/[escript]/branches/clazy/escriptcore/src/DataLazy.cpp
ViewVC logotype

Diff of /branches/clazy/escriptcore/src/DataLazy.cpp

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

trunk/escript/src/DataLazy.cpp revision 2066 by jfenwick, Thu Nov 20 05:31:33 2008 UTC trunk/escriptcore/src/DataLazy.cpp revision 6174 by caltinay, Fri Apr 15 03:41:03 2016 UTC
# Line 1  Line 1 
1    
2  /*******************************************************  /*****************************************************************************
3  *  *
4  * Copyright (c) 2003-2008 by University of Queensland  * Copyright (c) 2003-2016 by The University of Queensland
5  * Earth Systems Science Computational Center (ESSCC)  * http://www.uq.edu.au
 * http://www.uq.edu.au/esscc  
6  *  *
7  * Primary Business: Queensland, Australia  * Primary Business: Queensland, Australia
8  * Licensed under the Open Software License version 3.0  * Licensed under the Apache License, version 2.0
9  * http://www.opensource.org/licenses/osl-3.0.php  * http://www.apache.org/licenses/LICENSE-2.0
10  *  *
11  *******************************************************/  * Development until 2012 by Earth Systems Science Computational Center (ESSCC)
12    * Development 2012-2013 by School of Earth Sciences
13    * Development from 2014 by Centre for Geoscience Computing (GeoComp)
14    *
15    *****************************************************************************/
16    
17  #include "DataLazy.h"  #include "DataLazy.h"
 #ifdef USE_NETCDF  
 #include <netcdfcpp.h>  
 #endif  
 #ifdef PASO_MPI  
 #include <mpi.h>  
 #endif  
 #ifdef _OPENMP  
 #include <omp.h>  
 #endif  
 #include "FunctionSpace.h"  
 #include "DataTypes.h"  
18  #include "Data.h"  #include "Data.h"
19  #include "UnaryFuncs.h"     // for escript::fsign  #include "DataTypes.h"
20    #include "EscriptParams.h"
21    #include "FunctionSpace.h"
22  #include "Utils.h"  #include "Utils.h"
23    #include "DataVectorOps.h"
24    
25    #include <iomanip> // for some fancy formatting in debug
26    
27    using namespace escript::DataTypes;
28    
29    #define NO_ARG
30    
31    // #define LAZYDEBUG(X) if (privdebug){X;}
32    #define LAZYDEBUG(X)
33    namespace
34    {
35    bool privdebug=false;
36    
37    #define ENABLEDEBUG privdebug=true;
38    #define DISABLEDEBUG privdebug=false;
39    }
40    
41    //#define SIZELIMIT if ((m_height>escript::escriptParams.getInt("TOO_MANY_LEVELS")) || (m_children>escript::escriptParams.getInt("TOO_MANY_NODES"))) {cerr << "\n!!!!!!! SIZE LIMIT EXCEEDED " << m_children << ";" << m_height << endl << toString() << endl;resolveToIdentity();}
42    
43    //#define SIZELIMIT if ((m_height>escript::escriptParams.getInt("TOO_MANY_LEVELS")) || (m_children>escript::escriptParams.getInt("TOO_MANY_NODES"))) {cerr << "SIZE LIMIT EXCEEDED " << m_height << endl;resolveToIdentity();}
44    
45    
46    #define SIZELIMIT \
47        if (m_height > escript::escriptParams.getTooManyLevels()) {\
48            if (escript::escriptParams.getLazyVerbose()) {\
49                cerr << "SIZE LIMIT EXCEEDED height=" << m_height << endl;\
50            }\
51            resolveToIdentity();\
52        }
53    
54  /*  /*
55  How does DataLazy work?  How does DataLazy work?
# Line 39  A special operation, IDENTITY, stores an Line 62  A special operation, IDENTITY, stores an
62  This means that all "internal" nodes in the structure are instances of DataLazy.  This means that all "internal" nodes in the structure are instances of DataLazy.
63    
64  Each operation has a string representation as well as an opgroup - eg G_IDENTITY, G_BINARY, ...  Each operation has a string representation as well as an opgroup - eg G_IDENTITY, G_BINARY, ...
65  Note that IDENITY is not considered a unary operation.  Note that IDENTITY is not considered a unary operation.
66    
67  I am avoiding calling the structure formed a tree because it is not guaranteed to be one (eg c=a+a).  I am avoiding calling the structure formed a tree because it is not guaranteed to be one (eg c=a+a).
68  It must however form a DAG (directed acyclic graph).  It must however form a DAG (directed acyclic graph).
# Line 47  I will refer to individual DataLazy obje Line 70  I will refer to individual DataLazy obje
70    
71  Each node also stores:  Each node also stores:
72  - m_readytype \in {'E','T','C','?'} ~ indicates what sort of DataReady would be produced if the expression was  - m_readytype \in {'E','T','C','?'} ~ indicates what sort of DataReady would be produced if the expression was
73      evaluated.          evaluated.
74  - m_buffsrequired ~ the larged number of samples which would need to be kept simultaneously in order to  - m_buffsrequired ~ the large number of samples which would need to be kept simultaneously in order to
75      evaluate the expression.          evaluate the expression.
76  - m_samplesize ~ the number of doubles stored in a sample.  - m_samplesize ~ the number of doubles stored in a sample.
77    
78  When a new node is created, the above values are computed based on the values in the child nodes.  When a new node is created, the above values are computed based on the values in the child nodes.
# Line 70  The convention that I use, is that the r Line 93  The convention that I use, is that the r
93  For expressions which evaluate to Constant or Tagged, there is a different evaluation method.  For expressions which evaluate to Constant or Tagged, there is a different evaluation method.
94  The collapse method invokes the (non-lazy) operations on the Data class to evaluate the expression.  The collapse method invokes the (non-lazy) operations on the Data class to evaluate the expression.
95    
96  To add a new operator you need to do the following (plus anything I might have forgotten):  To add a new operator you need to do the following (plus anything I might have forgotten - adding a new group for example):
97  1) Add to the ES_optype.  1) Add to the ES_optype.
98  2) determine what opgroup your operation belongs to (X)  2) determine what opgroup your operation belongs to (X)
99  3) add a string for the op to the end of ES_opstrings  3) add a string for the op to the end of ES_opstrings
# Line 90  namespace escript Line 113  namespace escript
113  namespace  namespace
114  {  {
115    
 enum ES_opgroup  
 {  
    G_UNKNOWN,  
    G_IDENTITY,  
    G_BINARY,        // pointwise operations with two arguments  
    G_UNARY,     // pointwise operations with one argument  
    G_NP1OUT,        // non-pointwise op with one output  
    G_TENSORPROD     // general tensor product  
 };  
116    
117    // enabling this will print out when ever the maximum stacksize used by resolve increases
118    // it assumes _OPENMP is also in use
119    //#define LAZY_STACK_PROF
120    
121    
122    
123  string ES_opstrings[]={"UNKNOWN","IDENTITY","+","-","*","/","^",  #ifndef _OPENMP
124              "sin","cos","tan",    #ifdef LAZY_STACK_PROF
125              "asin","acos","atan","sinh","cosh","tanh","erf",    #undef LAZY_STACK_PROF
126              "asinh","acosh","atanh",    #endif
127              "log10","log","sign","abs","neg","pos","exp","sqrt",  #endif
128              "1/","where>0","where<0","where>=0","where<=0",  
129              "symmetric","nonsymmetric",  
130              "prod"};  #ifdef LAZY_STACK_PROF
131  int ES_opcount=36;  std::vector<void*> stackstart(getNumberOfThreads());
132  ES_opgroup opgroups[]={G_UNKNOWN,G_IDENTITY,G_BINARY,G_BINARY,G_BINARY,G_BINARY, G_BINARY,  std::vector<void*> stackend(getNumberOfThreads());
133              G_UNARY,G_UNARY,G_UNARY, //10  size_t maxstackuse=0;
134              G_UNARY,G_UNARY,G_UNARY,G_UNARY,G_UNARY,G_UNARY,G_UNARY,    // 17  #endif
135              G_UNARY,G_UNARY,G_UNARY,                    // 20  
             G_UNARY,G_UNARY,G_UNARY,G_UNARY,G_UNARY,G_UNARY,G_UNARY,G_UNARY,        // 28  
             G_UNARY,G_UNARY,G_UNARY,G_UNARY,G_UNARY,            // 33  
             G_NP1OUT,G_NP1OUT,  
             G_TENSORPROD};  
 inline  
 ES_opgroup  
 getOpgroup(ES_optype op)  
 {  
   return opgroups[op];  
 }  
136    
137  // return the FunctionSpace of the result of "left op right"  // return the FunctionSpace of the result of "left op right"
138  FunctionSpace  FunctionSpace
139  resultFS(DataAbstract_ptr left, DataAbstract_ptr right, ES_optype op)  resultFS(DataAbstract_ptr left, DataAbstract_ptr right, ES_optype op)
140  {  {
141      // perhaps this should call interpolate and throw or something?          // perhaps this should call interpolate and throw or something?
142      // maybe we need an interpolate node -          // maybe we need an interpolate node -
143      // that way, if interpolate is required in any other op we can just throw a          // that way, if interpolate is required in any other op we can just throw a
144      // programming error exception.          // programming error exception.
145    
146    FunctionSpace l=left->getFunctionSpace();    FunctionSpace l=left->getFunctionSpace();
147    FunctionSpace r=right->getFunctionSpace();    FunctionSpace r=right->getFunctionSpace();
148    if (l!=r)    if (l!=r)
149    {    {
150      if (r.probeInterpolation(l))      signed char res=r.getDomain()->preferredInterpolationOnDomain(r.getTypeCode(), l.getTypeCode());
151        if (res==1)
152      {      {
153      return l;          return l;
154      }      }
155      if (l.probeInterpolation(r))      if (res==-1)
156      {      {
157      return r;          return r;
158      }      }
159      throw DataException("Cannot interpolate between the FunctionSpaces given for operation "+opToString(op)+".");      throw DataException("Cannot interpolate between the FunctionSpaces given for operation "+opToString(op)+".");
160    }    }
# Line 158  resultFS(DataAbstract_ptr left, DataAbst Line 166  resultFS(DataAbstract_ptr left, DataAbst
166  DataTypes::ShapeType  DataTypes::ShapeType
167  resultShape(DataAbstract_ptr left, DataAbstract_ptr right, ES_optype op)  resultShape(DataAbstract_ptr left, DataAbstract_ptr right, ES_optype op)
168  {  {
169      if (left->getShape()!=right->getShape())          if (left->getShape()!=right->getShape())
170      {          {
171        if ((getOpgroup(op)!=G_BINARY) && (getOpgroup(op)!=G_NP1OUT))            if ((getOpgroup(op)!=G_BINARY) && (getOpgroup(op)!=G_NP1OUT))
172        {            {
173          throw DataException("Shapes not the name - shapes must match for (point)binary operations.");                  throw DataException("Shapes not the name - shapes must match for (point)binary operations.");
174        }            }
175        if (left->getRank()==0)   // we need to allow scalar * anything  
176        {            if (left->getRank()==0)       // we need to allow scalar * anything
177          return right->getShape();            {
178        }                  return right->getShape();
179        if (right->getRank()==0)            }
180        {            if (right->getRank()==0)
181          return left->getShape();            {
182        }                  return left->getShape();
183        throw DataException("Shapes not the same - arguments must have matching shapes (or be scalars) for (point)binary operations on lazy data.");            }
184      }            throw DataException("Shapes not the same - arguments must have matching shapes (or be scalars) for (point)binary operations on lazy data.");
185      return left->getShape();          }
186            return left->getShape();
187    }
188    
189    // return the shape for "op left"
190    
191    DataTypes::ShapeType
192    resultShape(DataAbstract_ptr left, ES_optype op, int axis_offset)
193    {
194            switch(op)
195            {
196            case TRANS:
197               {                    // for the scoping of variables
198                    const DataTypes::ShapeType& s=left->getShape();
199                    DataTypes::ShapeType sh;
200                    int rank=left->getRank();
201                    if (axis_offset<0 || axis_offset>rank)
202                    {
203                stringstream e;
204                e << "Error - Data::transpose must have 0 <= axis_offset <= rank=" << rank;
205                throw DataException(e.str());
206            }
207            for (int i=0; i<rank; i++)
208                    {
209                       int index = (axis_offset+i)%rank;
210               sh.push_back(s[index]); // Append to new shape
211            }
212                    return sh;
213               }
214            break;
215            case TRACE:
216               {
217                    int rank=left->getRank();
218                    if (rank<2)
219                    {
220                       throw DataException("Trace can only be computed for objects with rank 2 or greater.");
221                    }
222                    if ((axis_offset>rank-2) || (axis_offset<0))
223                    {
224                       throw DataException("Trace: axis offset must lie between 0 and rank-2 inclusive.");
225                    }
226                    if (rank==2)
227                    {
228                       return DataTypes::scalarShape;
229                    }
230                    else if (rank==3)
231                    {
232                       DataTypes::ShapeType sh;
233                       if (axis_offset==0)
234                       {
235                            sh.push_back(left->getShape()[2]);
236                       }
237                       else         // offset==1
238                       {
239                            sh.push_back(left->getShape()[0]);
240                       }
241                       return sh;
242                    }
243                    else if (rank==4)
244                    {
245                       DataTypes::ShapeType sh;
246                       const DataTypes::ShapeType& s=left->getShape();
247                       if (axis_offset==0)
248                       {
249                            sh.push_back(s[2]);
250                            sh.push_back(s[3]);
251                       }
252                       else if (axis_offset==1)
253                       {
254                            sh.push_back(s[0]);
255                            sh.push_back(s[3]);
256                       }
257                       else         // offset==2
258                       {
259                            sh.push_back(s[0]);
260                            sh.push_back(s[1]);
261                       }
262                       return sh;
263                    }
264                    else            // unknown rank
265                    {
266                       throw DataException("Error - Data::trace can only be calculated for rank 2, 3 or 4 object.");
267                    }
268               }
269            break;
270            default:
271            throw DataException("Programmer error - resultShape(left,op) can't compute shapes for operator "+opToString(op)+".");
272            }
273  }  }
274    
275    DataTypes::ShapeType
276    SwapShape(DataAbstract_ptr left, const int axis0, const int axis1)
277    {
278         // This code taken from the Data.cpp swapaxes() method
279         // Some of the checks are probably redundant here
280         int axis0_tmp,axis1_tmp;
281         const DataTypes::ShapeType& s=left->getShape();
282         DataTypes::ShapeType out_shape;
283         // Here's the equivalent of python s_out=s[axis_offset:]+s[:axis_offset]
284         // which goes thru all shape vector elements starting with axis_offset (at index=rank wrap around to 0)
285         int rank=left->getRank();
286         if (rank<2) {
287            throw DataException("Error - Data::swapaxes argument must have at least rank 2.");
288         }
289         if (axis0<0 || axis0>rank-1) {
290            stringstream e;
291            e << "Error - Data::swapaxes: axis0 must be between 0 and rank-1=" << (rank-1);
292            throw DataException(e.str());
293         }
294         if (axis1<0 || axis1>rank-1) {
295            stringstream e;
296            e << "Error - Data::swapaxes: axis1 must be between 0 and rank-1=" << (rank-1);
297            throw DataException(e.str());
298         }
299         if (axis0 == axis1) {
300             throw DataException("Error - Data::swapaxes: axis indices must be different.");
301         }
302         if (axis0 > axis1) {
303             axis0_tmp=axis1;
304             axis1_tmp=axis0;
305         } else {
306             axis0_tmp=axis0;
307             axis1_tmp=axis1;
308         }
309         for (int i=0; i<rank; i++) {
310           if (i == axis0_tmp) {
311              out_shape.push_back(s[axis1_tmp]);
312           } else if (i == axis1_tmp) {
313              out_shape.push_back(s[axis0_tmp]);
314           } else {
315              out_shape.push_back(s[i]);
316           }
317         }
318        return out_shape;
319    }
320    
321    
322  // determine the output shape for the general tensor product operation  // determine the output shape for the general tensor product operation
323  // the additional parameters return information required later for the product  // the additional parameters return information required later for the product
324  // the majority of this code is copy pasted from C_General_Tensor_Product  // the majority of this code is copy pasted from C_General_Tensor_Product
325  DataTypes::ShapeType  DataTypes::ShapeType
326  GTPShape(DataAbstract_ptr left, DataAbstract_ptr right, int axis_offset, int transpose, int& SL, int& SM, int& SR)  GTPShape(DataAbstract_ptr left, DataAbstract_ptr right, int axis_offset, int transpose, int& SL, int& SM, int& SR)
327  {  {
328                
329    // Get rank and shape of inputs    // Get rank and shape of inputs
330    int rank0 = left->getRank();    int rank0 = left->getRank();
331    int rank1 = right->getRank();    int rank1 = right->getRank();
# Line 192  GTPShape(DataAbstract_ptr left, DataAbst Line 334  GTPShape(DataAbstract_ptr left, DataAbst
334    
335    // Prepare for the loops of the product and verify compatibility of shapes    // Prepare for the loops of the product and verify compatibility of shapes
336    int start0=0, start1=0;    int start0=0, start1=0;
337    if (transpose == 0)       {}    if (transpose == 0)           {}
338    else if (transpose == 1)  { start0 = axis_offset; }    else if (transpose == 1)      { start0 = axis_offset; }
339    else if (transpose == 2)  { start1 = rank1-axis_offset; }    else if (transpose == 2)      { start1 = rank1-axis_offset; }
340    else              { throw DataException("DataLazy GeneralTensorProduct Constructor: Error - transpose should be 0, 1 or 2"); }    else                          { throw DataException("DataLazy GeneralTensorProduct Constructor: Error - transpose should be 0, 1 or 2"); }
341    
342      if (rank0<axis_offset)
343      {
344            throw DataException("DataLazy GeneralTensorProduct Constructor: Error - rank of left < axisoffset");
345      }
346    
347    // Adjust the shapes for transpose    // Adjust the shapes for transpose
348    DataTypes::ShapeType tmpShape0(rank0);    // pre-sizing the vectors rather    DataTypes::ShapeType tmpShape0(rank0);        // pre-sizing the vectors rather
349    DataTypes::ShapeType tmpShape1(rank1);    // than using push_back    DataTypes::ShapeType tmpShape1(rank1);        // than using push_back
350    for (int i=0; i<rank0; i++)   { tmpShape0[i]=shape0[(i+start0)%rank0]; }    for (int i=0; i<rank0; i++)   { tmpShape0[i]=shape0[(i+start0)%rank0]; }
351    for (int i=0; i<rank1; i++)   { tmpShape1[i]=shape1[(i+start1)%rank1]; }    for (int i=0; i<rank1; i++)   { tmpShape1[i]=shape1[(i+start1)%rank1]; }
352    
353    // Prepare for the loops of the product    // Prepare for the loops of the product
354    SL=1, SM=1, SR=1;    SL=1, SM=1, SR=1;
355    for (int i=0; i<rank0-axis_offset; i++)   {    for (int i=0; i<rank0-axis_offset; i++)       {
356      SL *= tmpShape0[i];      SL *= tmpShape0[i];
357    }    }
358    for (int i=rank0-axis_offset; i<rank0; i++)   {    for (int i=rank0-axis_offset; i<rank0; i++)   {
359      if (tmpShape0[i] != tmpShape1[i-(rank0-axis_offset)]) {      if (tmpShape0[i] != tmpShape1[i-(rank0-axis_offset)]) {
360        throw DataException("C_GeneralTensorProduct: Error - incompatible shapes");        throw DataException("C_GeneralTensorProduct: Error - incompatible shapes");
361      }      }
362      SM *= tmpShape0[i];      SM *= tmpShape0[i];
363    }    }
364    for (int i=axis_offset; i<rank1; i++)     {    for (int i=axis_offset; i<rank1; i++)         {
365      SR *= tmpShape1[i];      SR *= tmpShape1[i];
366    }    }
367    
368    // Define the shape of the output (rank of shape is the sum of the loop ranges below)    // Define the shape of the output (rank of shape is the sum of the loop ranges below)
369    DataTypes::ShapeType shape2(rank0+rank1-2*axis_offset);      DataTypes::ShapeType shape2(rank0+rank1-2*axis_offset);      
370    {         // block to limit the scope of out_index    {                     // block to limit the scope of out_index
371       int out_index=0;       int out_index=0;
372       for (int i=0; i<rank0-axis_offset; i++, ++out_index) { shape2[out_index]=tmpShape0[i]; } // First part of arg_0_Z       for (int i=0; i<rank0-axis_offset; i++, ++out_index) { shape2[out_index]=tmpShape0[i]; } // First part of arg_0_Z
373       for (int i=axis_offset; i<rank1; i++, ++out_index)   { shape2[out_index]=tmpShape1[i]; } // Last part of arg_1_Z       for (int i=axis_offset; i<rank1; i++, ++out_index)   { shape2[out_index]=tmpShape1[i]; } // Last part of arg_1_Z
374    }    }
   return shape2;  
 }  
375    
376      if (shape2.size()>ESCRIPT_MAX_DATA_RANK)
377      {
378         ostringstream os;
379         os << "C_GeneralTensorProduct: Error - Attempt to create a rank " << shape2.size() << " object. The maximum rank is " << ESCRIPT_MAX_DATA_RANK << ".";
380         throw DataException(os.str());
381      }
382    
383  // determine the number of points in the result of "left op right"    return shape2;
 // note that determining the resultLength for G_TENSORPROD is more complex and will not be processed here  
 // size_t  
 // resultLength(DataAbstract_ptr left, DataAbstract_ptr right, ES_optype op)  
 // {  
 //    switch (getOpgroup(op))  
 //    {  
 //    case G_BINARY: return left->getLength();  
 //    case G_UNARY: return left->getLength();  
 //    case G_NP1OUT: return left->getLength();  
 //    default:  
 //  throw DataException("Programmer Error - attempt to getLength() for operator "+opToString(op)+".");  
 //    }  
 // }  
   
 // determine the number of samples requires to evaluate an expression combining left and right  
 // NP1OUT needs an extra buffer because we can't write the answers over the top of the input.  
 // The same goes for G_TENSORPROD  
 int  
 calcBuffs(const DataLazy_ptr& left, const DataLazy_ptr& right, ES_optype op)  
 {  
    switch(getOpgroup(op))  
    {  
    case G_IDENTITY: return 1;  
    case G_BINARY: return max(left->getBuffsRequired(),right->getBuffsRequired()+1);  
    case G_UNARY: return max(left->getBuffsRequired(),1);  
    case G_NP1OUT: return 1+max(left->getBuffsRequired(),1);  
    case G_TENSORPROD: return 1+max(left->getBuffsRequired(),right->getBuffsRequired()+1);  
    default:  
     throw DataException("Programmer Error - attempt to calcBuffs() for operator "+opToString(op)+".");  
    }  
384  }  }
385    
386    }       // end anonymous namespace
387    
388  }   // end anonymous namespace  void DataLazy::LazyNodeSetup()
   
   
   
 // Return a string representing the operation  
 const std::string&  
 opToString(ES_optype op)  
389  {  {
390    if (op<0 || op>=ES_opcount)  #ifdef _OPENMP
391    {      int numthreads=omp_get_max_threads();
392      op=UNKNOWNOP;      m_samples.resize(numthreads*m_samplesize);
393    }      m_sampleids=new int[numthreads];
394    return ES_opstrings[op];      for (int i=0;i<numthreads;++i)
395        {
396            m_sampleids[i]=-1;  
397        }
398    #else
399        m_samples.resize(m_samplesize);
400        m_sampleids=new int[1];
401        m_sampleids[0]=-1;
402    #endif  // _OPENMP
403  }  }
404    
405    
406    // Creates an identity node
407  DataLazy::DataLazy(DataAbstract_ptr p)  DataLazy::DataLazy(DataAbstract_ptr p)
408      : parent(p->getFunctionSpace(),p->getShape()),          : parent(p->getFunctionSpace(),p->getShape())
409      m_op(IDENTITY),          ,m_sampleids(0),
410      m_axis_offset(0),          m_samples(1)
     m_transpose(0),  
     m_SL(0), m_SM(0), m_SR(0)  
411  {  {
412     if (p->isLazy())     if (p->isLazy())
413     {     {
414      // I don't want identity of Lazy.          // I don't want identity of Lazy.
415      // Question: Why would that be so bad?          // Question: Why would that be so bad?
416      // Answer: We assume that the child of ID is something we can call getVector on          // Answer: We assume that the child of ID is something we can call getVector on
417      throw DataException("Programmer error - attempt to create identity from a DataLazy.");          throw DataException("Programmer error - attempt to create identity from a DataLazy.");
418     }     }
419     else     else
420     {     {
421      m_id=dynamic_pointer_cast<DataReady>(p);          DataReady_ptr dr=dynamic_pointer_cast<DataReady>(p);
422      if(p->isConstant()) {m_readytype='C';}          makeIdentity(dr);
423      else if(p->isExpanded()) {m_readytype='E';}  LAZYDEBUG(cout << "Wrapping " << dr.get() << " id=" << m_id.get() << endl;)
     else if (p->isTagged()) {m_readytype='T';}  
     else {throw DataException("Unknown DataReady instance in DataLazy constructor.");}  
424     }     }
425     m_buffsRequired=1;  LAZYDEBUG(cout << "(1)Lazy created with " << m_samplesize << endl;)
    m_samplesize=getNumDPPSample()*getNoValues();  
    m_maxsamplesize=m_samplesize;  
 cout << "(1)Lazy created with " << m_samplesize << endl;  
426  }  }
427    
   
   
   
428  DataLazy::DataLazy(DataAbstract_ptr left, ES_optype op)  DataLazy::DataLazy(DataAbstract_ptr left, ES_optype op)
429      : parent(left->getFunctionSpace(),left->getShape()),          : parent(left->getFunctionSpace(),(getOpgroup(op)!=G_REDUCTION)?left->getShape():DataTypes::scalarShape),
430      m_op(op),          m_op(op),
431      m_axis_offset(0),          m_axis_offset(0),
432      m_transpose(0),          m_transpose(0),
433      m_SL(0), m_SM(0), m_SR(0)          m_SL(0), m_SM(0), m_SR(0)
434  {  {
435     if ((getOpgroup(op)!=G_UNARY) && (getOpgroup(op)!=G_NP1OUT))     if ((getOpgroup(op)!=G_UNARY) && (getOpgroup(op)!=G_NP1OUT) && (getOpgroup(op)!=G_REDUCTION))
436     {     {
437      throw DataException("Programmer error - constructor DataLazy(left, op) will only process UNARY operations.");          throw DataException("Programmer error - constructor DataLazy(left, op) will only process UNARY operations.");
438     }     }
439    
440     DataLazy_ptr lleft;     DataLazy_ptr lleft;
441     if (!left->isLazy())     if (!left->isLazy())
442     {     {
443      lleft=DataLazy_ptr(new DataLazy(left));          lleft=DataLazy_ptr(new DataLazy(left));
444     }     }
445     else     else
446     {     {
447      lleft=dynamic_pointer_cast<DataLazy>(left);          lleft=dynamic_pointer_cast<DataLazy>(left);
448     }     }
449     m_readytype=lleft->m_readytype;     m_readytype=lleft->m_readytype;
450     m_left=lleft;     m_left=lleft;
    m_buffsRequired=calcBuffs(m_left, m_right,m_op); // yeah m_right will be null at this point  
451     m_samplesize=getNumDPPSample()*getNoValues();     m_samplesize=getNumDPPSample()*getNoValues();
452     m_maxsamplesize=max(m_samplesize,m_left->getMaxSampleSize());     m_children=m_left->m_children+1;
453       m_height=m_left->m_height+1;
454       LazyNodeSetup();
455       SIZELIMIT
456  }  }
457    
458    
459  // In this constructor we need to consider interpolation  // In this constructor we need to consider interpolation
460  DataLazy::DataLazy(DataAbstract_ptr left, DataAbstract_ptr right, ES_optype op)  DataLazy::DataLazy(DataAbstract_ptr left, DataAbstract_ptr right, ES_optype op)
461      : parent(resultFS(left,right,op), resultShape(left,right,op)),          : parent(resultFS(left,right,op), resultShape(left,right,op)),
462      m_op(op),          m_op(op),
463      m_SL(0), m_SM(0), m_SR(0)          m_SL(0), m_SM(0), m_SR(0)
464  {  {
465    LAZYDEBUG(cout << "Forming operator with " << left.get() << " " << right.get() << endl;)
466     if ((getOpgroup(op)!=G_BINARY))     if ((getOpgroup(op)!=G_BINARY))
467     {     {
468      throw DataException("Programmer error - constructor DataLazy(left, right, op) will only process BINARY operations.");          throw DataException("Programmer error - constructor DataLazy(left, right, op) will only process BINARY operations.");
469     }     }
470    
471     if (getFunctionSpace()!=left->getFunctionSpace())    // left needs to be interpolated     if (getFunctionSpace()!=left->getFunctionSpace())    // left needs to be interpolated
472     {     {
473      FunctionSpace fs=getFunctionSpace();          FunctionSpace fs=getFunctionSpace();
474      Data ltemp(left);          Data ltemp(left);
475      Data tmp(ltemp,fs);          Data tmp(ltemp,fs);
476      left=tmp.borrowDataPtr();          left=tmp.borrowDataPtr();
477     }     }
478     if (getFunctionSpace()!=right->getFunctionSpace())   // right needs to be interpolated     if (getFunctionSpace()!=right->getFunctionSpace())   // right needs to be interpolated
479     {     {
480      Data tmp(Data(right),getFunctionSpace());          Data tmp(Data(right),getFunctionSpace());
481      right=tmp.borrowDataPtr();          right=tmp.borrowDataPtr();
482    LAZYDEBUG(cout << "Right interpolation required " << right.get() << endl;)
483     }     }
484     left->operandCheck(*right);     left->operandCheck(*right);
485    
486     if (left->isLazy())          // the children need to be DataLazy. Wrap them in IDENTITY if required     if (left->isLazy())                  // the children need to be DataLazy. Wrap them in IDENTITY if required
487     {     {
488      m_left=dynamic_pointer_cast<DataLazy>(left);          m_left=dynamic_pointer_cast<DataLazy>(left);
489    LAZYDEBUG(cout << "Left is " << m_left->toString() << endl;)
490     }     }
491     else     else
492     {     {
493      m_left=DataLazy_ptr(new DataLazy(left));          m_left=DataLazy_ptr(new DataLazy(left));
494    LAZYDEBUG(cout << "Left " << left.get() << " wrapped " << m_left->m_id.get() << endl;)
495     }     }
496     if (right->isLazy())     if (right->isLazy())
497     {     {
498      m_right=dynamic_pointer_cast<DataLazy>(right);          m_right=dynamic_pointer_cast<DataLazy>(right);
499    LAZYDEBUG(cout << "Right is " << m_right->toString() << endl;)
500     }     }
501     else     else
502     {     {
503      m_right=DataLazy_ptr(new DataLazy(right));          m_right=DataLazy_ptr(new DataLazy(right));
504    LAZYDEBUG(cout << "Right " << right.get() << " wrapped " << m_right->m_id.get() << endl;)
505     }     }
506     char lt=m_left->m_readytype;     char lt=m_left->m_readytype;
507     char rt=m_right->m_readytype;     char rt=m_right->m_readytype;
508     if (lt=='E' || rt=='E')     if (lt=='E' || rt=='E')
509     {     {
510      m_readytype='E';          m_readytype='E';
511     }     }
512     else if (lt=='T' || rt=='T')     else if (lt=='T' || rt=='T')
513     {     {
514      m_readytype='T';          m_readytype='T';
515     }     }
516     else     else
517     {     {
518      m_readytype='C';          m_readytype='C';
519     }     }
520     m_samplesize=getNumDPPSample()*getNoValues();     m_samplesize=getNumDPPSample()*getNoValues();
521     m_maxsamplesize=max(max(m_samplesize,m_right->getMaxSampleSize()),m_left->getMaxSampleSize());       m_children=m_left->m_children+m_right->m_children+2;
522     m_buffsRequired=calcBuffs(m_left, m_right,m_op);     m_height=max(m_left->m_height,m_right->m_height)+1;
523  cout << "(3)Lazy created with " << m_samplesize << endl;     LazyNodeSetup();
524       SIZELIMIT
525    LAZYDEBUG(cout << "(3)Lazy created with " << m_samplesize << endl;)
526  }  }
527    
528  DataLazy::DataLazy(DataAbstract_ptr left, DataAbstract_ptr right, ES_optype op, int axis_offset, int transpose)  DataLazy::DataLazy(DataAbstract_ptr left, DataAbstract_ptr right, ES_optype op, int axis_offset, int transpose)
529      : parent(resultFS(left,right,op), GTPShape(left,right, axis_offset, transpose, m_SL,m_SM, m_SR)),          : parent(resultFS(left,right,op), GTPShape(left,right, axis_offset, transpose, m_SL,m_SM, m_SR)),
530      m_op(op),          m_op(op),
531      m_axis_offset(axis_offset),          m_axis_offset(axis_offset),
532      m_transpose(transpose)          m_transpose(transpose)
533  {  {
534     if ((getOpgroup(op)!=G_TENSORPROD))     if ((getOpgroup(op)!=G_TENSORPROD))
535     {     {
536      throw DataException("Programmer error - constructor DataLazy(left, right, op, ax, tr) will only process BINARY operations which require parameters.");          throw DataException("Programmer error - constructor DataLazy(left, right, op, ax, tr) will only process BINARY operations which require parameters.");
537     }     }
538     if ((transpose>2) || (transpose<0))     if ((transpose>2) || (transpose<0))
539     {     {
540      throw DataException("DataLazy GeneralTensorProduct constructor: Error - transpose should be 0, 1 or 2");          throw DataException("DataLazy GeneralTensorProduct constructor: Error - transpose should be 0, 1 or 2");
541     }     }
542     if (getFunctionSpace()!=left->getFunctionSpace())    // left needs to be interpolated     if (getFunctionSpace()!=left->getFunctionSpace())    // left needs to be interpolated
543     {     {
544      FunctionSpace fs=getFunctionSpace();          FunctionSpace fs=getFunctionSpace();
545      Data ltemp(left);          Data ltemp(left);
546      Data tmp(ltemp,fs);          Data tmp(ltemp,fs);
547      left=tmp.borrowDataPtr();          left=tmp.borrowDataPtr();
548     }     }
549     if (getFunctionSpace()!=right->getFunctionSpace())   // right needs to be interpolated     if (getFunctionSpace()!=right->getFunctionSpace())   // right needs to be interpolated
550     {     {
551      Data tmp(Data(right),getFunctionSpace());          Data tmp(Data(right),getFunctionSpace());
552      right=tmp.borrowDataPtr();          right=tmp.borrowDataPtr();
553     }     }
554     left->operandCheck(*right);  //    left->operandCheck(*right);
555    
556     if (left->isLazy())          // the children need to be DataLazy. Wrap them in IDENTITY if required     if (left->isLazy())                  // the children need to be DataLazy. Wrap them in IDENTITY if required
557     {     {
558      m_left=dynamic_pointer_cast<DataLazy>(left);          m_left=dynamic_pointer_cast<DataLazy>(left);
559     }     }
560     else     else
561     {     {
562      m_left=DataLazy_ptr(new DataLazy(left));          m_left=DataLazy_ptr(new DataLazy(left));
563     }     }
564     if (right->isLazy())     if (right->isLazy())
565     {     {
566      m_right=dynamic_pointer_cast<DataLazy>(right);          m_right=dynamic_pointer_cast<DataLazy>(right);
567     }     }
568     else     else
569     {     {
570      m_right=DataLazy_ptr(new DataLazy(right));          m_right=DataLazy_ptr(new DataLazy(right));
571     }     }
572     char lt=m_left->m_readytype;     char lt=m_left->m_readytype;
573     char rt=m_right->m_readytype;     char rt=m_right->m_readytype;
574     if (lt=='E' || rt=='E')     if (lt=='E' || rt=='E')
575     {     {
576      m_readytype='E';          m_readytype='E';
577     }     }
578     else if (lt=='T' || rt=='T')     else if (lt=='T' || rt=='T')
579     {     {
580      m_readytype='T';          m_readytype='T';
581     }     }
582     else     else
583     {     {
584      m_readytype='C';          m_readytype='C';
585     }     }
586     m_samplesize=getNumDPPSample()*getNoValues();     m_samplesize=getNumDPPSample()*getNoValues();
587     m_maxsamplesize=max(max(m_samplesize,m_right->getMaxSampleSize()),m_left->getMaxSampleSize());       m_children=m_left->m_children+m_right->m_children+2;
588     m_buffsRequired=calcBuffs(m_left, m_right,m_op);     m_height=max(m_left->m_height,m_right->m_height)+1;
589  cout << "(4)Lazy created with " << m_samplesize << endl;     LazyNodeSetup();
590       SIZELIMIT
591    LAZYDEBUG(cout << "(4)Lazy created with " << m_samplesize << endl;)
592  }  }
593    
594    
595  DataLazy::~DataLazy()  DataLazy::DataLazy(DataAbstract_ptr left, ES_optype op, int axis_offset)
596            : parent(left->getFunctionSpace(), resultShape(left,op, axis_offset)),
597            m_op(op),
598            m_axis_offset(axis_offset),
599            m_transpose(0),
600            m_tol(0)
601  {  {
602       if ((getOpgroup(op)!=G_NP1OUT_P))
603       {
604            throw DataException("Programmer error - constructor DataLazy(left, op, ax) will only process UNARY operations which require parameters.");
605       }
606       DataLazy_ptr lleft;
607       if (!left->isLazy())
608       {
609            lleft=DataLazy_ptr(new DataLazy(left));
610       }
611       else
612       {
613            lleft=dynamic_pointer_cast<DataLazy>(left);
614       }
615       m_readytype=lleft->m_readytype;
616       m_left=lleft;
617       m_samplesize=getNumDPPSample()*getNoValues();
618       m_children=m_left->m_children+1;
619       m_height=m_left->m_height+1;
620       LazyNodeSetup();
621       SIZELIMIT
622    LAZYDEBUG(cout << "(5)Lazy created with " << m_samplesize << endl;)
623    }
624    
625    DataLazy::DataLazy(DataAbstract_ptr left, ES_optype op, double tol)
626            : parent(left->getFunctionSpace(), left->getShape()),
627            m_op(op),
628            m_axis_offset(0),
629            m_transpose(0),
630            m_tol(tol)
631    {
632       if ((getOpgroup(op)!=G_UNARY_P))
633       {
634            throw DataException("Programmer error - constructor DataLazy(left, op, tol) will only process UNARY operations which require parameters.");
635       }
636       DataLazy_ptr lleft;
637       if (!left->isLazy())
638       {
639            lleft=DataLazy_ptr(new DataLazy(left));
640       }
641       else
642       {
643            lleft=dynamic_pointer_cast<DataLazy>(left);
644       }
645       m_readytype=lleft->m_readytype;
646       m_left=lleft;
647       m_samplesize=getNumDPPSample()*getNoValues();
648       m_children=m_left->m_children+1;
649       m_height=m_left->m_height+1;
650       LazyNodeSetup();
651       SIZELIMIT
652    LAZYDEBUG(cout << "(6)Lazy created with " << m_samplesize << endl;)
653  }  }
654    
655    
656  int  DataLazy::DataLazy(DataAbstract_ptr left, ES_optype op, const int axis0, const int axis1)
657  DataLazy::getBuffsRequired() const          : parent(left->getFunctionSpace(), SwapShape(left,axis0,axis1)),
658            m_op(op),
659            m_axis_offset(axis0),
660            m_transpose(axis1),
661            m_tol(0)
662  {  {
663      return m_buffsRequired;     if ((getOpgroup(op)!=G_NP1OUT_2P))
664       {
665            throw DataException("Programmer error - constructor DataLazy(left, op, tol) will only process UNARY operations which require two integer parameters.");
666       }
667       DataLazy_ptr lleft;
668       if (!left->isLazy())
669       {
670            lleft=DataLazy_ptr(new DataLazy(left));
671       }
672       else
673       {
674            lleft=dynamic_pointer_cast<DataLazy>(left);
675       }
676       m_readytype=lleft->m_readytype;
677       m_left=lleft;
678       m_samplesize=getNumDPPSample()*getNoValues();
679       m_children=m_left->m_children+1;
680       m_height=m_left->m_height+1;
681       LazyNodeSetup();
682       SIZELIMIT
683    LAZYDEBUG(cout << "(7)Lazy created with " << m_samplesize << endl;)
684  }  }
685    
686    
687  size_t  namespace
 DataLazy::getMaxSampleSize() const  
688  {  {
689      return m_maxsamplesize;  
690        inline int max3(int a, int b, int c)
691        {
692            int t=(a>b?a:b);
693            return (t>c?t:c);
694    
695        }
696  }  }
697    
698    DataLazy::DataLazy(DataAbstract_ptr mask, DataAbstract_ptr left, DataAbstract_ptr right/*, double tol*/)
699            : parent(left->getFunctionSpace(), left->getShape()),
700            m_op(CONDEVAL),
701            m_axis_offset(0),
702            m_transpose(0),
703            m_tol(0)
704    {
705    
706       DataLazy_ptr lmask;
707       DataLazy_ptr lleft;
708       DataLazy_ptr lright;
709       if (!mask->isLazy())
710       {
711            lmask=DataLazy_ptr(new DataLazy(mask));
712       }
713       else
714       {
715            lmask=dynamic_pointer_cast<DataLazy>(mask);
716       }
717       if (!left->isLazy())
718       {
719            lleft=DataLazy_ptr(new DataLazy(left));
720       }
721       else
722       {
723            lleft=dynamic_pointer_cast<DataLazy>(left);
724       }
725       if (!right->isLazy())
726       {
727            lright=DataLazy_ptr(new DataLazy(right));
728       }
729       else
730       {
731            lright=dynamic_pointer_cast<DataLazy>(right);
732       }
733       m_readytype=lmask->m_readytype;
734       if ((lleft->m_readytype!=lright->m_readytype) || (lmask->m_readytype!=lleft->m_readytype))
735       {
736            throw DataException("Programmer Error - condEval arguments must have the same readytype");
737       }
738       m_left=lleft;
739       m_right=lright;
740       m_mask=lmask;
741       m_samplesize=getNumDPPSample()*getNoValues();
742       m_children=m_left->m_children+m_right->m_children+m_mask->m_children+1;
743       m_height=max3(m_left->m_height,m_right->m_height,m_mask->m_height)+1;
744       LazyNodeSetup();
745       SIZELIMIT
746    LAZYDEBUG(cout << "(8)Lazy created with " << m_samplesize << endl;)
747    }
748    
749    
750    
751    DataLazy::~DataLazy()
752    {
753       delete[] m_sampleids;
754    }
755    
756    
757  /*  /*
758    \brief Evaluates the expression using methods on Data.    \brief Evaluates the expression using methods on Data.
759    This does the work for the collapse method.    This does the work for the collapse method.
760    For reasons of efficiency do not call this method on DataExpanded nodes.    For reasons of efficiency do not call this method on DataExpanded nodes.
761  */  */
762  DataReady_ptr  DataReady_ptr
763  DataLazy::collapseToReady()  DataLazy::collapseToReady() const
764  {  {
765    if (m_readytype=='E')    if (m_readytype=='E')
766    { // this is more an efficiency concern than anything else    {     // this is more an efficiency concern than anything else
767      throw DataException("Programmer Error - do not use collapse on Expanded data.");      throw DataException("Programmer Error - do not use collapse on Expanded data.");
768    }    }
769    if (m_op==IDENTITY)    if (m_op==IDENTITY)
# Line 511  DataLazy::collapseToReady() Line 781  DataLazy::collapseToReady()
781    switch(m_op)    switch(m_op)
782    {    {
783      case ADD:      case ADD:
784      result=left+right;          result=left+right;
785      break;          break;
786      case SUB:            case SUB:          
787      result=left-right;          result=left-right;
788      break;          break;
789      case MUL:            case MUL:          
790      result=left*right;          result=left*right;
791      break;          break;
792      case DIV:            case DIV:          
793      result=left/right;          result=left/right;
794      break;          break;
795      case SIN:      case SIN:
796      result=left.sin();            result=left.sin();      
797      break;          break;
798      case COS:      case COS:
799      result=left.cos();          result=left.cos();
800      break;          break;
801      case TAN:      case TAN:
802      result=left.tan();          result=left.tan();
803      break;          break;
804      case ASIN:      case ASIN:
805      result=left.asin();          result=left.asin();
806      break;          break;
807      case ACOS:      case ACOS:
808      result=left.acos();          result=left.acos();
809      break;          break;
810      case ATAN:      case ATAN:
811      result=left.atan();          result=left.atan();
812      break;          break;
813      case SINH:      case SINH:
814      result=left.sinh();          result=left.sinh();
815      break;          break;
816      case COSH:      case COSH:
817      result=left.cosh();          result=left.cosh();
818      break;          break;
819      case TANH:      case TANH:
820      result=left.tanh();          result=left.tanh();
821      break;          break;
822      case ERF:      case ERF:
823      result=left.erf();          result=left.erf();
824      break;          break;
825     case ASINH:     case ASINH:
826      result=left.asinh();          result=left.asinh();
827      break;          break;
828     case ACOSH:     case ACOSH:
829      result=left.acosh();          result=left.acosh();
830      break;          break;
831     case ATANH:     case ATANH:
832      result=left.atanh();          result=left.atanh();
833      break;          break;
834      case LOG10:      case LOG10:
835      result=left.log10();          result=left.log10();
836      break;          break;
837      case LOG:      case LOG:
838      result=left.log();          result=left.log();
839      break;          break;
840      case SIGN:      case SIGN:
841      result=left.sign();          result=left.sign();
842      break;          break;
843      case ABS:      case ABS:
844      result=left.abs();          result=left.abs();
845      break;          break;
846      case NEG:      case NEG:
847      result=left.neg();          result=left.neg();
848      break;          break;
849      case POS:      case POS:
850      // it doesn't mean anything for delayed.          // it doesn't mean anything for delayed.
851      // it will just trigger a deep copy of the lazy object          // it will just trigger a deep copy of the lazy object
852      throw DataException("Programmer error - POS not supported for lazy data.");          throw DataException("Programmer error - POS not supported for lazy data.");
853      break;          break;
854      case EXP:      case EXP:
855      result=left.exp();          result=left.exp();
856      break;          break;
857      case SQRT:      case SQRT:
858      result=left.sqrt();          result=left.sqrt();
859      break;          break;
860      case RECIP:      case RECIP:
861      result=left.oneOver();          result=left.oneOver();
862      break;          break;
863      case GZ:      case GZ:
864      result=left.wherePositive();          result=left.wherePositive();
865      break;          break;
866      case LZ:      case LZ:
867      result=left.whereNegative();          result=left.whereNegative();
868      break;          break;
869      case GEZ:      case GEZ:
870      result=left.whereNonNegative();          result=left.whereNonNegative();
871      break;          break;
872      case LEZ:      case LEZ:
873      result=left.whereNonPositive();          result=left.whereNonPositive();
874      break;          break;
875        case NEZ:
876            result=left.whereNonZero(m_tol);
877            break;
878        case EZ:
879            result=left.whereZero(m_tol);
880            break;
881      case SYM:      case SYM:
882      result=left.symmetric();          result=left.symmetric();
883      break;          break;
884      case NSYM:      case NSYM:
885      result=left.nonsymmetric();          result=left.antisymmetric();
886      break;          break;
887      case PROD:      case PROD:
888      result=C_GeneralTensorProduct(left,right,m_axis_offset, m_transpose);          result=C_GeneralTensorProduct(left,right,m_axis_offset, m_transpose);
889            break;
890        case TRANS:
891            result=left.transpose(m_axis_offset);
892            break;
893        case TRACE:
894            result=left.trace(m_axis_offset);
895            break;
896        case SWAP:
897            result=left.swapaxes(m_axis_offset, m_transpose);
898            break;
899        case MINVAL:
900            result=left.minval();
901            break;
902        case MAXVAL:
903            result=left.minval();
904            break;
905        case HER:
906        result=left.hermitian();
907      break;      break;
908      default:      default:
909      throw DataException("Programmer error - collapseToReady does not know how to resolve operator "+opToString(m_op)+".");          throw DataException("Programmer error - collapseToReady does not know how to resolve operator "+opToString(m_op)+".");
910    }    }
911    return result.borrowReadyPtr();    return result.borrowReadyPtr();
912  }  }
# Line 624  DataLazy::collapseToReady() Line 918  DataLazy::collapseToReady()
918     the purpose of using DataLazy in the first place).     the purpose of using DataLazy in the first place).
919  */  */
920  void  void
921  DataLazy::collapse()  DataLazy::collapse() const
922  {  {
923    if (m_op==IDENTITY)    if (m_op==IDENTITY)
924    {    {
925      return;          return;
926    }    }
927    if (m_readytype=='E')    if (m_readytype=='E')
928    { // this is more an efficiency concern than anything else    {     // this is more an efficiency concern than anything else
929      throw DataException("Programmer Error - do not use collapse on Expanded data.");      throw DataException("Programmer Error - do not use collapse on Expanded data.");
930    }    }
931    m_id=collapseToReady();    m_id=collapseToReady();
932    m_op=IDENTITY;    m_op=IDENTITY;
933  }  }
934    
935  /*  // The result will be stored in m_samples
936    \brief Compute the value of the expression (unary operation) for the given sample.  // The return value is a pointer to the DataVector, offset is the offset within the return value
937    \return Vector which stores the value of the subexpression for the given sample.  const DataTypes::RealVectorType*
938    \param v A vector to store intermediate results.  DataLazy::resolveNodeSample(int tid, int sampleNo, size_t& roffset) const
   \param offset Index in v to begin storing results.  
   \param sampleNo Sample number to evaluate.  
   \param roffset (output parameter) the offset in the return vector where the result begins.  
   
   The return value will be an existing vector so do not deallocate it.  
   If the result is stored in v it should be stored at the offset given.  
   Everything from offset to the end of v should be considered available for this method to use.  
 */  
 DataTypes::ValueType*  
 DataLazy::resolveUnary(ValueType& v, size_t offset, int sampleNo, size_t& roffset) const  
939  {  {
940      // we assume that any collapsing has been done before we get here  LAZYDEBUG(cout << "Resolve sample " << toString() << endl;)
941      // since we only have one argument we don't need to think about only          // collapse so we have a 'E' node or an IDENTITY for some other type
942      // processing single points.    if (m_readytype!='E' && m_op!=IDENTITY)
943      {
944            collapse();
945      }
946      if (m_op==IDENTITY)  
947      {
948        const RealVectorType& vec=m_id->getVectorRO();
949        roffset=m_id->getPointOffset(sampleNo, 0);
950    #ifdef LAZY_STACK_PROF
951    int x;
952    if (&x<stackend[omp_get_thread_num()])
953    {
954           stackend[omp_get_thread_num()]=&x;
955    }
956    #endif
957        return &(vec);
958      }
959      if (m_readytype!='E')
960      {
961        throw DataException("Programmer Error - Collapse did not produce an expanded node.");
962      }
963      if (m_sampleids[tid]==sampleNo)
964      {
965            roffset=tid*m_samplesize;
966            return &(m_samples);            // sample is already resolved
967      }
968      m_sampleids[tid]=sampleNo;
969    
970      switch (getOpgroup(m_op))
971      {
972      case G_UNARY:
973      case G_UNARY_P: return resolveNodeUnary(tid, sampleNo, roffset);
974      case G_BINARY: return resolveNodeBinary(tid, sampleNo, roffset);
975      case G_NP1OUT: return resolveNodeNP1OUT(tid, sampleNo, roffset);
976      case G_NP1OUT_P: return resolveNodeNP1OUT_P(tid, sampleNo, roffset);
977      case G_TENSORPROD: return resolveNodeTProd(tid, sampleNo, roffset);
978      case G_NP1OUT_2P: return resolveNodeNP1OUT_2P(tid, sampleNo, roffset);
979      case G_REDUCTION: return resolveNodeReduction(tid, sampleNo, roffset);
980      case G_CONDEVAL: return resolveNodeCondEval(tid, sampleNo, roffset);
981      default:
982        throw DataException("Programmer Error - resolveSample does not know how to process "+opToString(m_op)+".");
983      }
984    }
985    
986    const DataTypes::RealVectorType*
987    DataLazy::resolveNodeUnary(int tid, int sampleNo, size_t& roffset) const
988    {
989            // we assume that any collapsing has been done before we get here
990            // since we only have one argument we don't need to think about only
991            // processing single points.
992            // we will also know we won't get identity nodes
993    if (m_readytype!='E')    if (m_readytype!='E')
994    {    {
995      throw DataException("Programmer error - resolveUnary should only be called on expanded Data.");      throw DataException("Programmer error - resolveUnary should only be called on expanded Data.");
996    }    }
997    const ValueType* vleft=m_left->resolveSample(v,offset,sampleNo,roffset);    if (m_op==IDENTITY)
   const double* left=&((*vleft)[roffset]);  
   double* result=&(v[offset]);  
   roffset=offset;  
   switch (m_op)  
998    {    {
999      case SIN:        throw DataException("Programmer error - resolveNodeUnary should not be called on identity nodes.");
1000      tensor_unary_operation<double (*)(double)>(m_samplesize, left, result, ::sin);    }
1001      break;    const DataTypes::RealVectorType* leftres=m_left->resolveNodeSample(tid, sampleNo, roffset);
1002      case COS:    const double* left=&((*leftres)[roffset]);
1003      tensor_unary_operation<double (*)(double)>(m_samplesize, left, result, ::cos);    roffset=m_samplesize*tid;
1004      break;    double* result=&(m_samples[roffset]);
1005      case TAN:    if (m_op==POS)
1006      tensor_unary_operation<double (*)(double)>(m_samplesize, left, result, ::tan);    {
1007      break;      // this should be prevented earlier
1008      case ASIN:      // operation is meaningless for lazy
1009      tensor_unary_operation<double (*)(double)>(m_samplesize, left, result, ::asin);          throw DataException("Programmer error - POS not supported for lazy data.");    
1010      break;    }
1011      case ACOS:    tensor_unary_array_operation(m_samplesize,
1012      tensor_unary_operation<double (*)(double)>(m_samplesize, left, result, ::acos);                               left,
1013      break;                               result,
1014      case ATAN:                               m_op,
1015      tensor_unary_operation<double (*)(double)>(m_samplesize, left, result, ::atan);                               m_tol);  
1016      break;    return &(m_samples);
1017      case SINH:  }
     tensor_unary_operation<double (*)(double)>(m_samplesize, left, result, ::sinh);  
     break;  
     case COSH:  
     tensor_unary_operation<double (*)(double)>(m_samplesize, left, result, ::cosh);  
     break;  
     case TANH:  
     tensor_unary_operation<double (*)(double)>(m_samplesize, left, result, ::tanh);  
     break;  
     case ERF:  
 #if defined (_WIN32) && !defined(__INTEL_COMPILER)  
     throw DataException("Error - Data:: erf function is not supported on _WIN32 platforms.");  
 #else  
     tensor_unary_operation(m_samplesize, left, result, ::erf);  
     break;  
 #endif  
    case ASINH:  
 #if defined (_WIN32) && !defined(__INTEL_COMPILER)  
     tensor_unary_operation(m_samplesize, left, result, escript::asinh_substitute);  
 #else  
     tensor_unary_operation(m_samplesize, left, result, ::asinh);  
 #endif    
     break;  
    case ACOSH:  
 #if defined (_WIN32) && !defined(__INTEL_COMPILER)  
     tensor_unary_operation(m_samplesize, left, result, escript::acosh_substitute);  
 #else  
     tensor_unary_operation(m_samplesize, left, result, ::acosh);  
 #endif    
     break;  
    case ATANH:  
 #if defined (_WIN32) && !defined(__INTEL_COMPILER)  
     tensor_unary_operation(m_samplesize, left, result, escript::atanh_substitute);  
 #else  
     tensor_unary_operation(m_samplesize, left, result, ::atanh);  
 #endif    
     break;  
     case LOG10:  
     tensor_unary_operation<double (*)(double)>(m_samplesize, left, result, ::log10);  
     break;  
     case LOG:  
     tensor_unary_operation<double (*)(double)>(m_samplesize, left, result, ::log);  
     break;  
     case SIGN:  
     tensor_unary_operation(m_samplesize, left, result, escript::fsign);  
     break;  
     case ABS:  
     tensor_unary_operation<double (*)(double)>(m_samplesize, left, result, ::fabs);  
     break;  
     case NEG:  
     tensor_unary_operation(m_samplesize, left, result, negate<double>());  
     break;  
     case POS:  
     // it doesn't mean anything for delayed.  
     // it will just trigger a deep copy of the lazy object  
     throw DataException("Programmer error - POS not supported for lazy data.");  
     break;  
     case EXP:  
     tensor_unary_operation<double (*)(double)>(m_samplesize, left, result, ::exp);  
     break;  
     case SQRT:  
     tensor_unary_operation<double (*)(double)>(m_samplesize, left, result, ::sqrt);  
     break;  
     case RECIP:  
     tensor_unary_operation(m_samplesize, left, result, bind1st(divides<double>(),1.));  
     break;  
     case GZ:  
     tensor_unary_operation(m_samplesize, left, result, bind2nd(greater<double>(),0.0));  
     break;  
     case LZ:  
     tensor_unary_operation(m_samplesize, left, result, bind2nd(less<double>(),0.0));  
     break;  
     case GEZ:  
     tensor_unary_operation(m_samplesize, left, result, bind2nd(greater_equal<double>(),0.0));  
     break;  
     case LEZ:  
     tensor_unary_operation(m_samplesize, left, result, bind2nd(less_equal<double>(),0.0));  
     break;  
1018    
1019    
1020    const DataTypes::RealVectorType*
1021    DataLazy::resolveNodeReduction(int tid, int sampleNo, size_t& roffset) const
1022    {
1023            // we assume that any collapsing has been done before we get here
1024            // since we only have one argument we don't need to think about only
1025            // processing single points.
1026            // we will also know we won't get identity nodes
1027      if (m_readytype!='E')
1028      {
1029        throw DataException("Programmer error - resolveUnary should only be called on expanded Data.");
1030      }
1031      if (m_op==IDENTITY)
1032      {
1033        throw DataException("Programmer error - resolveNodeUnary should not be called on identity nodes.");
1034      }
1035      size_t loffset=0;
1036      const DataTypes::RealVectorType* leftres=m_left->resolveNodeSample(tid, sampleNo, loffset);
1037    
1038      roffset=m_samplesize*tid;
1039      unsigned int ndpps=getNumDPPSample();
1040      unsigned int psize=DataTypes::noValues(m_left->getShape());
1041      double* result=&(m_samples[roffset]);
1042      switch (m_op)
1043      {
1044        case MINVAL:
1045            {
1046              for (unsigned int z=0;z<ndpps;++z)
1047              {
1048                FMin op;
1049                *result=escript::reductionOpVector(*leftres, m_left->getShape(), loffset, op, numeric_limits<double>::max());
1050                loffset+=psize;
1051                result++;
1052              }
1053            }
1054            break;
1055        case MAXVAL:
1056            {
1057              for (unsigned int z=0;z<ndpps;++z)
1058              {
1059              FMax op;
1060              *result=escript::reductionOpVector(*leftres, m_left->getShape(), loffset, op, numeric_limits<double>::max()*-1);
1061              loffset+=psize;
1062              result++;
1063              }
1064            }
1065            break;
1066      default:      default:
1067      throw DataException("Programmer error - resolveUnary can not resolve operator "+opToString(m_op)+".");          throw DataException("Programmer error - resolveUnary can not resolve operator "+opToString(m_op)+".");
1068    }    }
1069    return &v;    return &(m_samples);
1070  }  }
1071    
1072    const DataTypes::RealVectorType*
1073  /*  DataLazy::resolveNodeNP1OUT(int tid, int sampleNo, size_t& roffset) const
   \brief Compute the value of the expression (unary operation) for the given sample.  
   \return Vector which stores the value of the subexpression for the given sample.  
   \param v A vector to store intermediate results.  
   \param offset Index in v to begin storing results.  
   \param sampleNo Sample number to evaluate.  
   \param roffset (output parameter) the offset in the return vector where the result begins.  
   
   The return value will be an existing vector so do not deallocate it.  
   If the result is stored in v it should be stored at the offset given.  
   Everything from offset to the end of v should be considered available for this method to use.  
 */  
 DataTypes::ValueType*  
 DataLazy::resolveNP1OUT(ValueType& v, size_t offset, int sampleNo, size_t& roffset) const  
1074  {  {
1075      // we assume that any collapsing has been done before we get here          // we assume that any collapsing has been done before we get here
1076      // since we only have one argument we don't need to think about only          // since we only have one argument we don't need to think about only
1077      // processing single points.          // processing single points.
1078    if (m_readytype!='E')    if (m_readytype!='E')
1079    {    {
1080      throw DataException("Programmer error - resolveNP1OUT should only be called on expanded Data.");      throw DataException("Programmer error - resolveNodeNP1OUT should only be called on expanded Data.");
1081    }    }
1082      // since we can't write the result over the input, we need a result offset further along    if (m_op==IDENTITY)
1083    size_t subroffset=roffset+m_samplesize;    {
1084    const ValueType* vleft=m_left->resolveSample(v,offset,sampleNo,subroffset);      throw DataException("Programmer error - resolveNodeNP1OUT should not be called on identity nodes.");
1085    roffset=offset;    }
1086      size_t subroffset;
1087      const RealVectorType* leftres=m_left->resolveNodeSample(tid, sampleNo, subroffset);
1088      roffset=m_samplesize*tid;
1089      size_t loop=0;
1090      size_t numsteps=(m_readytype=='E')?getNumDPPSample():1;
1091      size_t step=getNoValues();
1092      size_t offset=roffset;
1093    switch (m_op)    switch (m_op)
1094    {    {
1095      case SYM:      case SYM:
1096      DataMaths::symmetric(*vleft,m_left->getShape(),subroffset, v, getShape(), offset);          for (loop=0;loop<numsteps;++loop)
1097      break;          {
1098                escript::symmetric(*leftres,m_left->getShape(),subroffset, m_samples, getShape(), offset);
1099                subroffset+=step;
1100                offset+=step;
1101            }
1102            break;
1103      case NSYM:      case NSYM:
1104      DataMaths::nonsymmetric(*vleft,m_left->getShape(),subroffset, v, getShape(), offset);          for (loop=0;loop<numsteps;++loop)
1105      break;          {
1106                escript::antisymmetric(*leftres,m_left->getShape(),subroffset, m_samples, getShape(), offset);
1107                subroffset+=step;
1108                offset+=step;
1109            }
1110            break;
1111      default:      default:
1112      throw DataException("Programmer error - resolveNP1OUT can not resolve operator "+opToString(m_op)+".");          throw DataException("Programmer error - resolveNP1OUT can not resolve operator "+opToString(m_op)+".");
1113    }    }
1114    return &v;    return &m_samples;
1115  }  }
1116    
1117    const DataTypes::RealVectorType*
1118    DataLazy::resolveNodeNP1OUT_P(int tid, int sampleNo, size_t& roffset) const
1119    {
1120            // we assume that any collapsing has been done before we get here
1121            // since we only have one argument we don't need to think about only
1122            // processing single points.
1123      if (m_readytype!='E')
1124      {
1125        throw DataException("Programmer error - resolveNodeNP1OUT_P should only be called on expanded Data.");
1126      }
1127      if (m_op==IDENTITY)
1128      {
1129        throw DataException("Programmer error - resolveNodeNP1OUT_P should not be called on identity nodes.");
1130      }
1131      size_t subroffset;
1132      size_t offset;
1133      const RealVectorType* leftres=m_left->resolveNodeSample(tid, sampleNo, subroffset);
1134      roffset=m_samplesize*tid;
1135      offset=roffset;
1136      size_t loop=0;
1137      size_t numsteps=(m_readytype=='E')?getNumDPPSample():1;
1138      size_t outstep=getNoValues();
1139      size_t instep=m_left->getNoValues();
1140      switch (m_op)
1141      {
1142        case TRACE:
1143            for (loop=0;loop<numsteps;++loop)
1144            {
1145                escript::trace(*leftres,m_left->getShape(),subroffset, m_samples ,getShape(),offset,m_axis_offset);
1146                subroffset+=instep;
1147                offset+=outstep;
1148            }
1149            break;
1150        case TRANS:
1151            for (loop=0;loop<numsteps;++loop)
1152            {
1153                escript::transpose(*leftres,m_left->getShape(),subroffset, m_samples, getShape(),offset,m_axis_offset);
1154                subroffset+=instep;
1155                offset+=outstep;
1156            }
1157            break;
1158        default:
1159            throw DataException("Programmer error - resolveNP1OUTP can not resolve operator "+opToString(m_op)+".");
1160      }
1161      return &m_samples;
1162    }
1163    
1164    
1165    const DataTypes::RealVectorType*
1166    DataLazy::resolveNodeNP1OUT_2P(int tid, int sampleNo, size_t& roffset) const
1167    {
1168      if (m_readytype!='E')
1169      {
1170        throw DataException("Programmer error - resolveNodeNP1OUT_2P should only be called on expanded Data.");
1171      }
1172      if (m_op==IDENTITY)
1173      {
1174        throw DataException("Programmer error - resolveNodeNP1OUT_2P should not be called on identity nodes.");
1175      }
1176      size_t subroffset;
1177      size_t offset;
1178      const RealVectorType* leftres=m_left->resolveNodeSample(tid, sampleNo, subroffset);
1179      roffset=m_samplesize*tid;
1180      offset=roffset;
1181      size_t loop=0;
1182      size_t numsteps=(m_readytype=='E')?getNumDPPSample():1;
1183      size_t outstep=getNoValues();
1184      size_t instep=m_left->getNoValues();
1185      switch (m_op)
1186      {
1187        case SWAP:
1188            for (loop=0;loop<numsteps;++loop)
1189            {
1190                escript::swapaxes(*leftres,m_left->getShape(),subroffset, m_samples, getShape(),offset, m_axis_offset, m_transpose);
1191                subroffset+=instep;
1192                offset+=outstep;
1193            }
1194            break;
1195        default:
1196            throw DataException("Programmer error - resolveNodeNP1OUT2P can not resolve operator "+opToString(m_op)+".");
1197      }
1198      return &m_samples;
1199    }
1200    
1201    const DataTypes::RealVectorType*
1202    DataLazy::resolveNodeCondEval(int tid, int sampleNo, size_t& roffset) const
1203    {
1204      if (m_readytype!='E')
1205      {
1206        throw DataException("Programmer error - resolveNodeCondEval should only be called on expanded Data.");
1207      }
1208      if (m_op!=CONDEVAL)
1209      {
1210        throw DataException("Programmer error - resolveNodeCondEval should only be called on CONDEVAL nodes.");
1211      }
1212      size_t subroffset;
1213    
1214  #define PROC_OP(TYPE,X)                               \    const RealVectorType* maskres=m_mask->resolveNodeSample(tid, sampleNo, subroffset);
1215      for (int i=0;i<steps;++i,resultp+=resultStep) \    const RealVectorType* srcres=0;
1216      { \    if ((*maskres)[subroffset]>0)
1217         tensor_binary_operation< TYPE >(chunksize, &((*left)[lroffset]), &((*right)[rroffset]), resultp, X); \    {
1218         lroffset+=leftStep; \          srcres=m_left->resolveNodeSample(tid, sampleNo, subroffset);
1219         rroffset+=rightStep; \    }
1220      }    else
1221      {
1222            srcres=m_right->resolveNodeSample(tid, sampleNo, subroffset);
1223      }
1224    
1225      // Now we need to copy the result
1226    
1227      roffset=m_samplesize*tid;
1228      for (int i=0;i<m_samplesize;++i)
1229      {
1230            m_samples[roffset+i]=(*srcres)[subroffset+i];  
1231      }
1232    
1233      return &m_samples;
1234    }
1235    
 /*  
   \brief Compute the value of the expression (binary operation) for the given sample.  
   \return Vector which stores the value of the subexpression for the given sample.  
   \param v A vector to store intermediate results.  
   \param offset Index in v to begin storing results.  
   \param sampleNo Sample number to evaluate.  
   \param roffset (output parameter) the offset in the return vector where the result begins.  
   
   The return value will be an existing vector so do not deallocate it.  
   If the result is stored in v it should be stored at the offset given.  
   Everything from offset to the end of v should be considered available for this method to use.  
 */  
1236  // This method assumes that any subexpressions which evaluate to Constant or Tagged Data  // This method assumes that any subexpressions which evaluate to Constant or Tagged Data
1237  // have already been collapsed to IDENTITY. So we must have at least one expanded child.  // have already been collapsed to IDENTITY. So we must have at least one expanded child.
1238  // If both children are expanded, then we can process them in a single operation (we treat  // If both children are expanded, then we can process them in a single operation (we treat
# Line 842  DataLazy::resolveNP1OUT(ValueType& v, si Line 1242  DataLazy::resolveNP1OUT(ValueType& v, si
1242  // There is an additional complication when scalar operations are considered.  // There is an additional complication when scalar operations are considered.
1243  // For example, 2+Vector.  // For example, 2+Vector.
1244  // In this case each double within the point is treated individually  // In this case each double within the point is treated individually
1245  DataTypes::ValueType*  const DataTypes::RealVectorType*
1246  DataLazy::resolveBinary(ValueType& v,  size_t offset, int sampleNo, size_t& roffset) const  DataLazy::resolveNodeBinary(int tid, int sampleNo, size_t& roffset) const
1247  {  {
1248  cout << "Resolve binary: " << toString() << endl;  LAZYDEBUG(cout << "Resolve binary: " << toString() << endl;)
1249    
1250    size_t lroffset=0, rroffset=0;    // offsets in the left and right result vectors    size_t lroffset=0, rroffset=0;        // offsets in the left and right result vectors
1251      // first work out which of the children are expanded          // first work out which of the children are expanded
1252    bool leftExp=(m_left->m_readytype=='E');    bool leftExp=(m_left->m_readytype=='E');
1253    bool rightExp=(m_right->m_readytype=='E');    bool rightExp=(m_right->m_readytype=='E');
1254    bool bigloops=((leftExp && rightExp) || (!leftExp && !rightExp)); // is processing in single step?    if (!leftExp && !rightExp)
1255    int steps=(bigloops?1:getNumDPPSample());    {
1256    size_t chunksize=(bigloops? m_samplesize : getNoValues());    // if bigloops, pretend the whole sample is a datapoint          throw DataException("Programmer Error - please use collapse if neither argument has type 'E'.");
1257    if (m_left->getRank()!=m_right->getRank())    // need to deal with scalar * ? ops    }
1258    {    bool leftScalar=(m_left->getRank()==0);
1259      EsysAssert((m_left->getRank()==0) || (m_right->getRank()==0), "Error - Ranks must match unless one is 0.");    bool rightScalar=(m_right->getRank()==0);
1260      steps=getNumDPPSample()*max(m_left->getNoValues(),m_right->getNoValues());    if ((m_left->getRank()!=m_right->getRank()) && (!leftScalar && !rightScalar))
1261      chunksize=1;    // for scalar    {
1262    }              throw DataException("resolveBinary - ranks of arguments must match unless one of them is scalar.");
1263    int leftStep=((leftExp && !rightExp)? m_right->getNoValues() : 0);    }
1264    int rightStep=((rightExp && !leftExp)? m_left->getNoValues() : 0);    size_t leftsize=m_left->getNoValues();
1265    int resultStep=max(leftStep,rightStep);   // only one (at most) should be !=0    size_t rightsize=m_right->getNoValues();
1266      // Get the values of sub-expressions    size_t chunksize=1;                   // how many doubles will be processed in one go
1267    const ValueType* left=m_left->resolveSample(v,offset,sampleNo,lroffset);    int leftstep=0;               // how far should the left offset advance after each step
1268    const ValueType* right=m_right->resolveSample(v,offset+m_samplesize,sampleNo,rroffset); // Note    int rightstep=0;
1269      // the right child starts further along.    int numsteps=0;               // total number of steps for the inner loop
1270    double* resultp=&(v[offset]);     // results are stored at the vector offset we recieved    int oleftstep=0;      // the o variables refer to the outer loop
1271      int orightstep=0;     // The outer loop is only required in cases where there is an extended scalar
1272      int onumsteps=1;
1273      
1274      bool LES=(leftExp && leftScalar);     // Left is an expanded scalar
1275      bool RES=(rightExp && rightScalar);
1276      bool LS=(!leftExp && leftScalar);     // left is a single scalar
1277      bool RS=(!rightExp && rightScalar);
1278      bool LN=(!leftExp && !leftScalar);    // left is a single non-scalar
1279      bool RN=(!rightExp && !rightScalar);
1280      bool LEN=(leftExp && !leftScalar);    // left is an expanded non-scalar
1281      bool REN=(rightExp && !rightScalar);
1282    
1283      if ((LES && RES) || (LEN && REN))     // both are Expanded scalars or both are expanded non-scalars
1284      {
1285            chunksize=m_left->getNumDPPSample()*leftsize;
1286            leftstep=0;
1287            rightstep=0;
1288            numsteps=1;
1289      }
1290      else if (LES || RES)
1291      {
1292            chunksize=1;
1293            if (LES)                // left is an expanded scalar
1294            {
1295                    if (RS)
1296                    {
1297                       leftstep=1;
1298                       rightstep=0;
1299                       numsteps=m_left->getNumDPPSample();
1300                    }
1301                    else            // RN or REN
1302                    {
1303                       leftstep=0;
1304                       oleftstep=1;
1305                       rightstep=1;
1306                       orightstep=(RN ? -(int)rightsize : 0);
1307                       numsteps=rightsize;
1308                       onumsteps=m_left->getNumDPPSample();
1309                    }
1310            }
1311            else            // right is an expanded scalar
1312            {
1313                    if (LS)
1314                    {
1315                       rightstep=1;
1316                       leftstep=0;
1317                       numsteps=m_right->getNumDPPSample();
1318                    }
1319                    else
1320                    {
1321                       rightstep=0;
1322                       orightstep=1;
1323                       leftstep=1;
1324                       oleftstep=(LN ? -(int)leftsize : 0);
1325                       numsteps=leftsize;
1326                       onumsteps=m_right->getNumDPPSample();
1327                    }
1328            }
1329      }
1330      else  // this leaves (LEN, RS), (LEN, RN) and their transposes
1331      {
1332            if (LEN)        // and Right will be a single value
1333            {
1334                    chunksize=rightsize;
1335                    leftstep=rightsize;
1336                    rightstep=0;
1337                    numsteps=m_left->getNumDPPSample();
1338                    if (RS)
1339                    {
1340                       numsteps*=leftsize;
1341                    }
1342            }
1343            else    // REN
1344            {
1345                    chunksize=leftsize;
1346                    rightstep=leftsize;
1347                    leftstep=0;
1348                    numsteps=m_right->getNumDPPSample();
1349                    if (LS)
1350                    {
1351                       numsteps*=rightsize;
1352                    }
1353            }
1354      }
1355    
1356      int resultStep=max(leftstep,rightstep);       // only one (at most) should be !=0
1357            // Get the values of sub-expressions
1358      const RealVectorType* left=m_left->resolveNodeSample(tid,sampleNo,lroffset);      
1359      const RealVectorType* right=m_right->resolveNodeSample(tid,sampleNo,rroffset);
1360    LAZYDEBUG(cout << "Post sub calls in " << toString() << endl;)
1361    LAZYDEBUG(cout << "shapes=" << DataTypes::shapeToString(m_left->getShape()) << "," << DataTypes::shapeToString(m_right->getShape()) << endl;)
1362    LAZYDEBUG(cout << "chunksize=" << chunksize << endl << "leftstep=" << leftstep << " rightstep=" << rightstep;)
1363    LAZYDEBUG(cout << " numsteps=" << numsteps << endl << "oleftstep=" << oleftstep << " orightstep=" << orightstep;)
1364    LAZYDEBUG(cout << "onumsteps=" << onumsteps << endl;)
1365    LAZYDEBUG(cout << " DPPS=" << m_left->getNumDPPSample() << "," <<m_right->getNumDPPSample() << endl;)
1366    LAZYDEBUG(cout << "" << LS << RS << LN << RN << LES << RES <<LEN << REN <<   endl;)
1367    
1368    LAZYDEBUG(cout << "Left res["<< lroffset<< "]=" << (*left)[lroffset] << endl;)
1369    LAZYDEBUG(cout << "Right res["<< rroffset<< "]=" << (*right)[rroffset] << endl;)
1370    
1371    
1372      roffset=m_samplesize*tid;
1373      double* resultp=&(m_samples[roffset]);                // results are stored at the vector offset we received
1374    switch(m_op)    switch(m_op)
1375    {    {
1376      case ADD:      case ADD:
1377          PROC_OP(NO_ARG,plus<double>());          //PROC_OP(NO_ARG,plus<double>());
1378      break;        escript::binaryOpVectorLazyHelper<real_t, real_t, real_t>(resultp,
1379                 &(*left)[0],
1380                 &(*right)[0],
1381                 chunksize,
1382                 onumsteps,
1383                 numsteps,
1384                 resultStep,
1385                 leftstep,
1386                 rightstep,
1387                 oleftstep,
1388                 orightstep,
1389                 lroffset,
1390                 rroffset,
1391                 escript::ES_optype::ADD);  
1392            break;
1393      case SUB:      case SUB:
1394      PROC_OP(NO_ARG,minus<double>());        escript::binaryOpVectorLazyHelper<real_t, real_t, real_t>(resultp,
1395      break;               &(*left)[0],
1396                 &(*right)[0],
1397                 chunksize,
1398                 onumsteps,
1399                 numsteps,
1400                 resultStep,
1401                 leftstep,
1402                 rightstep,
1403                 oleftstep,
1404                 orightstep,
1405                 lroffset,
1406                 rroffset,
1407                 escript::ES_optype::SUB);        
1408            //PROC_OP(NO_ARG,minus<double>());
1409            break;
1410      case MUL:      case MUL:
1411      PROC_OP(NO_ARG,multiplies<double>());          //PROC_OP(NO_ARG,multiplies<double>());
1412      break;        escript::binaryOpVectorLazyHelper<real_t, real_t, real_t>(resultp,
1413                 &(*left)[0],
1414                 &(*right)[0],
1415                 chunksize,
1416                 onumsteps,
1417                 numsteps,
1418                 resultStep,
1419                 leftstep,
1420                 rightstep,
1421                 oleftstep,
1422                 orightstep,
1423                 lroffset,
1424                 rroffset,
1425                 escript::ES_optype::MUL);        
1426            break;
1427      case DIV:      case DIV:
1428      PROC_OP(NO_ARG,divides<double>());          //PROC_OP(NO_ARG,divides<double>());
1429      break;        escript::binaryOpVectorLazyHelper<real_t, real_t, real_t>(resultp,
1430                 &(*left)[0],
1431                 &(*right)[0],
1432                 chunksize,
1433                 onumsteps,
1434                 numsteps,
1435                 resultStep,
1436                 leftstep,
1437                 rightstep,
1438                 oleftstep,
1439                 orightstep,
1440                 lroffset,
1441                 rroffset,
1442                 escript::ES_optype::DIV);        
1443            break;
1444      case POW:      case POW:
1445         PROC_OP(double (double,double),::pow);         //PROC_OP(double (double,double),::pow);
1446      break;        escript::binaryOpVectorLazyHelper<real_t, real_t, real_t>(resultp,
1447                 &(*left)[0],
1448                 &(*right)[0],
1449                 chunksize,
1450                 onumsteps,
1451                 numsteps,
1452                 resultStep,
1453                 leftstep,
1454                 rightstep,
1455                 oleftstep,
1456                 orightstep,
1457                 lroffset,
1458                 rroffset,
1459                 escript::ES_optype::POW);        
1460            break;
1461      default:      default:
1462      throw DataException("Programmer error - resolveBinary can not resolve operator "+opToString(m_op)+".");          throw DataException("Programmer error - resolveBinary can not resolve operator "+opToString(m_op)+".");
1463    }    }
1464    roffset=offset;    LAZYDEBUG(cout << "Result res[" << roffset<< "]" << m_samples[roffset] << endl;)
1465    return &v;    return &m_samples;
1466  }  }
1467    
1468    
 /*  
   \brief Compute the value of the expression (tensor product) for the given sample.  
   \return Vector which stores the value of the subexpression for the given sample.  
   \param v A vector to store intermediate results.  
   \param offset Index in v to begin storing results.  
   \param sampleNo Sample number to evaluate.  
   \param roffset (output parameter) the offset in the return vector where the result begins.  
   
   The return value will be an existing vector so do not deallocate it.  
   If the result is stored in v it should be stored at the offset given.  
   Everything from offset to the end of v should be considered available for this method to use.  
 */  
1469  // This method assumes that any subexpressions which evaluate to Constant or Tagged Data  // This method assumes that any subexpressions which evaluate to Constant or Tagged Data
1470  // have already been collapsed to IDENTITY. So we must have at least one expanded child.  // have already been collapsed to IDENTITY. So we must have at least one expanded child.
1471  // unlike the other resolve helpers, we must treat these datapoints separately.  // unlike the other resolve helpers, we must treat these datapoints separately.
1472  DataTypes::ValueType*  const DataTypes::RealVectorType*
1473  DataLazy::resolveTProd(ValueType& v,  size_t offset, int sampleNo, size_t& roffset) const  DataLazy::resolveNodeTProd(int tid, int sampleNo, size_t& roffset) const
1474  {  {
1475  cout << "Resolve TensorProduct: " << toString() << endl;  LAZYDEBUG(cout << "Resolve TensorProduct: " << toString() << endl;)
1476    
1477    size_t lroffset=0, rroffset=0;    // offsets in the left and right result vectors    size_t lroffset=0, rroffset=0;        // offsets in the left and right result vectors
1478      // first work out which of the children are expanded          // first work out which of the children are expanded
1479    bool leftExp=(m_left->m_readytype=='E');    bool leftExp=(m_left->m_readytype=='E');
1480    bool rightExp=(m_right->m_readytype=='E');    bool rightExp=(m_right->m_readytype=='E');
1481    int steps=getNumDPPSample();    int steps=getNumDPPSample();
1482    int leftStep=((leftExp && !rightExp)? m_right->getNoValues() : 0);    int leftStep=(leftExp? m_left->getNoValues() : 0);            // do not have scalars as input to this method
1483    int rightStep=((rightExp && !leftExp)? m_left->getNoValues() : 0);    int rightStep=(rightExp?m_right->getNoValues() : 0);
1484    int resultStep=max(leftStep,rightStep);   // only one (at most) should be !=0  
1485      // Get the values of sub-expressions (leave a gap of one sample for the result).    int resultStep=getNoValues();
1486    const ValueType* left=m_left->resolveSample(v,offset+m_samplesize,sampleNo,lroffset);    roffset=m_samplesize*tid;
1487    const ValueType* right=m_right->resolveSample(v,offset+2*m_samplesize,sampleNo,rroffset);    size_t offset=roffset;
1488    double* resultp=&(v[offset]);     // results are stored at the vector offset we recieved  
1489      const RealVectorType* left=m_left->resolveNodeSample(tid, sampleNo, lroffset);
1490    
1491      const RealVectorType* right=m_right->resolveNodeSample(tid, sampleNo, rroffset);
1492    
1493    LAZYDEBUG(cerr << "[Left shape]=" << DataTypes::shapeToString(m_left->getShape()) << "\n[Right shape]=" << DataTypes::shapeToString(m_right->getShape()) << " result=" <<DataTypes::shapeToString(getShape()) <<  endl;
1494    cout << getNoValues() << endl;)
1495    
1496    
1497    LAZYDEBUG(cerr << "Post sub calls: " << toString() << endl;)
1498    LAZYDEBUG(cout << "LeftExp=" << leftExp << " rightExp=" << rightExp << endl;)
1499    LAZYDEBUG(cout << "LeftR=" << m_left->getRank() << " rightExp=" << m_right->getRank() << endl;)
1500    LAZYDEBUG(cout << "LeftSize=" << m_left->getNoValues() << " RightSize=" << m_right->getNoValues() << endl;)
1501    LAZYDEBUG(cout << "m_samplesize=" << m_samplesize << endl;)
1502    LAZYDEBUG(cout << "outputshape=" << DataTypes::shapeToString(getShape()) << endl;)
1503    LAZYDEBUG(cout << "DPPS=" << m_right->getNumDPPSample() <<"."<<endl;)
1504    
1505      double* resultp=&(m_samples[offset]);         // results are stored at the vector offset we received
1506    switch(m_op)    switch(m_op)
1507    {    {
1508      case PROD:      case PROD:
1509      for (int i=0;i<steps;++i,resultp+=resultStep)          for (int i=0;i<steps;++i,resultp+=resultStep)
1510      {          {
1511            const double *ptr_0 = &((*left)[lroffset]);            const double *ptr_0 = &((*left)[lroffset]);
1512            const double *ptr_1 = &((*right)[rroffset]);            const double *ptr_1 = &((*right)[rroffset]);
1513            matrix_matrix_product(m_SL, m_SM, m_SR, ptr_0, ptr_1, resultp, m_transpose);  
1514        lroffset+=leftStep;  LAZYDEBUG(cout << DataTypes::pointToString(*left, m_left->getShape(),lroffset,"LEFT") << endl;)
1515        rroffset+=rightStep;  LAZYDEBUG(cout << DataTypes::pointToString(*right,m_right->getShape(),rroffset, "RIGHT") << endl;)
1516      }  
1517      break;            matrix_matrix_product(m_SL, m_SM, m_SR, ptr_0, ptr_1, resultp, m_transpose);
1518    
1519              lroffset+=leftStep;
1520              rroffset+=rightStep;
1521            }
1522            break;
1523      default:      default:
1524      throw DataException("Programmer error - resolveTProduct can not resolve operator "+opToString(m_op)+".");          throw DataException("Programmer error - resolveTProduct can not resolve operator "+opToString(m_op)+".");
1525    }    }
1526    roffset=offset;    roffset=offset;
1527    return &v;    return &m_samples;
1528  }  }
1529    
1530    
1531    const DataTypes::RealVectorType*
1532    DataLazy::resolveSample(int sampleNo, size_t& roffset) const
1533    {
1534    #ifdef _OPENMP
1535            int tid=omp_get_thread_num();
1536    #else
1537            int tid=0;
1538    #endif
1539    
1540  /*  #ifdef LAZY_STACK_PROF
1541    \brief Compute the value of the expression for the given sample.          stackstart[tid]=&tid;
1542    \return Vector which stores the value of the subexpression for the given sample.          stackend[tid]=&tid;
1543    \param v A vector to store intermediate results.          const DataTypes::RealVectorType* r=resolveNodeSample(tid, sampleNo, roffset);
1544    \param offset Index in v to begin storing results.          size_t d=(size_t)stackstart[tid]-(size_t)stackend[tid];
1545    \param sampleNo Sample number to evaluate.          #pragma omp critical
1546    \param roffset (output parameter) the offset in the return vector where the result begins.          if (d>maxstackuse)
1547            {
1548    cout << "Max resolve Stack use " << d << endl;
1549                    maxstackuse=d;
1550            }
1551            return r;
1552    #else
1553            return resolveNodeSample(tid, sampleNo, roffset);
1554    #endif
1555    }
1556    
1557    The return value will be an existing vector so do not deallocate it.  
1558  */  // This needs to do the work of the identity constructor
1559  // the vector and the offset are a place where the method could write its data if it wishes  void
1560  // it is not obligated to do so. For example, if it has its own storage already, it can use that.  DataLazy::resolveToIdentity()
 // Hence the return value to indicate where the data is actually stored.  
 // Regardless, the storage should be assumed to be used, even if it isn't.  
   
 // the roffset is the offset within the returned vector where the data begins  
 const DataTypes::ValueType*  
 DataLazy::resolveSample(ValueType& v, size_t offset, int sampleNo, size_t& roffset)  
1561  {  {
1562  cout << "Resolve sample " << toString() << endl;     if (m_op==IDENTITY)
1563      // collapse so we have a 'E' node or an IDENTITY for some other type          return;
1564    if (m_readytype!='E' && m_op!=IDENTITY)     DataReady_ptr p=resolveNodeWorker();
1565    {     makeIdentity(p);
1566      collapse();  }
1567    }  
1568    if (m_op==IDENTITY)    void DataLazy::makeIdentity(const DataReady_ptr& p)
1569    {
1570       m_op=IDENTITY;
1571       m_axis_offset=0;
1572       m_transpose=0;
1573       m_SL=m_SM=m_SR=0;
1574       m_children=m_height=0;
1575       m_id=p;
1576       if(p->isConstant()) {m_readytype='C';}
1577       else if(p->isExpanded()) {m_readytype='E';}
1578       else if (p->isTagged()) {m_readytype='T';}
1579       else {throw DataException("Unknown DataReady instance in convertToIdentity constructor.");}
1580       m_samplesize=p->getNumDPPSample()*p->getNoValues();
1581       m_left.reset();
1582       m_right.reset();
1583    }
1584    
1585    
1586    DataReady_ptr
1587    DataLazy::resolve()
1588    {
1589        resolveToIdentity();
1590        return m_id;
1591    }
1592    
1593    
1594    /* This is really a static method but I think that caused problems in windows */
1595    void
1596    DataLazy::resolveGroupWorker(std::vector<DataLazy*>& dats)
1597    {
1598      if (dats.empty())
1599    {    {
1600      const ValueType& vec=m_id->getVector();          return;
     if (m_readytype=='C')  
     {  
     roffset=0;  
     return &(vec);  
     }  
     roffset=m_id->getPointOffset(sampleNo, 0);  
     return &(vec);  
1601    }    }
1602    if (m_readytype!='E')    vector<DataLazy*> work;
1603    {    FunctionSpace fs=dats[0]->getFunctionSpace();
1604      throw DataException("Programmer Error - Collapse did not produce an expanded node.");    bool match=true;
1605      for (int i=dats.size()-1;i>=0;--i)
1606      {
1607            if (dats[i]->m_readytype!='E')
1608            {
1609                    dats[i]->collapse();
1610            }
1611            if (dats[i]->m_op!=IDENTITY)
1612            {
1613                    work.push_back(dats[i]);
1614                    if (fs!=dats[i]->getFunctionSpace())
1615                    {
1616                            match=false;
1617                    }
1618            }
1619      }
1620      if (work.empty())
1621      {
1622            return;         // no work to do
1623      }
1624      if (match)    // all functionspaces match.  Yes I realise this is overly strict
1625      {             // it is possible that dats[0] is one of the objects which we discarded and
1626                    // all the other functionspaces match.
1627            vector<DataExpanded*> dep;
1628            vector<RealVectorType*> vecs;
1629            for (int i=0;i<work.size();++i)
1630            {
1631                    dep.push_back(new DataExpanded(fs,work[i]->getShape(), RealVectorType(work[i]->getNoValues())));
1632                    vecs.push_back(&(dep[i]->getVectorRW()));
1633            }
1634            int totalsamples=work[0]->getNumSamples();
1635            const RealVectorType* res=0; // Storage for answer
1636            int sample;
1637            #pragma omp parallel private(sample, res)
1638            {
1639                size_t roffset=0;
1640                #pragma omp for schedule(static)
1641                for (sample=0;sample<totalsamples;++sample)
1642                {
1643                    roffset=0;
1644                    int j;
1645                    for (j=work.size()-1;j>=0;--j)
1646                    {
1647    #ifdef _OPENMP
1648                        res=work[j]->resolveNodeSample(omp_get_thread_num(),sample,roffset);
1649    #else
1650                        res=work[j]->resolveNodeSample(0,sample,roffset);
1651    #endif
1652                        RealVectorType::size_type outoffset=dep[j]->getPointOffset(sample,0);
1653                        memcpy(&((*vecs[j])[outoffset]),&((*res)[roffset]),work[j]->m_samplesize*sizeof(RealVectorType::ElementType));
1654                    }
1655                }
1656            }
1657            // Now we need to load the new results as identity ops into the lazy nodes
1658            for (int i=work.size()-1;i>=0;--i)
1659            {
1660                work[i]->makeIdentity(REFCOUNTNS::dynamic_pointer_cast<DataReady>(dep[i]->getPtr()));
1661            }
1662    }    }
1663    switch (getOpgroup(m_op))    else  // functionspaces do not match
1664    {    {
1665    case G_UNARY: return resolveUnary(v, offset,sampleNo,roffset);          for (int i=0;i<work.size();++i)
1666    case G_BINARY: return resolveBinary(v, offset,sampleNo,roffset);          {
1667    case G_NP1OUT: return resolveNP1OUT(v, offset, sampleNo,roffset);                  work[i]->resolveToIdentity();
1668    case G_TENSORPROD: return resolveTProd(v,offset, sampleNo,roffset);          }
   default:  
     throw DataException("Programmer Error - resolveSample does not know how to process "+opToString(m_op)+".");  
1669    }    }
1670  }  }
1671    
1672    
1673  // To simplify the memory management, all threads operate on one large vector, rather than one each.  
1674  // Each sample is evaluated independently and copied into the result DataExpanded.  // This version of resolve uses storage in each node to hold results
1675  DataReady_ptr  DataReady_ptr
1676  DataLazy::resolve()  DataLazy::resolveNodeWorker()
1677  {  {
1678      if (m_readytype!='E')         // if the whole sub-expression is Constant or Tagged, then evaluate it normally
 cout << "Sample size=" << m_samplesize << endl;  
 cout << "Buffers=" << m_buffsRequired << endl;  
   
   if (m_readytype!='E')     // if the whole sub-expression is Constant or Tagged, then evaluate it normally  
1679    {    {
1680      collapse();      collapse();
1681    }    }
1682    if (m_op==IDENTITY)       // So a lazy expression of Constant or Tagged data will be returned here.    if (m_op==IDENTITY)           // So a lazy expression of Constant or Tagged data will be returned here.
1683    {    {
1684      return m_id;      return m_id;
1685    }    }
1686      // from this point on we must have m_op!=IDENTITY and m_readytype=='E'          // from this point on we must have m_op!=IDENTITY and m_readytype=='E'
1687    size_t threadbuffersize=m_maxsamplesize*(max(1,m_buffsRequired)); // Each thread needs to have enough    DataExpanded* result=new DataExpanded(getFunctionSpace(),getShape(),  RealVectorType(getNoValues()));
1688      // storage to evaluate its expression    RealVectorType& resvec=result->getVectorRW();
   int numthreads=1;  
 #ifdef _OPENMP  
   numthreads=getNumberOfThreads();  
   int threadnum=0;  
 #endif  
   ValueType v(numthreads*threadbuffersize);  
 cout << "Buffer created with size=" << v.size() << endl;  
   DataExpanded* result=new DataExpanded(getFunctionSpace(),getShape(),  ValueType(getNoValues()));  
   ValueType& resvec=result->getVector();  
1689    DataReady_ptr resptr=DataReady_ptr(result);    DataReady_ptr resptr=DataReady_ptr(result);
1690    
1691    int sample;    int sample;
   size_t outoffset;     // offset in the output data  
1692    int totalsamples=getNumSamples();    int totalsamples=getNumSamples();
1693    const ValueType* res=0;   // Vector storing the answer    const RealVectorType* res=0;       // Storage for answer
1694    size_t resoffset=0;       // where in the vector to find the answer  LAZYDEBUG(cout << "Total number of samples=" <<totalsamples << endl;)
1695    #pragma omp parallel for private(sample,resoffset,outoffset,threadnum,res) schedule(static)    #pragma omp parallel private(sample,res)
1696    for (sample=0;sample<totalsamples;++sample)    {
1697    {          size_t roffset=0;
1698  cout << "################################# " << sample << endl;  #ifdef LAZY_STACK_PROF
1699            stackstart[omp_get_thread_num()]=&roffset;
1700            stackend[omp_get_thread_num()]=&roffset;
1701    #endif
1702            #pragma omp for schedule(static)
1703            for (sample=0;sample<totalsamples;++sample)
1704            {
1705                    roffset=0;
1706  #ifdef _OPENMP  #ifdef _OPENMP
1707      res=resolveSample(v,threadbuffersize*omp_get_thread_num(),sample,resoffset);                  res=resolveNodeSample(omp_get_thread_num(),sample,roffset);
1708  #else  #else
1709      res=resolveSample(v,0,sample,resoffset);   // res would normally be v, but not if its a single IDENTITY op.                  res=resolveNodeSample(0,sample,roffset);
1710  #endif  #endif
1711  cerr << "-------------------------------- " << endl;  LAZYDEBUG(cout << "Sample #" << sample << endl;)
1712      outoffset=result->getPointOffset(sample,0);  LAZYDEBUG(cout << "Final res[" << roffset<< "]=" << (*res)[roffset] << (*res)[roffset]<< endl; )
1713  cerr << "offset=" << outoffset << endl;                  RealVectorType::size_type outoffset=result->getPointOffset(sample,0);
1714      for (unsigned int i=0;i<m_samplesize;++i,++outoffset,++resoffset)   // copy values into the output vector                  memcpy(&(resvec[outoffset]),&((*res)[roffset]),m_samplesize*sizeof(RealVectorType::ElementType));
1715      {          }
1716      resvec[outoffset]=(*res)[resoffset];    }
1717      }  #ifdef LAZY_STACK_PROF
1718  cerr << "*********************************" << endl;    for (int i=0;i<getNumberOfThreads();++i)
1719      {
1720            size_t r=((size_t)stackstart[i] - (size_t)stackend[i]);
1721    //      cout << i << " " << stackstart[i] << " .. " << stackend[i] << " = " <<  r << endl;
1722            if (r>maxstackuse)
1723            {
1724                    maxstackuse=r;
1725            }
1726    }    }
1727      cout << "Max resolve Stack use=" << maxstackuse << endl;
1728    #endif
1729    return resptr;    return resptr;
1730  }  }
1731    
# Line 1058  std::string Line 1733  std::string
1733  DataLazy::toString() const  DataLazy::toString() const
1734  {  {
1735    ostringstream oss;    ostringstream oss;
1736    oss << "Lazy Data:";    oss << "Lazy Data: [depth=" << m_height<< "] ";
1737    intoString(oss);    switch (escriptParams.getLazyStrFmt())
1738      {
1739      case 1:       // tree format
1740            oss << endl;
1741            intoTreeString(oss,"");
1742            break;
1743      case 2:       // just the depth
1744            break;
1745      default:
1746            intoString(oss);
1747            break;
1748      }
1749    return oss.str();    return oss.str();
1750  }  }
1751    
# Line 1067  DataLazy::toString() const Line 1753  DataLazy::toString() const
1753  void  void
1754  DataLazy::intoString(ostringstream& oss) const  DataLazy::intoString(ostringstream& oss) const
1755  {  {
1756    //    oss << "[" << m_children <<";"<<m_height <<"]";
1757    switch (getOpgroup(m_op))    switch (getOpgroup(m_op))
1758    {    {
1759    case G_IDENTITY:    case G_IDENTITY:
1760      if (m_id->isExpanded())          if (m_id->isExpanded())
1761      {          {
1762         oss << "E";             oss << "E";
1763      }          }
1764      else if (m_id->isTagged())          else if (m_id->isTagged())
1765      {          {
1766        oss << "T";            oss << "T";
1767      }          }
1768      else if (m_id->isConstant())          else if (m_id->isConstant())
1769      {          {
1770        oss << "C";            oss << "C";
1771      }          }
1772      else          else
1773      {          {
1774        oss << "?";            oss << "?";
1775      }          }
1776      oss << '@' << m_id.get();          oss << '@' << m_id.get();
1777      break;          break;
1778    case G_BINARY:    case G_BINARY:
1779      oss << '(';          oss << '(';
1780      m_left->intoString(oss);          m_left->intoString(oss);
1781      oss << ' ' << opToString(m_op) << ' ';          oss << ' ' << opToString(m_op) << ' ';
1782      m_right->intoString(oss);          m_right->intoString(oss);
1783      oss << ')';          oss << ')';
1784      break;          break;
1785    case G_UNARY:    case G_UNARY:
1786      case G_UNARY_P:
1787    case G_NP1OUT:    case G_NP1OUT:
1788      oss << opToString(m_op) << '(';    case G_NP1OUT_P:
1789      m_left->intoString(oss);    case G_REDUCTION:
1790      oss << ')';          oss << opToString(m_op) << '(';
1791      break;          m_left->intoString(oss);
1792            oss << ')';
1793            break;
1794    case G_TENSORPROD:    case G_TENSORPROD:
1795      oss << opToString(m_op) << '(';          oss << opToString(m_op) << '(';
1796      m_left->intoString(oss);          m_left->intoString(oss);
1797      oss << ", ";          oss << ", ";
1798      m_right->intoString(oss);          m_right->intoString(oss);
1799      oss << ')';          oss << ')';
1800      break;          break;
1801      case G_NP1OUT_2P:
1802            oss << opToString(m_op) << '(';
1803            m_left->intoString(oss);
1804            oss << ", " << m_axis_offset << ", " << m_transpose;
1805            oss << ')';
1806            break;
1807      case G_CONDEVAL:
1808            oss << opToString(m_op)<< '(' ;
1809            m_mask->intoString(oss);
1810            oss << " ? ";
1811            m_left->intoString(oss);
1812            oss << " : ";
1813            m_right->intoString(oss);
1814            oss << ')';
1815            break;
1816      default:
1817            oss << "UNKNOWN";
1818      }
1819    }
1820    
1821    
1822    void
1823    DataLazy::intoTreeString(ostringstream& oss, string indent) const
1824    {
1825      oss << '[' << m_rank << ':' << setw(3) << m_samplesize << "] " << indent;
1826      switch (getOpgroup(m_op))
1827      {
1828      case G_IDENTITY:
1829            if (m_id->isExpanded())
1830            {
1831               oss << "E";
1832            }
1833            else if (m_id->isTagged())
1834            {
1835              oss << "T";
1836            }
1837            else if (m_id->isConstant())
1838            {
1839              oss << "C";
1840            }
1841            else
1842            {
1843              oss << "?";
1844            }
1845            oss << '@' << m_id.get() << endl;
1846            break;
1847      case G_BINARY:
1848            oss << opToString(m_op) << endl;
1849            indent+='.';
1850            m_left->intoTreeString(oss, indent);
1851            m_right->intoTreeString(oss, indent);
1852            break;
1853      case G_UNARY:
1854      case G_UNARY_P:
1855      case G_NP1OUT:
1856      case G_NP1OUT_P:
1857      case G_REDUCTION:
1858            oss << opToString(m_op) << endl;
1859            indent+='.';
1860            m_left->intoTreeString(oss, indent);
1861            break;
1862      case G_TENSORPROD:
1863            oss << opToString(m_op) << endl;
1864            indent+='.';
1865            m_left->intoTreeString(oss, indent);
1866            m_right->intoTreeString(oss, indent);
1867            break;
1868      case G_NP1OUT_2P:
1869            oss << opToString(m_op) << ", " << m_axis_offset << ", " << m_transpose<< endl;
1870            indent+='.';
1871            m_left->intoTreeString(oss, indent);
1872            break;
1873    default:    default:
1874      oss << "UNKNOWN";          oss << "UNKNOWN";
1875    }    }
1876  }  }
1877    
1878    
1879  DataAbstract*  DataAbstract*
1880  DataLazy::deepCopy()  DataLazy::deepCopy() const
1881  {  {
1882    switch (getOpgroup(m_op))    switch (getOpgroup(m_op))
1883    {    {
1884    case G_IDENTITY:  return new DataLazy(m_id->deepCopy()->getPtr());    case G_IDENTITY:  return new DataLazy(m_id->deepCopy()->getPtr());
1885    case G_UNARY: return new DataLazy(m_left->deepCopy()->getPtr(),m_op);    case G_UNARY:
1886    case G_BINARY:    return new DataLazy(m_left->deepCopy()->getPtr(),m_right->deepCopy()->getPtr(),m_op);    case G_REDUCTION:      return new DataLazy(m_left->deepCopy()->getPtr(),m_op);
1887      case G_UNARY_P:       return new DataLazy(m_left->deepCopy()->getPtr(), m_op, m_tol);
1888      case G_BINARY:        return new DataLazy(m_left->deepCopy()->getPtr(),m_right->deepCopy()->getPtr(),m_op);
1889    case G_NP1OUT: return new DataLazy(m_left->deepCopy()->getPtr(), m_right->deepCopy()->getPtr(),m_op);    case G_NP1OUT: return new DataLazy(m_left->deepCopy()->getPtr(), m_right->deepCopy()->getPtr(),m_op);
1890    case G_TENSORPROD: return new DataLazy(m_left->deepCopy()->getPtr(), m_right->deepCopy()->getPtr(), m_op, m_axis_offset, m_transpose);    case G_TENSORPROD: return new DataLazy(m_left->deepCopy()->getPtr(), m_right->deepCopy()->getPtr(), m_op, m_axis_offset, m_transpose);
1891      case G_NP1OUT_P:   return new DataLazy(m_left->deepCopy()->getPtr(),m_op,  m_axis_offset);
1892      case G_NP1OUT_2P:  return new DataLazy(m_left->deepCopy()->getPtr(), m_op, m_axis_offset, m_transpose);
1893    default:    default:
1894      throw DataException("Programmer error - do not know how to deepcopy operator "+opToString(m_op)+".");          throw DataException("Programmer error - do not know how to deepcopy operator "+opToString(m_op)+".");
1895    }    }
1896  }  }
1897    
1898    
1899    
1900  // There is no single, natural interpretation of getLength on DataLazy.  // There is no single, natural interpretation of getLength on DataLazy.
1901  // Instances of DataReady can look at the size of their vectors.  // Instances of DataReady can look at the size of their vectors.
1902  // For lazy though, it could be the size the data would be if it were resolved;  // For lazy though, it could be the size the data would be if it were resolved;
1903  // or it could be some function of the lengths of the DataReady instances which  // or it could be some function of the lengths of the DataReady instances which
1904  // form part of the expression.  // form part of the expression.
1905  // Rather than have people making assumptions, I have disabled the method.  // Rather than have people making assumptions, I have disabled the method.
1906  DataTypes::ValueType::size_type  DataTypes::RealVectorType::size_type
1907  DataLazy::getLength() const  DataLazy::getLength() const
1908  {  {
1909    throw DataException("getLength() does not make sense for lazy data.");    throw DataException("getLength() does not make sense for lazy data.");
# Line 1150  DataLazy::getSlice(const DataTypes::Regi Line 1918  DataLazy::getSlice(const DataTypes::Regi
1918    
1919    
1920  // To do this we need to rely on our child nodes  // To do this we need to rely on our child nodes
1921  DataTypes::ValueType::size_type  DataTypes::RealVectorType::size_type
1922  DataLazy::getPointOffset(int sampleNo,  DataLazy::getPointOffset(int sampleNo,
1923                   int dataPointNo)                   int dataPointNo)
1924  {  {
1925    if (m_op==IDENTITY)    if (m_op==IDENTITY)
1926    {    {
1927      return m_id->getPointOffset(sampleNo,dataPointNo);          return m_id->getPointOffset(sampleNo,dataPointNo);
1928    }    }
1929    if (m_readytype!='E')    if (m_readytype!='E')
1930    {    {
1931      collapse();          collapse();
1932      return m_id->getPointOffset(sampleNo,dataPointNo);          return m_id->getPointOffset(sampleNo,dataPointNo);
1933    }    }
1934    // at this point we do not have an identity node and the expression will be Expanded    // at this point we do not have an identity node and the expression will be Expanded
1935    // so we only need to know which child to ask    // so we only need to know which child to ask
1936    if (m_left->m_readytype=='E')    if (m_left->m_readytype=='E')
1937    {    {
1938      return m_left->getPointOffset(sampleNo,dataPointNo);          return m_left->getPointOffset(sampleNo,dataPointNo);
1939    }    }
1940    else    else
1941    {    {
1942      return m_right->getPointOffset(sampleNo,dataPointNo);          return m_right->getPointOffset(sampleNo,dataPointNo);
1943    }    }
1944  }  }
1945    
1946  // To do this we need to rely on our child nodes  // To do this we need to rely on our child nodes
1947  DataTypes::ValueType::size_type  DataTypes::RealVectorType::size_type
1948  DataLazy::getPointOffset(int sampleNo,  DataLazy::getPointOffset(int sampleNo,
1949                   int dataPointNo) const                   int dataPointNo) const
1950  {  {
1951    if (m_op==IDENTITY)    if (m_op==IDENTITY)
1952    {    {
1953      return m_id->getPointOffset(sampleNo,dataPointNo);          return m_id->getPointOffset(sampleNo,dataPointNo);
1954    }    }
1955    if (m_readytype=='E')    if (m_readytype=='E')
1956    {    {
# Line 1190  DataLazy::getPointOffset(int sampleNo, Line 1958  DataLazy::getPointOffset(int sampleNo,
1958      // so we only need to know which child to ask      // so we only need to know which child to ask
1959      if (m_left->m_readytype=='E')      if (m_left->m_readytype=='E')
1960      {      {
1961      return m_left->getPointOffset(sampleNo,dataPointNo);          return m_left->getPointOffset(sampleNo,dataPointNo);
1962      }      }
1963      else      else
1964      {      {
1965      return m_right->getPointOffset(sampleNo,dataPointNo);          return m_right->getPointOffset(sampleNo,dataPointNo);
1966      }      }
1967    }    }
1968    if (m_readytype=='C')    if (m_readytype=='C')
1969    {    {
1970      return m_left->getPointOffset(sampleNo,dataPointNo); // which child doesn't matter          return m_left->getPointOffset(sampleNo,dataPointNo); // which child doesn't matter
1971    }    }
1972    throw DataException("Programmer error - getPointOffset on lazy data may require collapsing (but this object is marked const).");    throw DataException("Programmer error - getPointOffset on lazy data may require collapsing (but this object is marked const).");
1973  }  }
1974    
1975  // It would seem that DataTagged will need to be treated differently since even after setting all tags  
1976  // to zero, all the tags from all the DataTags would be in the result.  // I have decided to let Data:: handle this issue.
 // However since they all have the same value (0) whether they are there or not should not matter.  
 // So I have decided that for all types this method will create a constant 0.  
 // It can be promoted up as required.  
 // A possible efficiency concern might be expanded->constant->expanded which has an extra memory management  
 // but we can deal with that if it arrises.  
1977  void  void
1978  DataLazy::setToZero()  DataLazy::setToZero()
1979  {  {
1980    DataTypes::ValueType v(getNoValues(),0);  //   DataTypes::RealVectorType v(getNoValues(),0);
1981    m_id=DataReady_ptr(new DataConstant(getFunctionSpace(),getShape(),v));  //   m_id=DataReady_ptr(new DataConstant(getFunctionSpace(),getShape(),v));
1982    m_op=IDENTITY;  //   m_op=IDENTITY;
1983    m_right.reset();    //   m_right.reset();  
1984    m_left.reset();  //   m_left.reset();
1985    m_readytype='C';  //   m_readytype='C';
1986    m_buffsRequired=1;  //   m_buffsRequired=1;
1987    
1988      (void)privdebug;  // to stop the compiler complaining about unused privdebug
1989      throw DataException("Programmer error - setToZero not supported for DataLazy (DataLazy objects should be read only).");
1990    }
1991    
1992    bool
1993    DataLazy::actsExpanded() const
1994    {
1995            return (m_readytype=='E');
1996  }  }
1997    
1998  }   // end namespace  } // end namespace
1999    

Legend:
Removed from v.2066  
changed lines
  Added in v.6174

  ViewVC Help
Powered by ViewVC 1.1.26