }
1489            }
1490            else            // right is an expanded scalar
1491            {
1492                    if (LS)
1493                    {
1494                       rightstep=1;
1495                       leftstep=0;
1496                       numsteps=m_right->getNumDPPSample();
1497                    }
1498                    else
1499                    {
1500                       rightstep=0;
1501                       orightstep=1;
1502                       leftstep=1;
1503                       oleftstep=(LN ? -(int)leftsize : 0);
1504                       numsteps=leftsize;
1505                       onumsteps=m_right->getNumDPPSample();
1506                    }
1507            }
1508      }
1509      else  // this leaves (LEN, RS), (LEN, RN) and their transposes
1510      {
1511            if (LEN)        // and Right will be a single value
1512            {
1513                    chunksize=rightsize;
1514                    leftstep=rightsize;
1515                    rightstep=0;
1516                    numsteps=m_left->getNumDPPSample();
1517                    if (RS)
1518                    {
1519                       numsteps*=leftsize;
1520                    }
1521            }
1522            else    // REN
1523            {
1524                    chunksize=leftsize;
1525                    rightstep=leftsize;
1526                    leftstep=0;
1527                    numsteps=m_right->getNumDPPSample();
1528                    if (LS)
1529                    {
1530                       numsteps*=rightsize;
1531                    }
1532            }
1533      }
1534    
1535      int resultStep=max(leftstep,rightstep);       // only one (at most) should be !=0
1536            // Get the values of sub-expressions
1537      const RealVectorType* left=m_left->resolveNodeSample(tid,sampleNo,lroffset);      
1538      const RealVectorType* right=m_right->resolveNodeSample(tid,sampleNo,rroffset);
1539    LAZYDEBUG(cout << "Post sub calls in " << toString() << endl;)
1540    LAZYDEBUG(cout << "shapes=" << DataTypes::shapeToString(m_left->getShape()) << "," << DataTypes::shapeToString(m_right->getShape()) << endl;)
1541    LAZYDEBUG(cout << "chunksize=" << chunksize << endl << "leftstep=" << leftstep << " rightstep=" << rightstep;)
1542    LAZYDEBUG(cout << " numsteps=" << numsteps << endl << "oleftstep=" << oleftstep << " orightstep=" << orightstep;)
1543    LAZYDEBUG(cout << "onumsteps=" << onumsteps << endl;)
1544    LAZYDEBUG(cout << " DPPS=" << m_left->getNumDPPSample() << "," <<m_right->getNumDPPSample() << endl;)
1545    LAZYDEBUG(cout << "" << LS << RS << LN << RN << LES << RES <<LEN << REN <<   endl;)
1546    
1547    LAZYDEBUG(cout << "Left res["<< lroffset<< "]=" << (*left)[lroffset] << endl;)
1548    LAZYDEBUG(cout << "Right res["<< rroffset<< "]=" << (*right)[rroffset] << endl;)
1549    
1550    
1551      roffset=m_samplesize*tid;
1552      double* resultp=&(m_samples[roffset]);                // results are stored at the vector offset we received
1553      switch(m_op)
1554      {
1555        case ADD:
1556            //PROC_OP(NO_ARG,plus<double>());
1557          DataMaths::binaryOpVectorLazyHelper<real_t, real_t, real_t>(resultp,
1558                 &(*left)[0],
1559                 &(*right)[0],
1560                 chunksize,
1561                 onumsteps,
1562                 numsteps,
1563                 resultStep,
1564                 leftstep,
1565                 rightstep,
1566                 oleftstep,
1567                 orightstep,
1568                 escript::ESFunction::PLUSF);  
1569            break;
1570        case SUB:
1571            PROC_OP(NO_ARG,minus<double>());
1572            break;
1573        case MUL:
1574            PROC_OP(NO_ARG,multiplies<double>());
1575            break;
1576        case DIV:
1577            PROC_OP(NO_ARG,divides<double>());
1578            break;
1579        case POW:
1580           PROC_OP(double (double,double),::pow);
1581            break;
1582        default:
1583            throw DataException("Programmer error - resolveBinary can not resolve operator "+opToString(m_op)+".");
1584      }
1585    LAZYDEBUG(cout << "Result res[" << roffset<< "]" << m_samples[roffset] << endl;)
1586      return &m_samples;
1587    }
1588    
1589    
1590    // This method assumes that any subexpressions which evaluate to Constant or Tagged Data
1591    // have already been collapsed to IDENTITY. So we must have at least one expanded child.
1592    // unlike the other resolve helpers, we must treat these datapoints separately.
1593    const DataTypes::RealVectorType*
1594    DataLazy::resolveNodeTProd(int tid, int sampleNo, size_t& roffset) const
1595    {
1596    LAZYDEBUG(cout << "Resolve TensorProduct: " << toString() << endl;)
1597    
1598      size_t lroffset=0, rroffset=0;        // offsets in the left and right result vectors
1599            // first work out which of the children are expanded
1600      bool leftExp=(m_left->m_readytype=='E');
1601      bool rightExp=(m_right->m_readytype=='E');
1602      int steps=getNumDPPSample();
1603      int leftStep=(leftExp? m_left->getNoValues() : 0);            // do not have scalars as input to this method
1604      int rightStep=(rightExp?m_right->getNoValues() : 0);
1605    
1606      int resultStep=getNoValues();
1607      roffset=m_samplesize*tid;
1608      size_t offset=roffset;
1609    
1610      const RealVectorType* left=m_left->resolveNodeSample(tid, sampleNo, lroffset);
1611    
1612      const RealVectorType* right=m_right->resolveNodeSample(tid, sampleNo, rroffset);
1613    
1614    LAZYDEBUG(cerr << "[Left shape]=" << DataTypes::shapeToString(m_left->getShape()) << "\n[Right shape]=" << DataTypes::shapeToString(m_right->getShape()) << " result=" <<DataTypes::shapeToString(getShape()) <<  endl;
1615    cout << getNoValues() << endl;)
1616    
1617    
1618    LAZYDEBUG(cerr << "Post sub calls: " << toString() << endl;)
1619    LAZYDEBUG(cout << "LeftExp=" << leftExp << " rightExp=" << rightExp << endl;)
1620    LAZYDEBUG(cout << "LeftR=" << m_left->getRank() << " rightExp=" << m_right->getRank() << endl;)
1621    LAZYDEBUG(cout << "LeftSize=" << m_left->getNoValues() << " RightSize=" << m_right->getNoValues() << endl;)
1622    LAZYDEBUG(cout << "m_samplesize=" << m_samplesize << endl;)
1623    LAZYDEBUG(cout << "outputshape=" << DataTypes::shapeToString(getShape()) << endl;)
1624    LAZYDEBUG(cout << "DPPS=" << m_right->getNumDPPSample() <<"."<<endl;)
1625    
1626      double* resultp=&(m_samples[offset]);         // results are stored at the vector offset we received
1627      switch(m_op)
1628      {
1629        case PROD:
1630            for (int i=0;i<steps;++i,resultp+=resultStep)
1631            {
1632              const double *ptr_0 = &((*left)[lroffset]);
1633              const double *ptr_1 = &((*right)[rroffset]);
1634    
1635    LAZYDEBUG(cout << DataTypes::pointToString(*left, m_left->getShape(),lroffset,"LEFT") << endl;)
1636    LAZYDEBUG(cout << DataTypes::pointToString(*right,m_right->getShape(),rroffset, "RIGHT") << endl;)
1637    
1638              matrix_matrix_product(m_SL, m_SM, m_SR, ptr_0, ptr_1, resultp, m_transpose);
1639    
1640              lroffset+=leftStep;
1641              rroffset+=rightStep;
1642            }
1643            break;
1644        default:
1645            throw DataException("Programmer error - resolveTProduct can not resolve operator "+opToString(m_op)+".");
1646      }
1647      roffset=offset;
1648      return &m_samples;
1649    }
1650    
1651    
1652    const DataTypes::RealVectorType*
1653    DataLazy::resolveSample(int sampleNo, size_t& roffset) const
1654    {
1655    #ifdef _OPENMP
1656            int tid=omp_get_thread_num();
1657    #else
1658            int tid=0;
1659    #endif
1660    
1661    #ifdef LAZY_STACK_PROF
1662            stackstart[tid]=&tid;
1663            stackend[tid]=&tid;
1664            const DataTypes::RealVectorType* r=resolveNodeSample(tid, sampleNo, roffset);
1665            size_t d=(size_t)stackstart[tid]-(size_t)stackend[tid];
1666            #pragma omp critical
1667            if (d>maxstackuse)
1668            {
1669    cout << "Max resolve Stack use " << d << endl;
1670                    maxstackuse=d;
1671            }
1672            return r;
1673    #else
1674            return resolveNodeSample(tid, sampleNo, roffset);
1675    #endif
1676    }
1677    
1678    
1679    // This needs to do the work of the identity constructor
1680    void
1681    DataLazy::resolveToIdentity()
1682    {
1683       if (m_op==IDENTITY)
1684            return;
1685       DataReady_ptr p=resolveNodeWorker();
1686       makeIdentity(p);
1687    }
1688    
1689    void DataLazy::makeIdentity(const DataReady_ptr& p)
1690    {
1691       m_op=IDENTITY;
1692       m_axis_offset=0;
1693       m_transpose=0;
1694       m_SL=m_SM=m_SR=0;
1695       m_children=m_height=0;
1696       m_id=p;
1697       if(p->isConstant()) {m_readytype='C';}
1698       else if(p->isExpanded()) {m_readytype='E';}
1699       else if (p->isTagged()) {m_readytype='T';}
1700       else {throw DataException("Unknown DataReady instance in convertToIdentity constructor.");}
1701       m_samplesize=p->getNumDPPSample()*p->getNoValues();
1702       m_left.reset();
1703       m_right.reset();
1704    }
1705    
1706    
1707  DataReady_ptr  DataReady_ptr
1708  DataLazy::resolve()  DataLazy::resolve()
1709  {  {
1710    // This is broken!     We need to have a buffer per thread!      resolveToIdentity();
1711    // so the allocation of v needs to move inside the loop somehow      return m_id;
1712    }
1713    
 cout << "Sample size=" << m_samplesize << endl;  
 cout << "Buffers=" << m_buffsRequired << endl;  
1714    
1715    size_t threadbuffersize=m_samplesize*(max(1,m_buffsRequired)+1);  /* This is really a static method but I think that caused problems in windows */
1716    int numthreads=1;  void
1717    DataLazy::resolveGroupWorker(std::vector<DataLazy*>& dats)
1718    {
1719      if (dats.empty())
1720      {
1721            return;
1722      }
1723      vector<DataLazy*> work;
1724      FunctionSpace fs=dats[0]->getFunctionSpace();
1725      bool match=true;
1726      for (int i=dats.size()-1;i>=0;--i)
1727      {
1728            if (dats[i]->m_readytype!='E')
1729            {
1730                    dats[i]->collapse();
1731            }
1732            if (dats[i]->m_op!=IDENTITY)
1733            {
1734                    work.push_back(dats[i]);
1735                    if (fs!=dats[i]->getFunctionSpace())
1736                    {
1737                            match=false;
1738                    }
1739            }
1740      }
1741      if (work.empty())
1742      {
1743            return;         // no work to do
1744      }
1745      if (match)    // all functionspaces match.  Yes I realise this is overly strict
1746      {             // it is possible that dats[0] is one of the objects which we discarded and
1747                    // all the other functionspaces match.
1748            vector<DataExpanded*> dep;
1749            vector<RealVectorType*> vecs;
1750            for (int i=0;i<work.size();++i)
1751            {
1752                    dep.push_back(new DataExpanded(fs,work[i]->getShape(), RealVectorType(work[i]->getNoValues())));
1753                    vecs.push_back(&(dep[i]->getVectorRW()));
1754            }
1755            int totalsamples=work[0]->getNumSamples();
1756            const RealVectorType* res=0; // Storage for answer
1757            int sample;
1758            #pragma omp parallel private(sample, res)
1759            {
1760                size_t roffset=0;
1761                #pragma omp for schedule(static)
1762                for (sample=0;sample<totalsamples;++sample)
1763                {
1764                    roffset=0;
1765                    int j;
1766                    for (j=work.size()-1;j>=0;--j)
1767                    {
1768  #ifdef _OPENMP  #ifdef _OPENMP
1769    numthreads=omp_get_max_threads();                      res=work[j]->resolveNodeSample(omp_get_thread_num(),sample,roffset);
1770    int threadnum=0;  #else
1771  #endif                      res=work[j]->resolveNodeSample(0,sample,roffset);
1772    ValueType v(numthreads*threadbuffersize);  #endif
1773  cout << "Buffer created with size=" << v.size() << endl;                      RealVectorType::size_type outoffset=dep[j]->getPointOffset(sample,0);
1774    ValueType dummy(getNoValues());                      memcpy(&((*vecs[j])[outoffset]),&((*res)[roffset]),work[j]->m_samplesize*sizeof(RealVectorType::ElementType));
1775    DataExpanded* result=new DataExpanded(getFunctionSpace(),getShape(),dummy);                  }
1776    ValueType& resvec=result->getVector();              }
1777            }
1778            // Now we need to load the new results as identity ops into the lazy nodes
1779            for (int i=work.size()-1;i>=0;--i)
1780            {
1781                work[i]->makeIdentity(REFCOUNTNS::dynamic_pointer_cast<DataReady>(dep[i]->getPtr()));
1782            }
1783      }
1784      else  // functionspaces do not match
1785      {
1786            for (int i=0;i<work.size();++i)
1787            {
1788                    work[i]->resolveToIdentity();
1789            }
1790      }
1791    }
1792    
1793    
1794    
1795    // This version of resolve uses storage in each node to hold results
1796    DataReady_ptr
1797    DataLazy::resolveNodeWorker()
1798    {
1799      if (m_readytype!='E')         // if the whole sub-expression is Constant or Tagged, then evaluate it normally
1800      {
1801        collapse();
1802      }
1803      if (m_op==IDENTITY)           // So a lazy expression of Constant or Tagged data will be returned here.
1804      {
1805        return m_id;
1806      }
1807            // from this point on we must have m_op!=IDENTITY and m_readytype=='E'
1808      DataExpanded* result=new DataExpanded(getFunctionSpace(),getShape(),  RealVectorType(getNoValues()));
1809      RealVectorType& resvec=result->getVectorRW();
1810    DataReady_ptr resptr=DataReady_ptr(result);    DataReady_ptr resptr=DataReady_ptr(result);
1811    
1812    int sample;    int sample;
   int resoffset;  
1813    int totalsamples=getNumSamples();    int totalsamples=getNumSamples();
1814    #pragma omp parallel for private(sample,resoffset,threadnum) schedule(static)    const RealVectorType* res=0;       // Storage for answer
1815    for (sample=0;sample<totalsamples;++sample)  LAZYDEBUG(cout << "Total number of samples=" <<totalsamples << endl;)
1816      #pragma omp parallel private(sample,res)
1817    {    {
1818            size_t roffset=0;
1819    #ifdef LAZY_STACK_PROF
1820            stackstart[omp_get_thread_num()]=&roffset;
1821            stackend[omp_get_thread_num()]=&roffset;
1822    #endif
1823            #pragma omp for schedule(static)
1824            for (sample=0;sample<totalsamples;++sample)
1825            {
1826                    roffset=0;
1827  #ifdef _OPENMP  #ifdef _OPENMP
1828      const double* res=resolveSample(v,sample,threadbuffersize*omp_get_thread_num());                  res=resolveNodeSample(omp_get_thread_num(),sample,roffset);
1829  #else  #else
1830      const double* res=resolveSample(v,sample,0);   // this would normally be v, but not if its a single IDENTITY op.                  res=resolveNodeSample(0,sample,roffset);
1831  #endif  #endif
1832      resoffset=result->getPointOffset(sample,0);  LAZYDEBUG(cout << "Sample #" << sample << endl;)
1833      for (int i=0;i<m_samplesize;++i,++resoffset)    // copy values into the output vector  LAZYDEBUG(cout << "Final res[" << roffset<< "]=" << (*res)[roffset] << (*res)[roffset]<< endl; )
1834      {                  RealVectorType::size_type outoffset=result->getPointOffset(sample,0);
1835      resvec[resoffset]=res[i];                  memcpy(&(resvec[outoffset]),&((*res)[roffset]),m_samplesize*sizeof(RealVectorType::ElementType));
1836      }          }
1837    }    }
1838    #ifdef LAZY_STACK_PROF
1839      for (int i=0;i<getNumberOfThreads();++i)
1840      {
1841            size_t r=((size_t)stackstart[i] - (size_t)stackend[i]);
1842    //      cout << i << " " << stackstart[i] << " .. " << stackend[i] << " = " <<  r << endl;
1843            if (r>maxstackuse)
1844            {
1845                    maxstackuse=r;
1846            }
1847      }
1848      cout << "Max resolve Stack use=" << maxstackuse << endl;
1849    #endif
1850    return resptr;    return resptr;
1851  }  }
1852    
# Line 430  std::string Line 1854  std::string
1854  DataLazy::toString() const  DataLazy::toString() const
1855  {  {
1856    ostringstream oss;    ostringstream oss;
1857    oss << "Lazy Data:";    oss << "Lazy Data: [depth=" << m_height<< "] ";
1858    intoString(oss);    switch (escriptParams.getLAZY_STR_FMT())
1859      {
1860      case 1:       // tree format
1861            oss << endl;
1862            intoTreeString(oss,"");
1863            break;
1864      case 2:       // just the depth
1865            break;
1866      default:
1867            intoString(oss);
1868            break;
1869      }
1870    return oss.str();    return oss.str();
1871  }  }
1872    
1873    
1874  void  void
1875  DataLazy::intoString(ostringstream& oss) const  DataLazy::intoString(ostringstream& oss) const
1876  {  {
1877    //    oss << "[" << m_children <<";"<<m_height <<"]";
1878    switch (getOpgroup(m_op))    switch (getOpgroup(m_op))
1879    {    {
1880    case G_IDENTITY:    case G_IDENTITY:
1881      oss << '@' << m_id.get();          if (m_id->isExpanded())
1882      break;          {
1883               oss << "E";
1884            }
1885            else if (m_id->isTagged())
1886            {
1887              oss << "T";
1888            }
1889            else if (m_id->isConstant())
1890            {
1891              oss << "C";
1892            }
1893            else
1894            {
1895              oss << "?";
1896            }
1897            oss << '@' << m_id.get();
1898            break;
1899    case G_BINARY:    case G_BINARY:
1900      oss << '(';          oss << '(';
1901      m_left->intoString(oss);          m_left->intoString(oss);
1902      oss << ' ' << opToString(m_op) << ' ';          oss << ' ' << opToString(m_op) << ' ';
1903      m_right->intoString(oss);          m_right->intoString(oss);
1904      oss << ')';          oss << ')';
1905      break;          break;
1906    case G_UNARY:    case G_UNARY:
1907      oss << opToString(m_op) << '(';    case G_UNARY_P:
1908      m_left->intoString(oss);    case G_NP1OUT:
1909      oss << ')';    case G_NP1OUT_P:
1910      break;    case G_REDUCTION:
1911            oss << opToString(m_op) << '(';
1912            m_left->intoString(oss);
1913            oss << ')';
1914            break;
1915      case G_TENSORPROD:
1916            oss << opToString(m_op) << '(';
1917            m_left->intoString(oss);
1918            oss << ", ";
1919            m_right->intoString(oss);
1920            oss << ')';
1921            break;
1922      case G_NP1OUT_2P:
1923            oss << opToString(m_op) << '(';
1924            m_left->intoString(oss);
1925            oss << ", " << m_axis_offset << ", " << m_transpose;
1926            oss << ')';
1927            break;
1928      case G_CONDEVAL:
1929            oss << opToString(m_op)<< '(' ;
1930            m_mask->intoString(oss);
1931            oss << " ? ";
1932            m_left->intoString(oss);
1933            oss << " : ";
1934            m_right->intoString(oss);
1935            oss << ')';
1936            break;
1937    default:    default:
1938      oss << "UNKNOWN";          oss << "UNKNOWN";
1939    }    }
1940  }  }
1941    
1942  // Note that in this case, deepCopy does not make copies of the leaves.  
1943  // Hopefully copy on write (or whatever we end up using) will take care of this.  void
1944    DataLazy::intoTreeString(ostringstream& oss, string indent) const
1945    {
1946      oss << '[' << m_rank << ':' << setw(3) << m_samplesize << "] " << indent;
1947      switch (getOpgroup(m_op))
1948      {
1949      case G_IDENTITY:
1950            if (m_id->isExpanded())
1951            {
1952               oss << "E";
1953            }
1954            else if (m_id->isTagged())
1955            {
1956              oss << "T";
1957            }
1958            else if (m_id->isConstant())
1959            {
1960              oss << "C";
1961            }
1962            else
1963            {
1964              oss << "?";
1965            }
1966            oss << '@' << m_id.get() << endl;
1967            break;
1968      case G_BINARY:
1969            oss << opToString(m_op) << endl;
1970            indent+='.';
1971            m_left->intoTreeString(oss, indent);
1972            m_right->intoTreeString(oss, indent);
1973            break;
1974      case G_UNARY:
1975      case G_UNARY_P:
1976      case G_NP1OUT:
1977      case G_NP1OUT_P:
1978      case G_REDUCTION:
1979            oss << opToString(m_op) << endl;
1980            indent+='.';
1981            m_left->intoTreeString(oss, indent);
1982            break;
1983      case G_TENSORPROD:
1984            oss << opToString(m_op) << endl;
1985            indent+='.';
1986            m_left->intoTreeString(oss, indent);
1987            m_right->intoTreeString(oss, indent);
1988            break;
1989      case G_NP1OUT_2P:
1990            oss << opToString(m_op) << ", " << m_axis_offset << ", " << m_transpose<< endl;
1991            indent+='.';
1992            m_left->intoTreeString(oss, indent);
1993            break;
1994      default:
1995            oss << "UNKNOWN";
1996      }
1997    }
1998    
1999    
2000  DataAbstract*  DataAbstract*
2001  DataLazy::deepCopy()  DataLazy::deepCopy() const
2002  {  {
2003    if (m_op==IDENTITY)    switch (getOpgroup(m_op))
2004    {    {
2005      return new DataLazy(m_left);    // we don't need to copy the child here    case G_IDENTITY:  return new DataLazy(m_id->deepCopy()->getPtr());
2006      case G_UNARY:
2007      case G_REDUCTION:      return new DataLazy(m_left->deepCopy()->getPtr(),m_op);
2008      case G_UNARY_P:       return new DataLazy(m_left->deepCopy()->getPtr(), m_op, m_tol);
2009      case G_BINARY:        return new DataLazy(m_left->deepCopy()->getPtr(),m_right->deepCopy()->getPtr(),m_op);
2010      case G_NP1OUT: return new DataLazy(m_left->deepCopy()->getPtr(), m_right->deepCopy()->getPtr(),m_op);
2011      case G_TENSORPROD: return new DataLazy(m_left->deepCopy()->getPtr(), m_right->deepCopy()->getPtr(), m_op, m_axis_offset, m_transpose);
2012      case G_NP1OUT_P:   return new DataLazy(m_left->deepCopy()->getPtr(),m_op,  m_axis_offset);
2013      case G_NP1OUT_2P:  return new DataLazy(m_left->deepCopy()->getPtr(), m_op, m_axis_offset, m_transpose);
2014      default:
2015            throw DataException("Programmer error - do not know how to deepcopy operator "+opToString(m_op)+".");
2016    }    }
   return new DataLazy(m_left->deepCopy()->getPtr(),m_right->deepCopy()->getPtr(),m_op);  
2017  }  }
2018    
2019    
2020  DataTypes::ValueType::size_type  
2021    // There is no single, natural interpretation of getLength on DataLazy.
2022    // Instances of DataReady can look at the size of their vectors.
2023    // For lazy though, it could be the size the data would be if it were resolved;
2024    // or it could be some function of the lengths of the DataReady instances which
2025    // form part of the expression.
2026    // Rather than have people making assumptions, I have disabled the method.
2027    DataTypes::RealVectorType::size_type
2028  DataLazy::getLength() const  DataLazy::getLength() const
2029  {  {
2030    return m_length;    throw DataException("getLength() does not make sense for lazy data.");
2031  }  }
2032    
2033    
# Line 486  DataLazy::getSlice(const DataTypes::Regi Line 2037  DataLazy::getSlice(const DataTypes::Regi
2037    throw DataException("getSlice - not implemented for Lazy objects.");    throw DataException("getSlice - not implemented for Lazy objects.");
2038  }  }
2039    
2040  DataTypes::ValueType::size_type  
2041    // To do this we need to rely on our child nodes
2042    DataTypes::RealVectorType::size_type
2043    DataLazy::getPointOffset(int sampleNo,
2044                     int dataPointNo)
2045    {
2046      if (m_op==IDENTITY)
2047      {
2048            return m_id->getPointOffset(sampleNo,dataPointNo);
2049      }
2050      if (m_readytype!='E')
2051      {
2052            collapse();
2053            return m_id->getPointOffset(sampleNo,dataPointNo);
2054      }
2055      // at this point we do not have an identity node and the expression will be Expanded
2056      // so we only need to know which child to ask
2057      if (m_left->m_readytype=='E')
2058      {
2059            return m_left->getPointOffset(sampleNo,dataPointNo);
2060      }
2061      else
2062      {
2063            return m_right->getPointOffset(sampleNo,dataPointNo);
2064      }
2065    }
2066    
2067    // To do this we need to rely on our child nodes
2068    DataTypes::RealVectorType::size_type
2069  DataLazy::getPointOffset(int sampleNo,  DataLazy::getPointOffset(int sampleNo,
2070                   int dataPointNo) const                   int dataPointNo) const
2071  {  {
2072    throw DataException("getPointOffset - not implemented for Lazy objects - yet.");    if (m_op==IDENTITY)
2073      {
2074            return m_id->getPointOffset(sampleNo,dataPointNo);
2075      }
2076      if (m_readytype=='E')
2077      {
2078        // at this point we do not have an identity node and the expression will be Expanded
2079        // so we only need to know which child to ask
2080        if (m_left->m_readytype=='E')
2081        {
2082            return m_left->getPointOffset(sampleNo,dataPointNo);
2083        }
2084        else
2085        {
2086            return m_right->getPointOffset(sampleNo,dataPointNo);
2087        }
2088      }
2089      if (m_readytype=='C')
2090      {
2091            return m_left->getPointOffset(sampleNo,dataPointNo); // which child doesn't matter
2092      }
2093      throw DataException("Programmer error - getPointOffset on lazy data may require collapsing (but this object is marked const).");
2094    }
2095    
2096    
2097    // I have decided to let Data:: handle this issue.
2098    void
2099    DataLazy::setToZero()
2100    {
2101    //   DataTypes::RealVectorType v(getNoValues(),0);
2102    //   m_id=DataReady_ptr(new DataConstant(getFunctionSpace(),getShape(),v));
2103    //   m_op=IDENTITY;
2104    //   m_right.reset();  
2105    //   m_left.reset();
2106    //   m_readytype='C';
2107    //   m_buffsRequired=1;
2108    
2109      (void)privdebug;  // to stop the compiler complaining about unused privdebug
2110      throw DataException("Programmer error - setToZero not supported for DataLazy (DataLazy objects should be read only).");
2111  }  }
2112    
2113  }   // end namespace  bool
2114    DataLazy::actsExpanded() const
2115    {
2116            return (m_readytype=='E');
2117    }
2118    
2119    } // end namespace
2120    

Legend:
Removed from v.1888  
changed lines
  Added in v.6042

  ViewVC Help
Powered by ViewVC 1.1.26