/[escript]/branches/clazy/escriptcore/src/DataLazy.cpp
ViewVC logotype

Diff of /branches/clazy/escriptcore/src/DataLazy.cpp

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

trunk/escript/src/DataLazy.cpp revision 4286 by caltinay, Thu Mar 7 04:28:11 2013 UTC trunk/escriptcore/src/DataLazy.cpp revision 6082 by jfenwick, Tue Mar 22 02:57:49 2016 UTC
# Line 1  Line 1 
1    
2  /*****************************************************************************  /*****************************************************************************
3  *  *
4  * Copyright (c) 2003-2013 by University of Queensland  * Copyright (c) 2003-2016 by The University of Queensland
5  * http://www.uq.edu.au  * http://www.uq.edu.au
6  *  *
7  * Primary Business: Queensland, Australia  * Primary Business: Queensland, Australia
# Line 9  Line 9 
9  * http://www.opensource.org/licenses/osl-3.0.php  * http://www.opensource.org/licenses/osl-3.0.php
10  *  *
11  * Development until 2012 by Earth Systems Science Computational Center (ESSCC)  * Development until 2012 by Earth Systems Science Computational Center (ESSCC)
12  * Development since 2012 by School of Earth Sciences  * Development 2012-2013 by School of Earth Sciences
13    * Development from 2014 by Centre for Geoscience Computing (GeoComp)
14  *  *
15  *****************************************************************************/  *****************************************************************************/
16    
   
17  #include "DataLazy.h"  #include "DataLazy.h"
 #include "esysUtils/Esys_MPI.h"  
 #ifdef _OPENMP  
 #include <omp.h>  
 #endif  
 #include "FunctionSpace.h"  
 #include "DataTypes.h"  
18  #include "Data.h"  #include "Data.h"
19  #include "UnaryFuncs.h"     // for escript::fsign  #include "DataTypes.h"
 #include "Utils.h"  
   
20  #include "EscriptParams.h"  #include "EscriptParams.h"
21    #include "FunctionSpace.h"
22    #include "Utils.h"
23    #include "DataMaths.h"
24    
25  #ifdef USE_NETCDF  #ifdef USE_NETCDF
26  #include <netcdfcpp.h>  #include <netcdfcpp.h>
27  #endif  #endif
28    
29  #include <iomanip>      // for some fancy formatting in debug  #include <iomanip> // for some fancy formatting in debug
30    
31    using namespace escript::DataTypes;
32    
33    #define NO_ARG
34    
35  // #define LAZYDEBUG(X) if (privdebug){X;}  // #define LAZYDEBUG(X) if (privdebug){X;}
36  #define LAZYDEBUG(X)  #define LAZYDEBUG(X)
# Line 69  I will refer to individual DataLazy obje Line 68  I will refer to individual DataLazy obje
68    
69  Each node also stores:  Each node also stores:
70  - m_readytype \in {'E','T','C','?'} ~ indicates what sort of DataReady would be produced if the expression was  - m_readytype \in {'E','T','C','?'} ~ indicates what sort of DataReady would be produced if the expression was
71      evaluated.          evaluated.
72  - m_buffsrequired ~ the large number of samples which would need to be kept simultaneously in order to  - m_buffsrequired ~ the large number of samples which would need to be kept simultaneously in order to
73      evaluate the expression.          evaluate the expression.
74  - m_samplesize ~ the number of doubles stored in a sample.  - m_samplesize ~ the number of doubles stored in a sample.
75    
76  When a new node is created, the above values are computed based on the values in the child nodes.  When a new node is created, the above values are computed based on the values in the child nodes.
# Line 136  enum ES_opgroup Line 135  enum ES_opgroup
135  {  {
136     G_UNKNOWN,     G_UNKNOWN,
137     G_IDENTITY,     G_IDENTITY,
138     G_BINARY,        // pointwise operations with two arguments     G_BINARY,            // pointwise operations with two arguments
139     G_UNARY,     // pointwise operations with one argument     G_UNARY,             // pointwise operations with one argument
140     G_UNARY_P,       // pointwise operations with one argument, requiring a parameter     G_UNARY_P,           // pointwise operations with one argument, requiring a parameter
141     G_NP1OUT,        // non-pointwise op with one output     G_NP1OUT,            // non-pointwise op with one output
142     G_NP1OUT_P,      // non-pointwise op with one output requiring a parameter     G_NP1OUT_P,          // non-pointwise op with one output requiring a parameter
143     G_TENSORPROD,    // general tensor product     G_TENSORPROD,        // general tensor product
144     G_NP1OUT_2P,     // non-pointwise op with one output requiring two params     G_NP1OUT_2P,         // non-pointwise op with one output requiring two params
145     G_REDUCTION,     // non-pointwise unary op with a scalar output     G_REDUCTION,         // non-pointwise unary op with a scalar output
146     G_CONDEVAL     G_CONDEVAL
147  };  };
148    
# Line 151  enum ES_opgroup Line 150  enum ES_opgroup
150    
151    
152  string ES_opstrings[]={"UNKNOWN","IDENTITY","+","-","*","/","^",  string ES_opstrings[]={"UNKNOWN","IDENTITY","+","-","*","/","^",
153              "sin","cos","tan",                          "sin","cos","tan",
154              "asin","acos","atan","sinh","cosh","tanh","erf",                          "asin","acos","atan","sinh","cosh","tanh","erf",
155              "asinh","acosh","atanh",                          "asinh","acosh","atanh",
156              "log10","log","sign","abs","neg","pos","exp","sqrt",                          "log10","log","sign","abs","neg","pos","exp","sqrt",
157              "1/","where>0","where<0","where>=0","where<=0", "where<>0","where=0",                          "1/","where>0","where<0","where>=0","where<=0", "where<>0","where=0",
158              "symmetric","nonsymmetric",                          "symmetric","nonsymmetric",
159              "prod",                          "prod",
160              "transpose", "trace",                          "transpose", "trace",
161              "swapaxes",                          "swapaxes",
162              "minval", "maxval",                          "minval", "maxval",
163              "condEval"};                          "condEval"};
164  int ES_opcount=44;  int ES_opcount=44;
165  ES_opgroup opgroups[]={G_UNKNOWN,G_IDENTITY,G_BINARY,G_BINARY,G_BINARY,G_BINARY, G_BINARY,  ES_opgroup opgroups[]={G_UNKNOWN,G_IDENTITY,G_BINARY,G_BINARY,G_BINARY,G_BINARY, G_BINARY,
166              G_UNARY,G_UNARY,G_UNARY, //10                          G_UNARY,G_UNARY,G_UNARY, //10
167              G_UNARY,G_UNARY,G_UNARY,G_UNARY,G_UNARY,G_UNARY,G_UNARY,    // 17                          G_UNARY,G_UNARY,G_UNARY,G_UNARY,G_UNARY,G_UNARY,G_UNARY,        // 17
168              G_UNARY,G_UNARY,G_UNARY,                    // 20                          G_UNARY,G_UNARY,G_UNARY,                                        // 20
169              G_UNARY,G_UNARY,G_UNARY,G_UNARY,G_UNARY,G_UNARY,G_UNARY,G_UNARY,    // 28                          G_UNARY,G_UNARY,G_UNARY,G_UNARY,G_UNARY,G_UNARY,G_UNARY,G_UNARY,        // 28
170              G_UNARY,G_UNARY,G_UNARY,G_UNARY,G_UNARY, G_UNARY_P, G_UNARY_P,      // 35                          G_UNARY,G_UNARY,G_UNARY,G_UNARY,G_UNARY, G_UNARY_P, G_UNARY_P,          // 35
171              G_NP1OUT,G_NP1OUT,                          G_NP1OUT,G_NP1OUT,
172              G_TENSORPROD,                          G_TENSORPROD,
173              G_NP1OUT_P, G_NP1OUT_P,                          G_NP1OUT_P, G_NP1OUT_P,
174              G_NP1OUT_2P,                          G_NP1OUT_2P,
175              G_REDUCTION, G_REDUCTION,                          G_REDUCTION, G_REDUCTION,
176              G_CONDEVAL};                          G_CONDEVAL};
177  inline  inline
178  ES_opgroup  ES_opgroup
179  getOpgroup(ES_optype op)  getOpgroup(ES_optype op)
# Line 186  getOpgroup(ES_optype op) Line 185  getOpgroup(ES_optype op)
185  FunctionSpace  FunctionSpace
186  resultFS(DataAbstract_ptr left, DataAbstract_ptr right, ES_optype op)  resultFS(DataAbstract_ptr left, DataAbstract_ptr right, ES_optype op)
187  {  {
188      // perhaps this should call interpolate and throw or something?          // perhaps this should call interpolate and throw or something?
189      // maybe we need an interpolate node -          // maybe we need an interpolate node -
190      // that way, if interpolate is required in any other op we can just throw a          // that way, if interpolate is required in any other op we can just throw a
191      // programming error exception.          // programming error exception.
192    
193    FunctionSpace l=left->getFunctionSpace();    FunctionSpace l=left->getFunctionSpace();
194    FunctionSpace r=right->getFunctionSpace();    FunctionSpace r=right->getFunctionSpace();
# Line 198  resultFS(DataAbstract_ptr left, DataAbst Line 197  resultFS(DataAbstract_ptr left, DataAbst
197      signed char res=r.getDomain()->preferredInterpolationOnDomain(r.getTypeCode(), l.getTypeCode());      signed char res=r.getDomain()->preferredInterpolationOnDomain(r.getTypeCode(), l.getTypeCode());
198      if (res==1)      if (res==1)
199      {      {
200      return l;          return l;
201      }      }
202      if (res==-1)      if (res==-1)
203      {      {
204      return r;          return r;
205      }      }
206      throw DataException("Cannot interpolate between the FunctionSpaces given for operation "+opToString(op)+".");      throw DataException("Cannot interpolate between the FunctionSpaces given for operation "+opToString(op)+".");
207    }    }
# Line 214  resultFS(DataAbstract_ptr left, DataAbst Line 213  resultFS(DataAbstract_ptr left, DataAbst
213  DataTypes::ShapeType  DataTypes::ShapeType
214  resultShape(DataAbstract_ptr left, DataAbstract_ptr right, ES_optype op)  resultShape(DataAbstract_ptr left, DataAbstract_ptr right, ES_optype op)
215  {  {
216      if (left->getShape()!=right->getShape())          if (left->getShape()!=right->getShape())
217      {          {
218        if ((getOpgroup(op)!=G_BINARY) && (getOpgroup(op)!=G_NP1OUT))            if ((getOpgroup(op)!=G_BINARY) && (getOpgroup(op)!=G_NP1OUT))
219        {            {
220          throw DataException("Shapes not the name - shapes must match for (point)binary operations.");                  throw DataException("Shapes not the name - shapes must match for (point)binary operations.");
221        }            }
222    
223        if (left->getRank()==0)   // we need to allow scalar * anything            if (left->getRank()==0)       // we need to allow scalar * anything
224        {            {
225          return right->getShape();                  return right->getShape();
226        }            }
227        if (right->getRank()==0)            if (right->getRank()==0)
228        {            {
229          return left->getShape();                  return left->getShape();
230        }            }
231        throw DataException("Shapes not the same - arguments must have matching shapes (or be scalars) for (point)binary operations on lazy data.");            throw DataException("Shapes not the same - arguments must have matching shapes (or be scalars) for (point)binary operations on lazy data.");
232      }          }
233      return left->getShape();          return left->getShape();
234  }  }
235    
236  // return the shape for "op left"  // return the shape for "op left"
# Line 239  resultShape(DataAbstract_ptr left, DataA Line 238  resultShape(DataAbstract_ptr left, DataA
238  DataTypes::ShapeType  DataTypes::ShapeType
239  resultShape(DataAbstract_ptr left, ES_optype op, int axis_offset)  resultShape(DataAbstract_ptr left, ES_optype op, int axis_offset)
240  {  {
241      switch(op)          switch(op)
242      {          {
243          case TRANS:          case TRANS:
244         {            // for the scoping of variables             {                    // for the scoping of variables
245          const DataTypes::ShapeType& s=left->getShape();                  const DataTypes::ShapeType& s=left->getShape();
246          DataTypes::ShapeType sh;                  DataTypes::ShapeType sh;
247          int rank=left->getRank();                  int rank=left->getRank();
248          if (axis_offset<0 || axis_offset>rank)                  if (axis_offset<0 || axis_offset>rank)
249          {                  {
250              stringstream e;              stringstream e;
251              e << "Error - Data::transpose must have 0 <= axis_offset <= rank=" << rank;              e << "Error - Data::transpose must have 0 <= axis_offset <= rank=" << rank;
252              throw DataException(e.str());              throw DataException(e.str());
253          }          }
254          for (int i=0; i<rank; i++)          for (int i=0; i<rank; i++)
255          {                  {
256             int index = (axis_offset+i)%rank;                     int index = (axis_offset+i)%rank;
257             sh.push_back(s[index]); // Append to new shape             sh.push_back(s[index]); // Append to new shape
258          }          }
259          return sh;                  return sh;
260         }             }
261      break;          break;
262      case TRACE:          case TRACE:
263         {             {
264          int rank=left->getRank();                  int rank=left->getRank();
265          if (rank<2)                  if (rank<2)
266          {                  {
267             throw DataException("Trace can only be computed for objects with rank 2 or greater.");                     throw DataException("Trace can only be computed for objects with rank 2 or greater.");
268          }                  }
269          if ((axis_offset>rank-2) || (axis_offset<0))                  if ((axis_offset>rank-2) || (axis_offset<0))
270          {                  {
271             throw DataException("Trace: axis offset must lie between 0 and rank-2 inclusive.");                     throw DataException("Trace: axis offset must lie between 0 and rank-2 inclusive.");
272          }                  }
273          if (rank==2)                  if (rank==2)
274          {                  {
275             return DataTypes::scalarShape;                     return DataTypes::scalarShape;
276          }                  }
277          else if (rank==3)                  else if (rank==3)
278          {                  {
279             DataTypes::ShapeType sh;                     DataTypes::ShapeType sh;
280                 if (axis_offset==0)                     if (axis_offset==0)
281             {                     {
282                  sh.push_back(left->getShape()[2]);                          sh.push_back(left->getShape()[2]);
283                 }                     }
284                 else     // offset==1                     else         // offset==1
285             {                     {
286              sh.push_back(left->getShape()[0]);                          sh.push_back(left->getShape()[0]);
287                 }                     }
288             return sh;                     return sh;
289          }                  }
290          else if (rank==4)                  else if (rank==4)
291          {                  {
292             DataTypes::ShapeType sh;                     DataTypes::ShapeType sh;
293             const DataTypes::ShapeType& s=left->getShape();                     const DataTypes::ShapeType& s=left->getShape();
294                 if (axis_offset==0)                     if (axis_offset==0)
295             {                     {
296                  sh.push_back(s[2]);                          sh.push_back(s[2]);
297                  sh.push_back(s[3]);                          sh.push_back(s[3]);
298                 }                     }
299                 else if (axis_offset==1)                     else if (axis_offset==1)
300             {                     {
301                  sh.push_back(s[0]);                          sh.push_back(s[0]);
302                  sh.push_back(s[3]);                          sh.push_back(s[3]);
303                 }                     }
304             else     // offset==2                     else         // offset==2
305             {                     {
306              sh.push_back(s[0]);                          sh.push_back(s[0]);
307              sh.push_back(s[1]);                          sh.push_back(s[1]);
308             }                     }
309             return sh;                     return sh;
310          }                  }
311          else        // unknown rank                  else            // unknown rank
312          {                  {
313             throw DataException("Error - Data::trace can only be calculated for rank 2, 3 or 4 object.");                     throw DataException("Error - Data::trace can only be calculated for rank 2, 3 or 4 object.");
314          }                  }
315         }             }
316      break;          break;
317          default:          default:
318      throw DataException("Programmer error - resultShape(left,op) can't compute shapes for operator "+opToString(op)+".");          throw DataException("Programmer error - resultShape(left,op) can't compute shapes for operator "+opToString(op)+".");
319      }          }
320  }  }
321    
322  DataTypes::ShapeType  DataTypes::ShapeType
# Line 373  SwapShape(DataAbstract_ptr left, const i Line 372  SwapShape(DataAbstract_ptr left, const i
372  DataTypes::ShapeType  DataTypes::ShapeType
373  GTPShape(DataAbstract_ptr left, DataAbstract_ptr right, int axis_offset, int transpose, int& SL, int& SM, int& SR)  GTPShape(DataAbstract_ptr left, DataAbstract_ptr right, int axis_offset, int transpose, int& SL, int& SM, int& SR)
374  {  {
375                
376    // Get rank and shape of inputs    // Get rank and shape of inputs
377    int rank0 = left->getRank();    int rank0 = left->getRank();
378    int rank1 = right->getRank();    int rank1 = right->getRank();
# Line 382  GTPShape(DataAbstract_ptr left, DataAbst Line 381  GTPShape(DataAbstract_ptr left, DataAbst
381    
382    // Prepare for the loops of the product and verify compatibility of shapes    // Prepare for the loops of the product and verify compatibility of shapes
383    int start0=0, start1=0;    int start0=0, start1=0;
384    if (transpose == 0)       {}    if (transpose == 0)           {}
385    else if (transpose == 1)  { start0 = axis_offset; }    else if (transpose == 1)      { start0 = axis_offset; }
386    else if (transpose == 2)  { start1 = rank1-axis_offset; }    else if (transpose == 2)      { start1 = rank1-axis_offset; }
387    else              { throw DataException("DataLazy GeneralTensorProduct Constructor: Error - transpose should be 0, 1 or 2"); }    else                          { throw DataException("DataLazy GeneralTensorProduct Constructor: Error - transpose should be 0, 1 or 2"); }
388    
389    if (rank0<axis_offset)    if (rank0<axis_offset)
390    {    {
391      throw DataException("DataLazy GeneralTensorProduct Constructor: Error - rank of left < axisoffset");          throw DataException("DataLazy GeneralTensorProduct Constructor: Error - rank of left < axisoffset");
392    }    }
393    
394    // Adjust the shapes for transpose    // Adjust the shapes for transpose
395    DataTypes::ShapeType tmpShape0(rank0);    // pre-sizing the vectors rather    DataTypes::ShapeType tmpShape0(rank0);        // pre-sizing the vectors rather
396    DataTypes::ShapeType tmpShape1(rank1);    // than using push_back    DataTypes::ShapeType tmpShape1(rank1);        // than using push_back
397    for (int i=0; i<rank0; i++)   { tmpShape0[i]=shape0[(i+start0)%rank0]; }    for (int i=0; i<rank0; i++)   { tmpShape0[i]=shape0[(i+start0)%rank0]; }
398    for (int i=0; i<rank1; i++)   { tmpShape1[i]=shape1[(i+start1)%rank1]; }    for (int i=0; i<rank1; i++)   { tmpShape1[i]=shape1[(i+start1)%rank1]; }
399    
400    // Prepare for the loops of the product    // Prepare for the loops of the product
401    SL=1, SM=1, SR=1;    SL=1, SM=1, SR=1;
402    for (int i=0; i<rank0-axis_offset; i++)   {    for (int i=0; i<rank0-axis_offset; i++)       {
403      SL *= tmpShape0[i];      SL *= tmpShape0[i];
404    }    }
405    for (int i=rank0-axis_offset; i<rank0; i++)   {    for (int i=rank0-axis_offset; i<rank0; i++)   {
406      if (tmpShape0[i] != tmpShape1[i-(rank0-axis_offset)]) {      if (tmpShape0[i] != tmpShape1[i-(rank0-axis_offset)]) {
407        throw DataException("C_GeneralTensorProduct: Error - incompatible shapes");        throw DataException("C_GeneralTensorProduct: Error - incompatible shapes");
408      }      }
409      SM *= tmpShape0[i];      SM *= tmpShape0[i];
410    }    }
411    for (int i=axis_offset; i<rank1; i++)     {    for (int i=axis_offset; i<rank1; i++)         {
412      SR *= tmpShape1[i];      SR *= tmpShape1[i];
413    }    }
414    
415    // Define the shape of the output (rank of shape is the sum of the loop ranges below)    // Define the shape of the output (rank of shape is the sum of the loop ranges below)
416    DataTypes::ShapeType shape2(rank0+rank1-2*axis_offset);      DataTypes::ShapeType shape2(rank0+rank1-2*axis_offset);      
417    {         // block to limit the scope of out_index    {                     // block to limit the scope of out_index
418       int out_index=0;       int out_index=0;
419       for (int i=0; i<rank0-axis_offset; i++, ++out_index) { shape2[out_index]=tmpShape0[i]; } // First part of arg_0_Z       for (int i=0; i<rank0-axis_offset; i++, ++out_index) { shape2[out_index]=tmpShape0[i]; } // First part of arg_0_Z
420       for (int i=axis_offset; i<rank1; i++, ++out_index)   { shape2[out_index]=tmpShape1[i]; } // Last part of arg_1_Z       for (int i=axis_offset; i<rank1; i++, ++out_index)   { shape2[out_index]=tmpShape1[i]; } // Last part of arg_1_Z
# Line 431  GTPShape(DataAbstract_ptr left, DataAbst Line 430  GTPShape(DataAbstract_ptr left, DataAbst
430    return shape2;    return shape2;
431  }  }
432    
433  }   // end anonymous namespace  }       // end anonymous namespace
434    
435    
436    
# Line 466  void DataLazy::LazyNodeSetup() Line 465  void DataLazy::LazyNodeSetup()
465    
466  // Creates an identity node  // Creates an identity node
467  DataLazy::DataLazy(DataAbstract_ptr p)  DataLazy::DataLazy(DataAbstract_ptr p)
468      : parent(p->getFunctionSpace(),p->getShape())          : parent(p->getFunctionSpace(),p->getShape())
469      ,m_sampleids(0),          ,m_sampleids(0),
470      m_samples(1)          m_samples(1)
471  {  {
472     if (p->isLazy())     if (p->isLazy())
473     {     {
474      // I don't want identity of Lazy.          // I don't want identity of Lazy.
475      // Question: Why would that be so bad?          // Question: Why would that be so bad?
476      // Answer: We assume that the child of ID is something we can call getVector on          // Answer: We assume that the child of ID is something we can call getVector on
477      throw DataException("Programmer error - attempt to create identity from a DataLazy.");          throw DataException("Programmer error - attempt to create identity from a DataLazy.");
478     }     }
479     else     else
480     {     {
481      p->makeLazyShared();          p->makeLazyShared();
482      DataReady_ptr dr=dynamic_pointer_cast<DataReady>(p);          DataReady_ptr dr=dynamic_pointer_cast<DataReady>(p);
483      makeIdentity(dr);          makeIdentity(dr);
484  LAZYDEBUG(cout << "Wrapping " << dr.get() << " id=" << m_id.get() << endl;)  LAZYDEBUG(cout << "Wrapping " << dr.get() << " id=" << m_id.get() << endl;)
485     }     }
486  LAZYDEBUG(cout << "(1)Lazy created with " << m_samplesize << endl;)  LAZYDEBUG(cout << "(1)Lazy created with " << m_samplesize << endl;)
487  }  }
488    
489  DataLazy::DataLazy(DataAbstract_ptr left, ES_optype op)  DataLazy::DataLazy(DataAbstract_ptr left, ES_optype op)
490      : parent(left->getFunctionSpace(),(getOpgroup(op)!=G_REDUCTION)?left->getShape():DataTypes::scalarShape),          : parent(left->getFunctionSpace(),(getOpgroup(op)!=G_REDUCTION)?left->getShape():DataTypes::scalarShape),
491      m_op(op),          m_op(op),
492      m_axis_offset(0),          m_axis_offset(0),
493      m_transpose(0),          m_transpose(0),
494      m_SL(0), m_SM(0), m_SR(0)          m_SL(0), m_SM(0), m_SR(0)
495  {  {
496     if ((getOpgroup(op)!=G_UNARY) && (getOpgroup(op)!=G_NP1OUT) && (getOpgroup(op)!=G_REDUCTION))     if ((getOpgroup(op)!=G_UNARY) && (getOpgroup(op)!=G_NP1OUT) && (getOpgroup(op)!=G_REDUCTION))
497     {     {
498      throw DataException("Programmer error - constructor DataLazy(left, op) will only process UNARY operations.");          throw DataException("Programmer error - constructor DataLazy(left, op) will only process UNARY operations.");
499     }     }
500    
501     DataLazy_ptr lleft;     DataLazy_ptr lleft;
502     if (!left->isLazy())     if (!left->isLazy())
503     {     {
504      lleft=DataLazy_ptr(new DataLazy(left));          lleft=DataLazy_ptr(new DataLazy(left));
505     }     }
506     else     else
507     {     {
508      lleft=dynamic_pointer_cast<DataLazy>(left);          lleft=dynamic_pointer_cast<DataLazy>(left);
509     }     }
510     m_readytype=lleft->m_readytype;     m_readytype=lleft->m_readytype;
511     m_left=lleft;     m_left=lleft;
# Line 520  DataLazy::DataLazy(DataAbstract_ptr left Line 519  DataLazy::DataLazy(DataAbstract_ptr left
519    
520  // In this constructor we need to consider interpolation  // In this constructor we need to consider interpolation
521  DataLazy::DataLazy(DataAbstract_ptr left, DataAbstract_ptr right, ES_optype op)  DataLazy::DataLazy(DataAbstract_ptr left, DataAbstract_ptr right, ES_optype op)
522      : parent(resultFS(left,right,op), resultShape(left,right,op)),          : parent(resultFS(left,right,op), resultShape(left,right,op)),
523      m_op(op),          m_op(op),
524      m_SL(0), m_SM(0), m_SR(0)          m_SL(0), m_SM(0), m_SR(0)
525  {  {
526  LAZYDEBUG(cout << "Forming operator with " << left.get() << " " << right.get() << endl;)  LAZYDEBUG(cout << "Forming operator with " << left.get() << " " << right.get() << endl;)
527     if ((getOpgroup(op)!=G_BINARY))     if ((getOpgroup(op)!=G_BINARY))
528     {     {
529      throw DataException("Programmer error - constructor DataLazy(left, right, op) will only process BINARY operations.");          throw DataException("Programmer error - constructor DataLazy(left, right, op) will only process BINARY operations.");
530     }     }
531    
532     if (getFunctionSpace()!=left->getFunctionSpace())    // left needs to be interpolated     if (getFunctionSpace()!=left->getFunctionSpace())    // left needs to be interpolated
533     {     {
534      FunctionSpace fs=getFunctionSpace();          FunctionSpace fs=getFunctionSpace();
535      Data ltemp(left);          Data ltemp(left);
536      Data tmp(ltemp,fs);          Data tmp(ltemp,fs);
537      left=tmp.borrowDataPtr();          left=tmp.borrowDataPtr();
538     }     }
539     if (getFunctionSpace()!=right->getFunctionSpace())   // right needs to be interpolated     if (getFunctionSpace()!=right->getFunctionSpace())   // right needs to be interpolated
540     {     {
541      Data tmp(Data(right),getFunctionSpace());          Data tmp(Data(right),getFunctionSpace());
542      right=tmp.borrowDataPtr();          right=tmp.borrowDataPtr();
543  LAZYDEBUG(cout << "Right interpolation required " << right.get() << endl;)  LAZYDEBUG(cout << "Right interpolation required " << right.get() << endl;)
544     }     }
545     left->operandCheck(*right);     left->operandCheck(*right);
546    
547     if (left->isLazy())          // the children need to be DataLazy. Wrap them in IDENTITY if required     if (left->isLazy())                  // the children need to be DataLazy. Wrap them in IDENTITY if required
548     {     {
549      m_left=dynamic_pointer_cast<DataLazy>(left);          m_left=dynamic_pointer_cast<DataLazy>(left);
550  LAZYDEBUG(cout << "Left is " << m_left->toString() << endl;)  LAZYDEBUG(cout << "Left is " << m_left->toString() << endl;)
551     }     }
552     else     else
553     {     {
554      m_left=DataLazy_ptr(new DataLazy(left));          m_left=DataLazy_ptr(new DataLazy(left));
555  LAZYDEBUG(cout << "Left " << left.get() << " wrapped " << m_left->m_id.get() << endl;)  LAZYDEBUG(cout << "Left " << left.get() << " wrapped " << m_left->m_id.get() << endl;)
556     }     }
557     if (right->isLazy())     if (right->isLazy())
558     {     {
559      m_right=dynamic_pointer_cast<DataLazy>(right);          m_right=dynamic_pointer_cast<DataLazy>(right);
560  LAZYDEBUG(cout << "Right is " << m_right->toString() << endl;)  LAZYDEBUG(cout << "Right is " << m_right->toString() << endl;)
561     }     }
562     else     else
563     {     {
564      m_right=DataLazy_ptr(new DataLazy(right));          m_right=DataLazy_ptr(new DataLazy(right));
565  LAZYDEBUG(cout << "Right " << right.get() << " wrapped " << m_right->m_id.get() << endl;)  LAZYDEBUG(cout << "Right " << right.get() << " wrapped " << m_right->m_id.get() << endl;)
566     }     }
567     char lt=m_left->m_readytype;     char lt=m_left->m_readytype;
568     char rt=m_right->m_readytype;     char rt=m_right->m_readytype;
569     if (lt=='E' || rt=='E')     if (lt=='E' || rt=='E')
570     {     {
571      m_readytype='E';          m_readytype='E';
572     }     }
573     else if (lt=='T' || rt=='T')     else if (lt=='T' || rt=='T')
574     {     {
575      m_readytype='T';          m_readytype='T';
576     }     }
577     else     else
578     {     {
579      m_readytype='C';          m_readytype='C';
580     }     }
581     m_samplesize=getNumDPPSample()*getNoValues();     m_samplesize=getNumDPPSample()*getNoValues();
582     m_children=m_left->m_children+m_right->m_children+2;     m_children=m_left->m_children+m_right->m_children+2;
# Line 588  LAZYDEBUG(cout << "(3)Lazy created with Line 587  LAZYDEBUG(cout << "(3)Lazy created with
587  }  }
588    
589  DataLazy::DataLazy(DataAbstract_ptr left, DataAbstract_ptr right, ES_optype op, int axis_offset, int transpose)  DataLazy::DataLazy(DataAbstract_ptr left, DataAbstract_ptr right, ES_optype op, int axis_offset, int transpose)
590      : parent(resultFS(left,right,op), GTPShape(left,right, axis_offset, transpose, m_SL,m_SM, m_SR)),          : parent(resultFS(left,right,op), GTPShape(left,right, axis_offset, transpose, m_SL,m_SM, m_SR)),
591      m_op(op),          m_op(op),
592      m_axis_offset(axis_offset),          m_axis_offset(axis_offset),
593      m_transpose(transpose)          m_transpose(transpose)
594  {  {
595     if ((getOpgroup(op)!=G_TENSORPROD))     if ((getOpgroup(op)!=G_TENSORPROD))
596     {     {
597      throw DataException("Programmer error - constructor DataLazy(left, right, op, ax, tr) will only process BINARY operations which require parameters.");          throw DataException("Programmer error - constructor DataLazy(left, right, op, ax, tr) will only process BINARY operations which require parameters.");
598     }     }
599     if ((transpose>2) || (transpose<0))     if ((transpose>2) || (transpose<0))
600     {     {
601      throw DataException("DataLazy GeneralTensorProduct constructor: Error - transpose should be 0, 1 or 2");          throw DataException("DataLazy GeneralTensorProduct constructor: Error - transpose should be 0, 1 or 2");
602     }     }
603     if (getFunctionSpace()!=left->getFunctionSpace())    // left needs to be interpolated     if (getFunctionSpace()!=left->getFunctionSpace())    // left needs to be interpolated
604     {     {
605      FunctionSpace fs=getFunctionSpace();          FunctionSpace fs=getFunctionSpace();
606      Data ltemp(left);          Data ltemp(left);
607      Data tmp(ltemp,fs);          Data tmp(ltemp,fs);
608      left=tmp.borrowDataPtr();          left=tmp.borrowDataPtr();
609     }     }
610     if (getFunctionSpace()!=right->getFunctionSpace())   // right needs to be interpolated     if (getFunctionSpace()!=right->getFunctionSpace())   // right needs to be interpolated
611     {     {
612      Data tmp(Data(right),getFunctionSpace());          Data tmp(Data(right),getFunctionSpace());
613      right=tmp.borrowDataPtr();          right=tmp.borrowDataPtr();
614     }     }
615  //    left->operandCheck(*right);  //    left->operandCheck(*right);
616    
617     if (left->isLazy())          // the children need to be DataLazy. Wrap them in IDENTITY if required     if (left->isLazy())                  // the children need to be DataLazy. Wrap them in IDENTITY if required
618     {     {
619      m_left=dynamic_pointer_cast<DataLazy>(left);          m_left=dynamic_pointer_cast<DataLazy>(left);
620     }     }
621     else     else
622     {     {
623      m_left=DataLazy_ptr(new DataLazy(left));          m_left=DataLazy_ptr(new DataLazy(left));
624     }     }
625     if (right->isLazy())     if (right->isLazy())
626     {     {
627      m_right=dynamic_pointer_cast<DataLazy>(right);          m_right=dynamic_pointer_cast<DataLazy>(right);
628     }     }
629     else     else
630     {     {
631      m_right=DataLazy_ptr(new DataLazy(right));          m_right=DataLazy_ptr(new DataLazy(right));
632     }     }
633     char lt=m_left->m_readytype;     char lt=m_left->m_readytype;
634     char rt=m_right->m_readytype;     char rt=m_right->m_readytype;
635     if (lt=='E' || rt=='E')     if (lt=='E' || rt=='E')
636     {     {
637      m_readytype='E';          m_readytype='E';
638     }     }
639     else if (lt=='T' || rt=='T')     else if (lt=='T' || rt=='T')
640     {     {
641      m_readytype='T';          m_readytype='T';
642     }     }
643     else     else
644     {     {
645      m_readytype='C';          m_readytype='C';
646     }     }
647     m_samplesize=getNumDPPSample()*getNoValues();     m_samplesize=getNumDPPSample()*getNoValues();
648     m_children=m_left->m_children+m_right->m_children+2;     m_children=m_left->m_children+m_right->m_children+2;
# Line 655  LAZYDEBUG(cout << "(4)Lazy created with Line 654  LAZYDEBUG(cout << "(4)Lazy created with
654    
655    
656  DataLazy::DataLazy(DataAbstract_ptr left, ES_optype op, int axis_offset)  DataLazy::DataLazy(DataAbstract_ptr left, ES_optype op, int axis_offset)
657      : parent(left->getFunctionSpace(), resultShape(left,op, axis_offset)),          : parent(left->getFunctionSpace(), resultShape(left,op, axis_offset)),
658      m_op(op),          m_op(op),
659      m_axis_offset(axis_offset),          m_axis_offset(axis_offset),
660      m_transpose(0),          m_transpose(0),
661      m_tol(0)          m_tol(0)
662  {  {
663     if ((getOpgroup(op)!=G_NP1OUT_P))     if ((getOpgroup(op)!=G_NP1OUT_P))
664     {     {
665      throw DataException("Programmer error - constructor DataLazy(left, op, ax) will only process UNARY operations which require parameters.");          throw DataException("Programmer error - constructor DataLazy(left, op, ax) will only process UNARY operations which require parameters.");
666     }     }
667     DataLazy_ptr lleft;     DataLazy_ptr lleft;
668     if (!left->isLazy())     if (!left->isLazy())
669     {     {
670      lleft=DataLazy_ptr(new DataLazy(left));          lleft=DataLazy_ptr(new DataLazy(left));
671     }     }
672     else     else
673     {     {
674      lleft=dynamic_pointer_cast<DataLazy>(left);          lleft=dynamic_pointer_cast<DataLazy>(left);
675     }     }
676     m_readytype=lleft->m_readytype;     m_readytype=lleft->m_readytype;
677     m_left=lleft;     m_left=lleft;
# Line 685  LAZYDEBUG(cout << "(5)Lazy created with Line 684  LAZYDEBUG(cout << "(5)Lazy created with
684  }  }
685    
686  DataLazy::DataLazy(DataAbstract_ptr left, ES_optype op, double tol)  DataLazy::DataLazy(DataAbstract_ptr left, ES_optype op, double tol)
687      : parent(left->getFunctionSpace(), left->getShape()),          : parent(left->getFunctionSpace(), left->getShape()),
688      m_op(op),          m_op(op),
689      m_axis_offset(0),          m_axis_offset(0),
690      m_transpose(0),          m_transpose(0),
691      m_tol(tol)          m_tol(tol)
692  {  {
693     if ((getOpgroup(op)!=G_UNARY_P))     if ((getOpgroup(op)!=G_UNARY_P))
694     {     {
695      throw DataException("Programmer error - constructor DataLazy(left, op, tol) will only process UNARY operations which require parameters.");          throw DataException("Programmer error - constructor DataLazy(left, op, tol) will only process UNARY operations which require parameters.");
696     }     }
697     DataLazy_ptr lleft;     DataLazy_ptr lleft;
698     if (!left->isLazy())     if (!left->isLazy())
699     {     {
700      lleft=DataLazy_ptr(new DataLazy(left));          lleft=DataLazy_ptr(new DataLazy(left));
701     }     }
702     else     else
703     {     {
704      lleft=dynamic_pointer_cast<DataLazy>(left);          lleft=dynamic_pointer_cast<DataLazy>(left);
705     }     }
706     m_readytype=lleft->m_readytype;     m_readytype=lleft->m_readytype;
707     m_left=lleft;     m_left=lleft;
# Line 716  LAZYDEBUG(cout << "(6)Lazy created with Line 715  LAZYDEBUG(cout << "(6)Lazy created with
715    
716    
717  DataLazy::DataLazy(DataAbstract_ptr left, ES_optype op, const int axis0, const int axis1)  DataLazy::DataLazy(DataAbstract_ptr left, ES_optype op, const int axis0, const int axis1)
718      : parent(left->getFunctionSpace(), SwapShape(left,axis0,axis1)),          : parent(left->getFunctionSpace(), SwapShape(left,axis0,axis1)),
719      m_op(op),          m_op(op),
720      m_axis_offset(axis0),          m_axis_offset(axis0),
721      m_transpose(axis1),          m_transpose(axis1),
722      m_tol(0)          m_tol(0)
723  {  {
724     if ((getOpgroup(op)!=G_NP1OUT_2P))     if ((getOpgroup(op)!=G_NP1OUT_2P))
725     {     {
726      throw DataException("Programmer error - constructor DataLazy(left, op, tol) will only process UNARY operations which require two integer parameters.");          throw DataException("Programmer error - constructor DataLazy(left, op, tol) will only process UNARY operations which require two integer parameters.");
727     }     }
728     DataLazy_ptr lleft;     DataLazy_ptr lleft;
729     if (!left->isLazy())     if (!left->isLazy())
730     {     {
731      lleft=DataLazy_ptr(new DataLazy(left));          lleft=DataLazy_ptr(new DataLazy(left));
732     }     }
733     else     else
734     {     {
735      lleft=dynamic_pointer_cast<DataLazy>(left);          lleft=dynamic_pointer_cast<DataLazy>(left);
736     }     }
737     m_readytype=lleft->m_readytype;     m_readytype=lleft->m_readytype;
738     m_left=lleft;     m_left=lleft;
# Line 751  namespace Line 750  namespace
750    
751      inline int max3(int a, int b, int c)      inline int max3(int a, int b, int c)
752      {      {
753      int t=(a>b?a:b);          int t=(a>b?a:b);
754      return (t>c?t:c);          return (t>c?t:c);
755    
756      }      }
757  }  }
758    
759  DataLazy::DataLazy(DataAbstract_ptr mask, DataAbstract_ptr left, DataAbstract_ptr right/*, double tol*/)  DataLazy::DataLazy(DataAbstract_ptr mask, DataAbstract_ptr left, DataAbstract_ptr right/*, double tol*/)
760      : parent(left->getFunctionSpace(), left->getShape()),          : parent(left->getFunctionSpace(), left->getShape()),
761      m_op(CONDEVAL),          m_op(CONDEVAL),
762      m_axis_offset(0),          m_axis_offset(0),
763      m_transpose(0),          m_transpose(0),
764      m_tol(0)          m_tol(0)
765  {  {
766    
767     DataLazy_ptr lmask;     DataLazy_ptr lmask;
# Line 770  DataLazy::DataLazy(DataAbstract_ptr mask Line 769  DataLazy::DataLazy(DataAbstract_ptr mask
769     DataLazy_ptr lright;     DataLazy_ptr lright;
770     if (!mask->isLazy())     if (!mask->isLazy())
771     {     {
772      lmask=DataLazy_ptr(new DataLazy(mask));          lmask=DataLazy_ptr(new DataLazy(mask));
773     }     }
774     else     else
775     {     {
776      lmask=dynamic_pointer_cast<DataLazy>(mask);          lmask=dynamic_pointer_cast<DataLazy>(mask);
777     }     }
778     if (!left->isLazy())     if (!left->isLazy())
779     {     {
780      lleft=DataLazy_ptr(new DataLazy(left));          lleft=DataLazy_ptr(new DataLazy(left));
781     }     }
782     else     else
783     {     {
784      lleft=dynamic_pointer_cast<DataLazy>(left);          lleft=dynamic_pointer_cast<DataLazy>(left);
785     }     }
786     if (!right->isLazy())     if (!right->isLazy())
787     {     {
788      lright=DataLazy_ptr(new DataLazy(right));          lright=DataLazy_ptr(new DataLazy(right));
789     }     }
790     else     else
791     {     {
792      lright=dynamic_pointer_cast<DataLazy>(right);          lright=dynamic_pointer_cast<DataLazy>(right);
793     }     }
794     m_readytype=lmask->m_readytype;     m_readytype=lmask->m_readytype;
795     if ((lleft->m_readytype!=lright->m_readytype) || (lmask->m_readytype!=lleft->m_readytype))     if ((lleft->m_readytype!=lright->m_readytype) || (lmask->m_readytype!=lleft->m_readytype))
796     {     {
797      throw DataException("Programmer Error - condEval arguments must have the same readytype");          throw DataException("Programmer Error - condEval arguments must have the same readytype");
798     }     }
799     m_left=lleft;     m_left=lleft;
800     m_right=lright;     m_right=lright;
# Line 822  DataLazy::~DataLazy() Line 821  DataLazy::~DataLazy()
821    For reasons of efficiency do not call this method on DataExpanded nodes.    For reasons of efficiency do not call this method on DataExpanded nodes.
822  */  */
823  DataReady_ptr  DataReady_ptr
824  DataLazy::collapseToReady()  DataLazy::collapseToReady() const
825  {  {
826    if (m_readytype=='E')    if (m_readytype=='E')
827    { // this is more an efficiency concern than anything else    {     // this is more an efficiency concern than anything else
828      throw DataException("Programmer Error - do not use collapse on Expanded data.");      throw DataException("Programmer Error - do not use collapse on Expanded data.");
829    }    }
830    if (m_op==IDENTITY)    if (m_op==IDENTITY)
# Line 843  DataLazy::collapseToReady() Line 842  DataLazy::collapseToReady()
842    switch(m_op)    switch(m_op)
843    {    {
844      case ADD:      case ADD:
845      result=left+right;          result=left+right;
846      break;          break;
847      case SUB:            case SUB:          
848      result=left-right;          result=left-right;
849      break;          break;
850      case MUL:            case MUL:          
851      result=left*right;          result=left*right;
852      break;          break;
853      case DIV:            case DIV:          
854      result=left/right;          result=left/right;
855      break;          break;
856      case SIN:      case SIN:
857      result=left.sin();            result=left.sin();      
858      break;          break;
859      case COS:      case COS:
860      result=left.cos();          result=left.cos();
861      break;          break;
862      case TAN:      case TAN:
863      result=left.tan();          result=left.tan();
864      break;          break;
865      case ASIN:      case ASIN:
866      result=left.asin();          result=left.asin();
867      break;          break;
868      case ACOS:      case ACOS:
869      result=left.acos();          result=left.acos();
870      break;          break;
871      case ATAN:      case ATAN:
872      result=left.atan();          result=left.atan();
873      break;          break;
874      case SINH:      case SINH:
875      result=left.sinh();          result=left.sinh();
876      break;          break;
877      case COSH:      case COSH:
878      result=left.cosh();          result=left.cosh();
879      break;          break;
880      case TANH:      case TANH:
881      result=left.tanh();          result=left.tanh();
882      break;          break;
883      case ERF:      case ERF:
884      result=left.erf();          result=left.erf();
885      break;          break;
886     case ASINH:     case ASINH:
887      result=left.asinh();          result=left.asinh();
888      break;          break;
889     case ACOSH:     case ACOSH:
890      result=left.acosh();          result=left.acosh();
891      break;          break;
892     case ATANH:     case ATANH:
893      result=left.atanh();          result=left.atanh();
894      break;          break;
895      case LOG10:      case LOG10:
896      result=left.log10();          result=left.log10();
897      break;          break;
898      case LOG:      case LOG:
899      result=left.log();          result=left.log();
900      break;          break;
901      case SIGN:      case SIGN:
902      result=left.sign();          result=left.sign();
903      break;          break;
904      case ABS:      case ABS:
905      result=left.abs();          result=left.abs();
906      break;          break;
907      case NEG:      case NEG:
908      result=left.neg();          result=left.neg();
909      break;          break;
910      case POS:      case POS:
911      // it doesn't mean anything for delayed.          // it doesn't mean anything for delayed.
912      // it will just trigger a deep copy of the lazy object          // it will just trigger a deep copy of the lazy object
913      throw DataException("Programmer error - POS not supported for lazy data.");          throw DataException("Programmer error - POS not supported for lazy data.");
914      break;          break;
915      case EXP:      case EXP:
916      result=left.exp();          result=left.exp();
917      break;          break;
918      case SQRT:      case SQRT:
919      result=left.sqrt();          result=left.sqrt();
920      break;          break;
921      case RECIP:      case RECIP:
922      result=left.oneOver();          result=left.oneOver();
923      break;          break;
924      case GZ:      case GZ:
925      result=left.wherePositive();          result=left.wherePositive();
926      break;          break;
927      case LZ:      case LZ:
928      result=left.whereNegative();          result=left.whereNegative();
929      break;          break;
930      case GEZ:      case GEZ:
931      result=left.whereNonNegative();          result=left.whereNonNegative();
932      break;          break;
933      case LEZ:      case LEZ:
934      result=left.whereNonPositive();          result=left.whereNonPositive();
935      break;          break;
936      case NEZ:      case NEZ:
937      result=left.whereNonZero(m_tol);          result=left.whereNonZero(m_tol);
938      break;          break;
939      case EZ:      case EZ:
940      result=left.whereZero(m_tol);          result=left.whereZero(m_tol);
941      break;          break;
942      case SYM:      case SYM:
943      result=left.symmetric();          result=left.symmetric();
944      break;          break;
945      case NSYM:      case NSYM:
946      result=left.nonsymmetric();          result=left.nonsymmetric();
947      break;          break;
948      case PROD:      case PROD:
949      result=C_GeneralTensorProduct(left,right,m_axis_offset, m_transpose);          result=C_GeneralTensorProduct(left,right,m_axis_offset, m_transpose);
950      break;          break;
951      case TRANS:      case TRANS:
952      result=left.transpose(m_axis_offset);          result=left.transpose(m_axis_offset);
953      break;          break;
954      case TRACE:      case TRACE:
955      result=left.trace(m_axis_offset);          result=left.trace(m_axis_offset);
956      break;          break;
957      case SWAP:      case SWAP:
958      result=left.swapaxes(m_axis_offset, m_transpose);          result=left.swapaxes(m_axis_offset, m_transpose);
959      break;          break;
960      case MINVAL:      case MINVAL:
961      result=left.minval();          result=left.minval();
962      break;          break;
963      case MAXVAL:      case MAXVAL:
964      result=left.minval();          result=left.minval();
965      break;          break;
966      default:      default:
967      throw DataException("Programmer error - collapseToReady does not know how to resolve operator "+opToString(m_op)+".");          throw DataException("Programmer error - collapseToReady does not know how to resolve operator "+opToString(m_op)+".");
968    }    }
969    return result.borrowReadyPtr();    return result.borrowReadyPtr();
970  }  }
# Line 977  DataLazy::collapseToReady() Line 976  DataLazy::collapseToReady()
976     the purpose of using DataLazy in the first place).     the purpose of using DataLazy in the first place).
977  */  */
978  void  void
979  DataLazy::collapse()  DataLazy::collapse() const
980  {  {
981    if (m_op==IDENTITY)    if (m_op==IDENTITY)
982    {    {
983      return;          return;
984    }    }
985    if (m_readytype=='E')    if (m_readytype=='E')
986    { // this is more an efficiency concern than anything else    {     // this is more an efficiency concern than anything else
987      throw DataException("Programmer Error - do not use collapse on Expanded data.");      throw DataException("Programmer Error - do not use collapse on Expanded data.");
988    }    }
989    m_id=collapseToReady();    m_id=collapseToReady();
990    m_op=IDENTITY;    m_op=IDENTITY;
991  }  }
992    
   
   
   
   
   
 #define PROC_OP(TYPE,X)                               \  
     for (int j=0;j<onumsteps;++j)\  
     {\  
       for (int i=0;i<numsteps;++i,resultp+=resultStep) \  
       { \  
 LAZYDEBUG(cout << "[left,right]=[" << lroffset << "," << rroffset << "]" << endl;)\  
 LAZYDEBUG(cout << "{left,right}={" << (*left)[lroffset] << "," << (*right)[rroffset] << "}\n";)\  
          tensor_binary_operation< TYPE >(chunksize, &((*left)[lroffset]), &((*right)[rroffset]), resultp, X); \  
 LAZYDEBUG(cout << " result=      " << resultp[0] << endl;) \  
          lroffset+=leftstep; \  
          rroffset+=rightstep; \  
       }\  
       lroffset+=oleftstep;\  
       rroffset+=orightstep;\  
     }  
   
   
993  // The result will be stored in m_samples  // The result will be stored in m_samples
994  // The return value is a pointer to the DataVector, offset is the offset within the return value  // The return value is a pointer to the DataVector, offset is the offset within the return value
995  const DataTypes::ValueType*  const DataTypes::RealVectorType*
996  DataLazy::resolveNodeSample(int tid, int sampleNo, size_t& roffset)  DataLazy::resolveNodeSample(int tid, int sampleNo, size_t& roffset) const
997  {  {
998  LAZYDEBUG(cout << "Resolve sample " << toString() << endl;)  LAZYDEBUG(cout << "Resolve sample " << toString() << endl;)
999      // collapse so we have a 'E' node or an IDENTITY for some other type          // collapse so we have a 'E' node or an IDENTITY for some other type
1000    if (m_readytype!='E' && m_op!=IDENTITY)    if (m_readytype!='E' && m_op!=IDENTITY)
1001    {    {
1002      collapse();          collapse();
1003    }    }
1004    if (m_op==IDENTITY)      if (m_op==IDENTITY)  
1005    {    {
1006      const ValueType& vec=m_id->getVectorRO();      const RealVectorType& vec=m_id->getVectorRO();
1007      roffset=m_id->getPointOffset(sampleNo, 0);      roffset=m_id->getPointOffset(sampleNo, 0);
1008  #ifdef LAZY_STACK_PROF  #ifdef LAZY_STACK_PROF
1009  int x;  int x;
# Line 1043  if (&x<stackend[omp_get_thread_num()]) Line 1020  if (&x<stackend[omp_get_thread_num()])
1020    }    }
1021    if (m_sampleids[tid]==sampleNo)    if (m_sampleids[tid]==sampleNo)
1022    {    {
1023      roffset=tid*m_samplesize;          roffset=tid*m_samplesize;
1024      return &(m_samples);        // sample is already resolved          return &(m_samples);            // sample is already resolved
1025    }    }
1026    m_sampleids[tid]=sampleNo;    m_sampleids[tid]=sampleNo;
1027    
# Line 1064  if (&x<stackend[omp_get_thread_num()]) Line 1041  if (&x<stackend[omp_get_thread_num()])
1041    }    }
1042  }  }
1043    
1044  const DataTypes::ValueType*  const DataTypes::RealVectorType*
1045  DataLazy::resolveNodeUnary(int tid, int sampleNo, size_t& roffset)  DataLazy::resolveNodeUnary(int tid, int sampleNo, size_t& roffset) const
1046  {  {
1047      // we assume that any collapsing has been done before we get here          // we assume that any collapsing has been done before we get here
1048      // since we only have one argument we don't need to think about only          // since we only have one argument we don't need to think about only
1049      // processing single points.          // processing single points.
1050      // we will also know we won't get identity nodes          // we will also know we won't get identity nodes
1051    if (m_readytype!='E')    if (m_readytype!='E')
1052    {    {
1053      throw DataException("Programmer error - resolveUnary should only be called on expanded Data.");      throw DataException("Programmer error - resolveUnary should only be called on expanded Data.");
# Line 1079  DataLazy::resolveNodeUnary(int tid, int Line 1056  DataLazy::resolveNodeUnary(int tid, int
1056    {    {
1057      throw DataException("Programmer error - resolveNodeUnary should not be called on identity nodes.");      throw DataException("Programmer error - resolveNodeUnary should not be called on identity nodes.");
1058    }    }
1059    const DataTypes::ValueType* leftres=m_left->resolveNodeSample(tid, sampleNo, roffset);    const DataTypes::RealVectorType* leftres=m_left->resolveNodeSample(tid, sampleNo, roffset);
1060    const double* left=&((*leftres)[roffset]);    const double* left=&((*leftres)[roffset]);
1061    roffset=m_samplesize*tid;    roffset=m_samplesize*tid;
1062    double* result=&(m_samples[roffset]);    double* result=&(m_samples[roffset]);
1063      escript::ESFunction operation=SINF;
1064    switch (m_op)    switch (m_op)
1065    {    {
1066      case SIN:        case SIN:
1067      tensor_unary_operation<double (*)(double)>(m_samplesize, left, result, ::sin);      operation=SINF;
1068      break;      break;
1069      case COS:      case COS:
1070      tensor_unary_operation<double (*)(double)>(m_samplesize, left, result, ::cos);          operation=COSF;
1071      break;      break;
1072      case TAN:      case TAN:
1073      tensor_unary_operation<double (*)(double)>(m_samplesize, left, result, ::tan);          operation=TANF;
1074      break;      break;
1075      case ASIN:      case ASIN:
1076      tensor_unary_operation<double (*)(double)>(m_samplesize, left, result, ::asin);          operation=ASINF;
1077      break;      break;
1078      case ACOS:      case ACOS:
1079      tensor_unary_operation<double (*)(double)>(m_samplesize, left, result, ::acos);          operation=ACOSF;
1080      break;      break;
1081      case ATAN:      case ATAN:
1082      tensor_unary_operation<double (*)(double)>(m_samplesize, left, result, ::atan);          operation=ATANF;
1083      break;      break;
1084      case SINH:      case SINH:
1085      tensor_unary_operation<double (*)(double)>(m_samplesize, left, result, ::sinh);          operation=SINHF;
1086      break;      break;
1087      case COSH:      case COSH:
1088      tensor_unary_operation<double (*)(double)>(m_samplesize, left, result, ::cosh);          operation=COSHF;
1089      break;      break;
1090      case TANH:      case TANH:
1091      tensor_unary_operation<double (*)(double)>(m_samplesize, left, result, ::tanh);          operation=TANHF;
1092      break;      break;
1093      case ERF:      case ERF:
1094  #if defined (_WIN32) && !defined(__INTEL_COMPILER)          operation=ERFF;
     throw DataException("Error - Data:: erf function is not supported on _WIN32 platforms.");  
 #else  
     tensor_unary_operation(m_samplesize, left, result, ::erf);  
1095      break;      break;
 #endif  
1096     case ASINH:     case ASINH:
1097  #if defined (_WIN32) && !defined(__INTEL_COMPILER)          operation=ASINHF;
     tensor_unary_operation(m_samplesize, left, result, escript::asinh_substitute);  
 #else  
     tensor_unary_operation(m_samplesize, left, result, ::asinh);  
 #endif    
1098      break;      break;
1099     case ACOSH:     case ACOSH:
1100  #if defined (_WIN32) && !defined(__INTEL_COMPILER)          operation=ACOSHF;
     tensor_unary_operation(m_samplesize, left, result, escript::acosh_substitute);  
 #else  
     tensor_unary_operation(m_samplesize, left, result, ::acosh);  
 #endif    
1101      break;      break;
1102     case ATANH:     case ATANH:
1103  #if defined (_WIN32) && !defined(__INTEL_COMPILER)          operation=ATANHF;
     tensor_unary_operation(m_samplesize, left, result, escript::atanh_substitute);  
 #else  
     tensor_unary_operation(m_samplesize, left, result, ::atanh);  
 #endif    
1104      break;      break;
1105      case LOG10:      case LOG10:
1106      tensor_unary_operation<double (*)(double)>(m_samplesize, left, result, ::log10);          operation=LOG10F;
1107      break;      break;
1108      case LOG:      case LOG:
1109      tensor_unary_operation<double (*)(double)>(m_samplesize, left, result, ::log);          operation=LOGF;
1110      break;      break;
1111      case SIGN:      case SIGN:
1112      tensor_unary_operation(m_samplesize, left, result, escript::fsign);          operation=SIGNF;
1113      break;      break;
1114      case ABS:      case ABS:
1115      tensor_unary_operation<double (*)(double)>(m_samplesize, left, result, ::fabs);          operation=ABSF;
1116      break;      break;
1117      case NEG:      case NEG:
1118      tensor_unary_operation(m_samplesize, left, result, negate<double>());          operation=NEGF;
1119      break;      break;
1120      case POS:      case POS:
1121      // it doesn't mean anything for delayed.          // it doesn't mean anything for delayed.
1122      // it will just trigger a deep copy of the lazy object          // it will just trigger a deep copy of the lazy object
1123      throw DataException("Programmer error - POS not supported for lazy data.");          throw DataException("Programmer error - POS not supported for lazy data.");
1124      break;          break;
1125      case EXP:      case EXP:
1126      tensor_unary_operation<double (*)(double)>(m_samplesize, left, result, ::exp);          operation=EXPF;
1127      break;      break;
1128      case SQRT:      case SQRT:
1129      tensor_unary_operation<double (*)(double)>(m_samplesize, left, result, ::sqrt);          operation=SQRTF;
1130      break;      break;
1131      case RECIP:      case RECIP:
1132      tensor_unary_operation(m_samplesize, left, result, bind1st(divides<double>(),1.));          operation=INVF;
1133      break;      break;
1134      case GZ:      case GZ:
1135      tensor_unary_operation(m_samplesize, left, result, bind2nd(greater<double>(),0.0));          operation=GTZEROF;
1136      break;      break;
1137      case LZ:      case LZ:
1138      tensor_unary_operation(m_samplesize, left, result, bind2nd(less<double>(),0.0));          operation=LTZEROF;
1139      break;      break;
1140      case GEZ:      case GEZ:
1141      tensor_unary_operation(m_samplesize, left, result, bind2nd(greater_equal<double>(),0.0));          operation=GEZEROF;
1142      break;      break;
1143      case LEZ:      case LEZ:
1144      tensor_unary_operation(m_samplesize, left, result, bind2nd(less_equal<double>(),0.0));          operation=LEZEROF;
1145      break;      break;
1146  // There are actually G_UNARY_P but I don't see a compelling reason to treat them differently  // There are actually G_UNARY_P but I don't see a compelling reason to treat them differently
1147      case NEZ:      case NEZ:
1148      tensor_unary_operation(m_samplesize, left, result, bind2nd(AbsGT(),m_tol));          operation=NEQZEROF;
1149      break;      break;
1150      case EZ:      case EZ:
1151      tensor_unary_operation(m_samplesize, left, result, bind2nd(AbsLTE(),m_tol));          operation=EQZEROF;
1152      break;      break;
   
1153      default:      default:
1154      throw DataException("Programmer error - resolveUnary can not resolve operator "+opToString(m_op)+".");          throw DataException("Programmer error - resolveUnary can not resolve operator "+opToString(m_op)+".");
1155    }    }
1156      tensor_unary_array_operation(m_samplesize,
1157                                 left,
1158                                 result,
1159                                 operation,
1160                                 m_tol);  
1161    return &(m_samples);    return &(m_samples);
1162  }  }
1163    
1164    
1165  const DataTypes::ValueType*  const DataTypes::RealVectorType*
1166  DataLazy::resolveNodeReduction(int tid, int sampleNo, size_t& roffset)  DataLazy::resolveNodeReduction(int tid, int sampleNo, size_t& roffset) const
1167  {  {
1168      // we assume that any collapsing has been done before we get here          // we assume that any collapsing has been done before we get here
1169      // since we only have one argument we don't need to think about only          // since we only have one argument we don't need to think about only
1170      // processing single points.          // processing single points.
1171      // we will also know we won't get identity nodes          // we will also know we won't get identity nodes
1172    if (m_readytype!='E')    if (m_readytype!='E')
1173    {    {
1174      throw DataException("Programmer error - resolveUnary should only be called on expanded Data.");      throw DataException("Programmer error - resolveUnary should only be called on expanded Data.");
# Line 1212  DataLazy::resolveNodeReduction(int tid, Line 1178  DataLazy::resolveNodeReduction(int tid,
1178      throw DataException("Programmer error - resolveNodeUnary should not be called on identity nodes.");      throw DataException("Programmer error - resolveNodeUnary should not be called on identity nodes.");
1179    }    }
1180    size_t loffset=0;    size_t loffset=0;
1181    const DataTypes::ValueType* leftres=m_left->resolveNodeSample(tid, sampleNo, loffset);    const DataTypes::RealVectorType* leftres=m_left->resolveNodeSample(tid, sampleNo, loffset);
1182    
1183    roffset=m_samplesize*tid;    roffset=m_samplesize*tid;
1184    unsigned int ndpps=getNumDPPSample();    unsigned int ndpps=getNumDPPSample();
# Line 1221  DataLazy::resolveNodeReduction(int tid, Line 1187  DataLazy::resolveNodeReduction(int tid,
1187    switch (m_op)    switch (m_op)
1188    {    {
1189      case MINVAL:      case MINVAL:
1190      {          {
1191        for (unsigned int z=0;z<ndpps;++z)            for (unsigned int z=0;z<ndpps;++z)
1192        {            {
1193          FMin op;              FMin op;
1194          *result=DataMaths::reductionOp(*leftres, m_left->getShape(), loffset, op, numeric_limits<double>::max());              *result=DataMaths::reductionOpVector(*leftres, m_left->getShape(), loffset, op, numeric_limits<double>::max());
1195          loffset+=psize;              loffset+=psize;
1196          result++;              result++;
1197        }            }
1198      }          }
1199      break;          break;
1200      case MAXVAL:      case MAXVAL:
1201      {          {
1202        for (unsigned int z=0;z<ndpps;++z)            for (unsigned int z=0;z<ndpps;++z)
1203        {            {
1204        FMax op;            FMax op;
1205        *result=DataMaths::reductionOp(*leftres, m_left->getShape(), loffset, op, numeric_limits<double>::max()*-1);            *result=DataMaths::reductionOpVector(*leftres, m_left->getShape(), loffset, op, numeric_limits<double>::max()*-1);
1206        loffset+=psize;            loffset+=psize;
1207        result++;            result++;
1208        }            }
1209      }          }
1210      break;          break;
1211      default:      default:
1212      throw DataException("Programmer error - resolveUnary can not resolve operator "+opToString(m_op)+".");          throw DataException("Programmer error - resolveUnary can not resolve operator "+opToString(m_op)+".");
1213    }    }
1214    return &(m_samples);    return &(m_samples);
1215  }  }
1216    
1217  const DataTypes::ValueType*  const DataTypes::RealVectorType*
1218  DataLazy::resolveNodeNP1OUT(int tid, int sampleNo, size_t& roffset)  DataLazy::resolveNodeNP1OUT(int tid, int sampleNo, size_t& roffset) const
1219  {  {
1220      // we assume that any collapsing has been done before we get here          // we assume that any collapsing has been done before we get here
1221      // since we only have one argument we don't need to think about only          // since we only have one argument we don't need to think about only
1222      // processing single points.          // processing single points.
1223    if (m_readytype!='E')    if (m_readytype!='E')
1224    {    {
1225      throw DataException("Programmer error - resolveNodeNP1OUT should only be called on expanded Data.");      throw DataException("Programmer error - resolveNodeNP1OUT should only be called on expanded Data.");
# Line 1263  DataLazy::resolveNodeNP1OUT(int tid, int Line 1229  DataLazy::resolveNodeNP1OUT(int tid, int
1229      throw DataException("Programmer error - resolveNodeNP1OUT should not be called on identity nodes.");      throw DataException("Programmer error - resolveNodeNP1OUT should not be called on identity nodes.");
1230    }    }
1231    size_t subroffset;    size_t subroffset;
1232    const ValueType* leftres=m_left->resolveNodeSample(tid, sampleNo, subroffset);    const RealVectorType* leftres=m_left->resolveNodeSample(tid, sampleNo, subroffset);
1233    roffset=m_samplesize*tid;    roffset=m_samplesize*tid;
1234    size_t loop=0;    size_t loop=0;
1235    size_t numsteps=(m_readytype=='E')?getNumDPPSample():1;    size_t numsteps=(m_readytype=='E')?getNumDPPSample():1;
# Line 1272  DataLazy::resolveNodeNP1OUT(int tid, int Line 1238  DataLazy::resolveNodeNP1OUT(int tid, int
1238    switch (m_op)    switch (m_op)
1239    {    {
1240      case SYM:      case SYM:
1241      for (loop=0;loop<numsteps;++loop)          for (loop=0;loop<numsteps;++loop)
1242      {          {
1243          DataMaths::symmetric(*leftres,m_left->getShape(),subroffset, m_samples, getShape(), offset);              DataMaths::symmetric(*leftres,m_left->getShape(),subroffset, m_samples, getShape(), offset);
1244          subroffset+=step;              subroffset+=step;
1245          offset+=step;              offset+=step;
1246      }          }
1247      break;          break;
1248      case NSYM:      case NSYM:
1249      for (loop=0;loop<numsteps;++loop)          for (loop=0;loop<numsteps;++loop)
1250      {          {
1251          DataMaths::nonsymmetric(*leftres,m_left->getShape(),subroffset, m_samples, getShape(), offset);              DataMaths::nonsymmetric(*leftres,m_left->getShape(),subroffset, m_samples, getShape(), offset);
1252          subroffset+=step;              subroffset+=step;
1253          offset+=step;              offset+=step;
1254      }          }
1255      break;          break;
1256      default:      default:
1257      throw DataException("Programmer error - resolveNP1OUT can not resolve operator "+opToString(m_op)+".");          throw DataException("Programmer error - resolveNP1OUT can not resolve operator "+opToString(m_op)+".");
1258    }    }
1259    return &m_samples;    return &m_samples;
1260  }  }
1261    
1262  const DataTypes::ValueType*  const DataTypes::RealVectorType*
1263  DataLazy::resolveNodeNP1OUT_P(int tid, int sampleNo, size_t& roffset)  DataLazy::resolveNodeNP1OUT_P(int tid, int sampleNo, size_t& roffset) const
1264  {  {
1265      // we assume that any collapsing has been done before we get here          // we assume that any collapsing has been done before we get here
1266      // since we only have one argument we don't need to think about only          // since we only have one argument we don't need to think about only
1267      // processing single points.          // processing single points.
1268    if (m_readytype!='E')    if (m_readytype!='E')
1269    {    {
1270      throw DataException("Programmer error - resolveNodeNP1OUT_P should only be called on expanded Data.");      throw DataException("Programmer error - resolveNodeNP1OUT_P should only be called on expanded Data.");
# Line 1309  DataLazy::resolveNodeNP1OUT_P(int tid, i Line 1275  DataLazy::resolveNodeNP1OUT_P(int tid, i
1275    }    }
1276    size_t subroffset;    size_t subroffset;
1277    size_t offset;    size_t offset;
1278    const ValueType* leftres=m_left->resolveNodeSample(tid, sampleNo, subroffset);    const RealVectorType* leftres=m_left->resolveNodeSample(tid, sampleNo, subroffset);
1279    roffset=m_samplesize*tid;    roffset=m_samplesize*tid;
1280    offset=roffset;    offset=roffset;
1281    size_t loop=0;    size_t loop=0;
# Line 1319  DataLazy::resolveNodeNP1OUT_P(int tid, i Line 1285  DataLazy::resolveNodeNP1OUT_P(int tid, i
1285    switch (m_op)    switch (m_op)
1286    {    {
1287      case TRACE:      case TRACE:
1288      for (loop=0;loop<numsteps;++loop)          for (loop=0;loop<numsteps;++loop)
1289      {          {
1290              DataMaths::trace(*leftres,m_left->getShape(),subroffset, m_samples ,getShape(),offset,m_axis_offset);              DataMaths::trace(*leftres,m_left->getShape(),subroffset, m_samples ,getShape(),offset,m_axis_offset);
1291          subroffset+=instep;              subroffset+=instep;
1292          offset+=outstep;              offset+=outstep;
1293      }          }
1294      break;          break;
1295      case TRANS:      case TRANS:
1296      for (loop=0;loop<numsteps;++loop)          for (loop=0;loop<numsteps;++loop)
1297      {          {
1298              DataMaths::transpose(*leftres,m_left->getShape(),subroffset, m_samples, getShape(),offset,m_axis_offset);              DataMaths::transpose(*leftres,m_left->getShape(),subroffset, m_samples, getShape(),offset,m_axis_offset);
1299          subroffset+=instep;              subroffset+=instep;
1300          offset+=outstep;              offset+=outstep;
1301      }          }
1302      break;          break;
1303      default:      default:
1304      throw DataException("Programmer error - resolveNP1OUTP can not resolve operator "+opToString(m_op)+".");          throw DataException("Programmer error - resolveNP1OUTP can not resolve operator "+opToString(m_op)+".");
1305    }    }
1306    return &m_samples;    return &m_samples;
1307  }  }
1308    
1309    
1310  const DataTypes::ValueType*  const DataTypes::RealVectorType*
1311  DataLazy::resolveNodeNP1OUT_2P(int tid, int sampleNo, size_t& roffset)  DataLazy::resolveNodeNP1OUT_2P(int tid, int sampleNo, size_t& roffset) const
1312  {  {
1313    if (m_readytype!='E')    if (m_readytype!='E')
1314    {    {
# Line 1354  DataLazy::resolveNodeNP1OUT_2P(int tid, Line 1320  DataLazy::resolveNodeNP1OUT_2P(int tid,
1320    }    }
1321    size_t subroffset;    size_t subroffset;
1322    size_t offset;    size_t offset;
1323    const ValueType* leftres=m_left->resolveNodeSample(tid, sampleNo, subroffset);    const RealVectorType* leftres=m_left->resolveNodeSample(tid, sampleNo, subroffset);
1324    roffset=m_samplesize*tid;    roffset=m_samplesize*tid;
1325    offset=roffset;    offset=roffset;
1326    size_t loop=0;    size_t loop=0;
# Line 1364  DataLazy::resolveNodeNP1OUT_2P(int tid, Line 1330  DataLazy::resolveNodeNP1OUT_2P(int tid,
1330    switch (m_op)    switch (m_op)
1331    {    {
1332      case SWAP:      case SWAP:
1333      for (loop=0;loop<numsteps;++loop)          for (loop=0;loop<numsteps;++loop)
1334      {          {
1335              DataMaths::swapaxes(*leftres,m_left->getShape(),subroffset, m_samples, getShape(),offset, m_axis_offset, m_transpose);              DataMaths::swapaxes(*leftres,m_left->getShape(),subroffset, m_samples, getShape(),offset, m_axis_offset, m_transpose);
1336          subroffset+=instep;              subroffset+=instep;
1337          offset+=outstep;              offset+=outstep;
1338      }          }
1339      break;          break;
1340      default:      default:
1341      throw DataException("Programmer error - resolveNodeNP1OUT2P can not resolve operator "+opToString(m_op)+".");          throw DataException("Programmer error - resolveNodeNP1OUT2P can not resolve operator "+opToString(m_op)+".");
1342    }    }
1343    return &m_samples;    return &m_samples;
1344  }  }
1345    
1346  const DataTypes::ValueType*  const DataTypes::RealVectorType*
1347  DataLazy::resolveNodeCondEval(int tid, int sampleNo, size_t& roffset)  DataLazy::resolveNodeCondEval(int tid, int sampleNo, size_t& roffset) const
1348  {  {
1349    if (m_readytype!='E')    if (m_readytype!='E')
1350    {    {
# Line 1390  DataLazy::resolveNodeCondEval(int tid, i Line 1356  DataLazy::resolveNodeCondEval(int tid, i
1356    }    }
1357    size_t subroffset;    size_t subroffset;
1358    
1359    const ValueType* maskres=m_mask->resolveNodeSample(tid, sampleNo, subroffset);    const RealVectorType* maskres=m_mask->resolveNodeSample(tid, sampleNo, subroffset);
1360    const ValueType* srcres=0;    const RealVectorType* srcres=0;
1361    if ((*maskres)[subroffset]>0)    if ((*maskres)[subroffset]>0)
1362    {    {
1363      srcres=m_left->resolveNodeSample(tid, sampleNo, subroffset);          srcres=m_left->resolveNodeSample(tid, sampleNo, subroffset);
1364    }    }
1365    else    else
1366    {    {
1367      srcres=m_right->resolveNodeSample(tid, sampleNo, subroffset);          srcres=m_right->resolveNodeSample(tid, sampleNo, subroffset);
1368    }    }
1369    
1370    // Now we need to copy the result    // Now we need to copy the result
# Line 1406  DataLazy::resolveNodeCondEval(int tid, i Line 1372  DataLazy::resolveNodeCondEval(int tid, i
1372    roffset=m_samplesize*tid;    roffset=m_samplesize*tid;
1373    for (int i=0;i<m_samplesize;++i)    for (int i=0;i<m_samplesize;++i)
1374    {    {
1375      m_samples[roffset+i]=(*srcres)[subroffset+i];            m_samples[roffset+i]=(*srcres)[subroffset+i];  
1376    }    }
1377    
1378    return &m_samples;    return &m_samples;
# Line 1421  DataLazy::resolveNodeCondEval(int tid, i Line 1387  DataLazy::resolveNodeCondEval(int tid, i
1387  // There is an additional complication when scalar operations are considered.  // There is an additional complication when scalar operations are considered.
1388  // For example, 2+Vector.  // For example, 2+Vector.
1389  // In this case each double within the point is treated individually  // In this case each double within the point is treated individually
1390  const DataTypes::ValueType*  const DataTypes::RealVectorType*
1391  DataLazy::resolveNodeBinary(int tid, int sampleNo, size_t& roffset)  DataLazy::resolveNodeBinary(int tid, int sampleNo, size_t& roffset) const
1392  {  {
1393  LAZYDEBUG(cout << "Resolve binary: " << toString() << endl;)  LAZYDEBUG(cout << "Resolve binary: " << toString() << endl;)
1394    
1395    size_t lroffset=0, rroffset=0;    // offsets in the left and right result vectors    size_t lroffset=0, rroffset=0;        // offsets in the left and right result vectors
1396      // first work out which of the children are expanded          // first work out which of the children are expanded
1397    bool leftExp=(m_left->m_readytype=='E');    bool leftExp=(m_left->m_readytype=='E');
1398    bool rightExp=(m_right->m_readytype=='E');    bool rightExp=(m_right->m_readytype=='E');
1399    if (!leftExp && !rightExp)    if (!leftExp && !rightExp)
1400    {    {
1401      throw DataException("Programmer Error - please use collapse if neither argument has type 'E'.");          throw DataException("Programmer Error - please use collapse if neither argument has type 'E'.");
1402    }    }
1403    bool leftScalar=(m_left->getRank()==0);    bool leftScalar=(m_left->getRank()==0);
1404    bool rightScalar=(m_right->getRank()==0);    bool rightScalar=(m_right->getRank()==0);
1405    if ((m_left->getRank()!=m_right->getRank()) && (!leftScalar && !rightScalar))    if ((m_left->getRank()!=m_right->getRank()) && (!leftScalar && !rightScalar))
1406    {    {
1407      throw DataException("resolveBinary - ranks of arguments must match unless one of them is scalar.");          throw DataException("resolveBinary - ranks of arguments must match unless one of them is scalar.");
1408    }    }
1409    size_t leftsize=m_left->getNoValues();    size_t leftsize=m_left->getNoValues();
1410    size_t rightsize=m_right->getNoValues();    size_t rightsize=m_right->getNoValues();
1411    size_t chunksize=1;           // how many doubles will be processed in one go    size_t chunksize=1;                   // how many doubles will be processed in one go
1412    int leftstep=0;       // how far should the left offset advance after each step    int leftstep=0;               // how far should the left offset advance after each step
1413    int rightstep=0;    int rightstep=0;
1414    int numsteps=0;       // total number of steps for the inner loop    int numsteps=0;               // total number of steps for the inner loop
1415    int oleftstep=0;  // the o variables refer to the outer loop    int oleftstep=0;      // the o variables refer to the outer loop
1416    int orightstep=0; // The outer loop is only required in cases where there is an extended scalar    int orightstep=0;     // The outer loop is only required in cases where there is an extended scalar
1417    int onumsteps=1;    int onumsteps=1;
1418        
1419    bool LES=(leftExp && leftScalar); // Left is an expanded scalar    bool LES=(leftExp && leftScalar);     // Left is an expanded scalar
1420    bool RES=(rightExp && rightScalar);    bool RES=(rightExp && rightScalar);
1421    bool LS=(!leftExp && leftScalar); // left is a single scalar    bool LS=(!leftExp && leftScalar);     // left is a single scalar
1422    bool RS=(!rightExp && rightScalar);    bool RS=(!rightExp && rightScalar);
1423    bool LN=(!leftExp && !leftScalar);    // left is a single non-scalar    bool LN=(!leftExp && !leftScalar);    // left is a single non-scalar
1424    bool RN=(!rightExp && !rightScalar);    bool RN=(!rightExp && !rightScalar);
1425    bool LEN=(leftExp && !leftScalar);    // left is an expanded non-scalar    bool LEN=(leftExp && !leftScalar);    // left is an expanded non-scalar
1426    bool REN=(rightExp && !rightScalar);    bool REN=(rightExp && !rightScalar);
1427    
1428    if ((LES && RES) || (LEN && REN)) // both are Expanded scalars or both are expanded non-scalars    if ((LES && RES) || (LEN && REN))     // both are Expanded scalars or both are expanded non-scalars
1429    {    {
1430      chunksize=m_left->getNumDPPSample()*leftsize;          chunksize=m_left->getNumDPPSample()*leftsize;
1431      leftstep=0;          leftstep=0;
1432      rightstep=0;          rightstep=0;
1433      numsteps=1;          numsteps=1;
1434    }    }
1435    else if (LES || RES)    else if (LES || RES)
1436    {    {
1437      chunksize=1;          chunksize=1;
1438      if (LES)        // left is an expanded scalar          if (LES)                // left is an expanded scalar
1439      {          {
1440          if (RS)                  if (RS)
1441          {                  {
1442             leftstep=1;                     leftstep=1;
1443             rightstep=0;                     rightstep=0;
1444             numsteps=m_left->getNumDPPSample();                     numsteps=m_left->getNumDPPSample();
1445          }                  }
1446          else        // RN or REN                  else            // RN or REN
1447          {                  {
1448             leftstep=0;                     leftstep=0;
1449             oleftstep=1;                     oleftstep=1;
1450             rightstep=1;                     rightstep=1;
1451             orightstep=(RN ? -(int)rightsize : 0);                     orightstep=(RN ? -(int)rightsize : 0);
1452             numsteps=rightsize;                     numsteps=rightsize;
1453             onumsteps=m_left->getNumDPPSample();                     onumsteps=m_left->getNumDPPSample();
1454          }                  }
1455      }          }
1456      else        // right is an expanded scalar          else            // right is an expanded scalar
1457      {          {
1458          if (LS)                  if (LS)
1459          {                  {
1460             rightstep=1;                     rightstep=1;
1461             leftstep=0;                     leftstep=0;
1462             numsteps=m_right->getNumDPPSample();                     numsteps=m_right->getNumDPPSample();
1463          }                  }
1464          else                  else
1465          {                  {
1466             rightstep=0;                     rightstep=0;
1467             orightstep=1;                     orightstep=1;
1468             leftstep=1;                     leftstep=1;
1469             oleftstep=(LN ? -(int)leftsize : 0);                     oleftstep=(LN ? -(int)leftsize : 0);
1470             numsteps=leftsize;                     numsteps=leftsize;
1471             onumsteps=m_right->getNumDPPSample();                     onumsteps=m_right->getNumDPPSample();
1472          }                  }
1473      }          }
1474    }    }
1475    else  // this leaves (LEN, RS), (LEN, RN) and their transposes    else  // this leaves (LEN, RS), (LEN, RN) and their transposes
1476    {    {
1477      if (LEN)    // and Right will be a single value          if (LEN)        // and Right will be a single value
1478      {          {
1479          chunksize=rightsize;                  chunksize=rightsize;
1480          leftstep=rightsize;                  leftstep=rightsize;
1481          rightstep=0;                  rightstep=0;
1482          numsteps=m_left->getNumDPPSample();                  numsteps=m_left->getNumDPPSample();
1483          if (RS)                  if (RS)
1484          {                  {
1485             numsteps*=leftsize;                     numsteps*=leftsize;
1486          }                  }
1487      }          }
1488      else    // REN          else    // REN
1489      {          {
1490          chunksize=leftsize;                  chunksize=leftsize;
1491          rightstep=leftsize;                  rightstep=leftsize;
1492          leftstep=0;                  leftstep=0;
1493          numsteps=m_right->getNumDPPSample();                  numsteps=m_right->getNumDPPSample();
1494          if (LS)                  if (LS)
1495          {                  {
1496             numsteps*=rightsize;                     numsteps*=rightsize;
1497          }                  }
1498      }          }
1499    }    }
1500    
1501    int resultStep=max(leftstep,rightstep);   // only one (at most) should be !=0    int resultStep=max(leftstep,rightstep);       // only one (at most) should be !=0
1502      // Get the values of sub-expressions          // Get the values of sub-expressions
1503    const ValueType* left=m_left->resolveNodeSample(tid,sampleNo,lroffset);      const RealVectorType* left=m_left->resolveNodeSample(tid,sampleNo,lroffset);      
1504    const ValueType* right=m_right->resolveNodeSample(tid,sampleNo,rroffset);    const RealVectorType* right=m_right->resolveNodeSample(tid,sampleNo,rroffset);
1505  LAZYDEBUG(cout << "Post sub calls in " << toString() << endl;)  LAZYDEBUG(cout << "Post sub calls in " << toString() << endl;)
1506  LAZYDEBUG(cout << "shapes=" << DataTypes::shapeToString(m_left->getShape()) << "," << DataTypes::shapeToString(m_right->getShape()) << endl;)  LAZYDEBUG(cout << "shapes=" << DataTypes::shapeToString(m_left->getShape()) << "," << DataTypes::shapeToString(m_right->getShape()) << endl;)
1507  LAZYDEBUG(cout << "chunksize=" << chunksize << endl << "leftstep=" << leftstep << " rightstep=" << rightstep;)  LAZYDEBUG(cout << "chunksize=" << chunksize << endl << "leftstep=" << leftstep << " rightstep=" << rightstep;)
# Line 1549  LAZYDEBUG(cout << "Right res["<< rroffse Line 1515  LAZYDEBUG(cout << "Right res["<< rroffse
1515    
1516    
1517    roffset=m_samplesize*tid;    roffset=m_samplesize*tid;
1518    double* resultp=&(m_samples[roffset]);        // results are stored at the vector offset we received    double* resultp=&(m_samples[roffset]);                // results are stored at the vector offset we received
1519    switch(m_op)    switch(m_op)
1520    {    {
1521      case ADD:      case ADD:
1522          PROC_OP(NO_ARG,plus<double>());          //PROC_OP(NO_ARG,plus<double>());
1523      break;        DataMaths::binaryOpVectorLazyHelper<real_t, real_t, real_t>(resultp,
1524                 &(*left)[0],
1525                 &(*right)[0],
1526                 chunksize,
1527                 onumsteps,
1528                 numsteps,
1529                 resultStep,
1530                 leftstep,
1531                 rightstep,
1532                 oleftstep,
1533                 orightstep,
1534                 lroffset,
1535                 rroffset,
1536                 escript::ESFunction::PLUSF);  
1537            break;
1538      case SUB:      case SUB:
1539      PROC_OP(NO_ARG,minus<double>());        DataMaths::binaryOpVectorLazyHelper<real_t, real_t, real_t>(resultp,
1540      break;               &(*left)[0],
1541                 &(*right)[0],
1542                 chunksize,
1543                 onumsteps,
1544                 numsteps,
1545                 resultStep,
1546                 leftstep,
1547                 rightstep,
1548                 oleftstep,
1549                 orightstep,
1550                 lroffset,
1551                 rroffset,
1552                 escript::ESFunction::MINUSF);        
1553            //PROC_OP(NO_ARG,minus<double>());
1554            break;
1555      case MUL:      case MUL:
1556      PROC_OP(NO_ARG,multiplies<double>());          //PROC_OP(NO_ARG,multiplies<double>());
1557      break;        DataMaths::binaryOpVectorLazyHelper<real_t, real_t, real_t>(resultp,
1558                 &(*left)[0],
1559                 &(*right)[0],
1560                 chunksize,
1561                 onumsteps,
1562                 numsteps,
1563                 resultStep,
1564                 leftstep,
1565                 rightstep,
1566                 oleftstep,
1567                 orightstep,
1568                 lroffset,
1569                 rroffset,
1570                 escript::ESFunction::MULTIPLIESF);      
1571            break;
1572      case DIV:      case DIV:
1573      PROC_OP(NO_ARG,divides<double>());          //PROC_OP(NO_ARG,divides<double>());
1574      break;        DataMaths::binaryOpVectorLazyHelper<real_t, real_t, real_t>(resultp,
1575                 &(*left)[0],
1576                 &(*right)[0],
1577                 chunksize,
1578                 onumsteps,
1579                 numsteps,
1580                 resultStep,
1581                 leftstep,
1582                 rightstep,
1583                 oleftstep,
1584                 orightstep,
1585                 lroffset,
1586                 rroffset,
1587                 escript::ESFunction::DIVIDESF);          
1588            break;
1589      case POW:      case POW:
1590         PROC_OP(double (double,double),::pow);         //PROC_OP(double (double,double),::pow);
1591      break;        DataMaths::binaryOpVectorLazyHelper<real_t, real_t, real_t>(resultp,
1592                 &(*left)[0],
1593                 &(*right)[0],
1594                 chunksize,
1595                 onumsteps,
1596                 numsteps,
1597                 resultStep,
1598                 leftstep,
1599                 rightstep,
1600                 oleftstep,
1601                 orightstep,
1602                 lroffset,
1603                 rroffset,
1604                 escript::ESFunction::POWF);          
1605            break;
1606      default:      default:
1607      throw DataException("Programmer error - resolveBinary can not resolve operator "+opToString(m_op)+".");          throw DataException("Programmer error - resolveBinary can not resolve operator "+opToString(m_op)+".");
1608    }    }
1609  LAZYDEBUG(cout << "Result res[" << roffset<< "]" << m_samples[roffset] << endl;)  LAZYDEBUG(cout << "Result res[" << roffset<< "]" << m_samples[roffset] << endl;)
1610    return &m_samples;    return &m_samples;
# Line 1578  LAZYDEBUG(cout << "Result res[" << roffs Line 1614  LAZYDEBUG(cout << "Result res[" << roffs
1614  // This method assumes that any subexpressions which evaluate to Constant or Tagged Data  // This method assumes that any subexpressions which evaluate to Constant or Tagged Data
1615  // have already been collapsed to IDENTITY. So we must have at least one expanded child.  // have already been collapsed to IDENTITY. So we must have at least one expanded child.
1616  // unlike the other resolve helpers, we must treat these datapoints separately.  // unlike the other resolve helpers, we must treat these datapoints separately.
1617  const DataTypes::ValueType*  const DataTypes::RealVectorType*
1618  DataLazy::resolveNodeTProd(int tid, int sampleNo, size_t& roffset)  DataLazy::resolveNodeTProd(int tid, int sampleNo, size_t& roffset) const
1619  {  {
1620  LAZYDEBUG(cout << "Resolve TensorProduct: " << toString() << endl;)  LAZYDEBUG(cout << "Resolve TensorProduct: " << toString() << endl;)
1621    
1622    size_t lroffset=0, rroffset=0;    // offsets in the left and right result vectors    size_t lroffset=0, rroffset=0;        // offsets in the left and right result vectors
1623      // first work out which of the children are expanded          // first work out which of the children are expanded
1624    bool leftExp=(m_left->m_readytype=='E');    bool leftExp=(m_left->m_readytype=='E');
1625    bool rightExp=(m_right->m_readytype=='E');    bool rightExp=(m_right->m_readytype=='E');
1626    int steps=getNumDPPSample();    int steps=getNumDPPSample();
1627    int leftStep=(leftExp? m_left->getNoValues() : 0);        // do not have scalars as input to this method    int leftStep=(leftExp? m_left->getNoValues() : 0);            // do not have scalars as input to this method
1628    int rightStep=(rightExp?m_right->getNoValues() : 0);    int rightStep=(rightExp?m_right->getNoValues() : 0);
1629    
1630    int resultStep=getNoValues();    int resultStep=getNoValues();
1631    roffset=m_samplesize*tid;    roffset=m_samplesize*tid;
1632    size_t offset=roffset;    size_t offset=roffset;
1633    
1634    const ValueType* left=m_left->resolveNodeSample(tid, sampleNo, lroffset);    const RealVectorType* left=m_left->resolveNodeSample(tid, sampleNo, lroffset);
1635    
1636    const ValueType* right=m_right->resolveNodeSample(tid, sampleNo, rroffset);    const RealVectorType* right=m_right->resolveNodeSample(tid, sampleNo, rroffset);
1637    
1638  LAZYDEBUG(cerr << "[Left shape]=" << DataTypes::shapeToString(m_left->getShape()) << "\n[Right shape]=" << DataTypes::shapeToString(m_right->getShape()) << " result=" <<DataTypes::shapeToString(getShape()) <<  endl;  LAZYDEBUG(cerr << "[Left shape]=" << DataTypes::shapeToString(m_left->getShape()) << "\n[Right shape]=" << DataTypes::shapeToString(m_right->getShape()) << " result=" <<DataTypes::shapeToString(getShape()) <<  endl;
1639  cout << getNoValues() << endl;)  cout << getNoValues() << endl;)
# Line 1611  LAZYDEBUG(cout << "m_samplesize=" << m_s Line 1647  LAZYDEBUG(cout << "m_samplesize=" << m_s
1647  LAZYDEBUG(cout << "outputshape=" << DataTypes::shapeToString(getShape()) << endl;)  LAZYDEBUG(cout << "outputshape=" << DataTypes::shapeToString(getShape()) << endl;)
1648  LAZYDEBUG(cout << "DPPS=" << m_right->getNumDPPSample() <<"."<<endl;)  LAZYDEBUG(cout << "DPPS=" << m_right->getNumDPPSample() <<"."<<endl;)
1649    
1650    double* resultp=&(m_samples[offset]);     // results are stored at the vector offset we received    double* resultp=&(m_samples[offset]);         // results are stored at the vector offset we received
1651    switch(m_op)    switch(m_op)
1652    {    {
1653      case PROD:      case PROD:
1654      for (int i=0;i<steps;++i,resultp+=resultStep)          for (int i=0;i<steps;++i,resultp+=resultStep)
1655      {          {
1656            const double *ptr_0 = &((*left)[lroffset]);            const double *ptr_0 = &((*left)[lroffset]);
1657            const double *ptr_1 = &((*right)[rroffset]);            const double *ptr_1 = &((*right)[rroffset]);
1658    
1659  LAZYDEBUG(cout << DataTypes::pointToString(*left, m_left->getShape(),lroffset,"LEFT") << endl;)  LAZYDEBUG(cout << DataTypes::pointToString(*left, m_left->getShape(),lroffset,"LEFT") << endl;)
1660  LAZYDEBUG(cout << DataTypes::pointToString(*right,m_right->getShape(),rroffset, "RIGHT") << endl;)  LAZYDEBUG(cout << DataTypes::pointToString(*right,m_right->getShape(),rroffset, "RIGHT") << endl;)
1661    
1662            matrix_matrix_product(m_SL, m_SM, m_SR, ptr_0, ptr_1, resultp, m_transpose);            matrix_matrix_product(m_SL, m_SM, m_SR, ptr_0, ptr_1, resultp, m_transpose);
1663    
1664        lroffset+=leftStep;            lroffset+=leftStep;
1665        rroffset+=rightStep;            rroffset+=rightStep;
1666      }          }
1667      break;          break;
1668      default:      default:
1669      throw DataException("Programmer error - resolveTProduct can not resolve operator "+opToString(m_op)+".");          throw DataException("Programmer error - resolveTProduct can not resolve operator "+opToString(m_op)+".");
1670    }    }
1671    roffset=offset;    roffset=offset;
1672    return &m_samples;    return &m_samples;
1673  }  }
1674    
1675    
1676  const DataTypes::ValueType*  const DataTypes::RealVectorType*
1677  DataLazy::resolveSample(int sampleNo, size_t& roffset)  DataLazy::resolveSample(int sampleNo, size_t& roffset) const
1678  {  {
1679  #ifdef _OPENMP  #ifdef _OPENMP
1680      int tid=omp_get_thread_num();          int tid=omp_get_thread_num();
1681  #else  #else
1682      int tid=0;          int tid=0;
1683  #endif  #endif
1684    
1685  #ifdef LAZY_STACK_PROF  #ifdef LAZY_STACK_PROF
1686      stackstart[tid]=&tid;          stackstart[tid]=&tid;
1687      stackend[tid]=&tid;          stackend[tid]=&tid;
1688      const DataTypes::ValueType* r=resolveNodeSample(tid, sampleNo, roffset);          const DataTypes::RealVectorType* r=resolveNodeSample(tid, sampleNo, roffset);
1689      size_t d=(size_t)stackstart[tid]-(size_t)stackend[tid];          size_t d=(size_t)stackstart[tid]-(size_t)stackend[tid];
1690      #pragma omp critical          #pragma omp critical
1691      if (d>maxstackuse)          if (d>maxstackuse)
1692      {          {
1693  cout << "Max resolve Stack use " << d << endl;  cout << "Max resolve Stack use " << d << endl;
1694          maxstackuse=d;                  maxstackuse=d;
1695      }          }
1696      return r;          return r;
1697  #else  #else
1698      return resolveNodeSample(tid, sampleNo, roffset);          return resolveNodeSample(tid, sampleNo, roffset);
1699  #endif  #endif
1700  }  }
1701    
# Line 1669  void Line 1705  void
1705  DataLazy::resolveToIdentity()  DataLazy::resolveToIdentity()
1706  {  {
1707     if (m_op==IDENTITY)     if (m_op==IDENTITY)
1708      return;          return;
1709     DataReady_ptr p=resolveNodeWorker();     DataReady_ptr p=resolveNodeWorker();
1710     makeIdentity(p);     makeIdentity(p);
1711  }  }
# Line 1706  DataLazy::resolveGroupWorker(std::vector Line 1742  DataLazy::resolveGroupWorker(std::vector
1742  {  {
1743    if (dats.empty())    if (dats.empty())
1744    {    {
1745      return;          return;
1746    }    }
1747    vector<DataLazy*> work;    vector<DataLazy*> work;
1748    FunctionSpace fs=dats[0]->getFunctionSpace();    FunctionSpace fs=dats[0]->getFunctionSpace();
1749    bool match=true;    bool match=true;
1750    for (int i=dats.size()-1;i>=0;--i)    for (int i=dats.size()-1;i>=0;--i)
1751    {    {
1752      if (dats[i]->m_readytype!='E')          if (dats[i]->m_readytype!='E')
1753      {          {
1754          dats[i]->collapse();                  dats[i]->collapse();
1755      }          }
1756      if (dats[i]->m_op!=IDENTITY)          if (dats[i]->m_op!=IDENTITY)
1757      {          {
1758          work.push_back(dats[i]);                  work.push_back(dats[i]);
1759          if (fs!=dats[i]->getFunctionSpace())                  if (fs!=dats[i]->getFunctionSpace())
1760          {                  {
1761              match=false;                          match=false;
1762          }                  }
1763      }          }
1764    }    }
1765    if (work.empty())    if (work.empty())
1766    {    {
1767      return;     // no work to do          return;         // no work to do
1768    }    }
1769    if (match)    // all functionspaces match.  Yes I realise this is overly strict    if (match)    // all functionspaces match.  Yes I realise this is overly strict
1770    {     // it is possible that dats[0] is one of the objects which we discarded and    {             // it is possible that dats[0] is one of the objects which we discarded and
1771          // all the other functionspaces match.                  // all the other functionspaces match.
1772      vector<DataExpanded*> dep;          vector<DataExpanded*> dep;
1773      vector<ValueType*> vecs;          vector<RealVectorType*> vecs;
1774      for (int i=0;i<work.size();++i)          for (int i=0;i<work.size();++i)
1775      {          {
1776          dep.push_back(new DataExpanded(fs,work[i]->getShape(), ValueType(work[i]->getNoValues())));                  dep.push_back(new DataExpanded(fs,work[i]->getShape(), RealVectorType(work[i]->getNoValues())));
1777          vecs.push_back(&(dep[i]->getVectorRW()));                  vecs.push_back(&(dep[i]->getVectorRW()));
1778      }          }
1779      int totalsamples=work[0]->getNumSamples();          int totalsamples=work[0]->getNumSamples();
1780      const ValueType* res=0; // Storage for answer          const RealVectorType* res=0; // Storage for answer
1781      int sample;          int sample;
1782      #pragma omp parallel private(sample, res)          #pragma omp parallel private(sample, res)
1783      {          {
1784          size_t roffset=0;              size_t roffset=0;
1785          #pragma omp for schedule(static)              #pragma omp for schedule(static)
1786          for (sample=0;sample<totalsamples;++sample)              for (sample=0;sample<totalsamples;++sample)
1787          {              {
1788          roffset=0;                  roffset=0;
1789          int j;                  int j;
1790          for (j=work.size()-1;j>=0;--j)                  for (j=work.size()-1;j>=0;--j)
1791          {                  {
1792  #ifdef _OPENMP  #ifdef _OPENMP
1793                  res=work[j]->resolveNodeSample(omp_get_thread_num(),sample,roffset);                      res=work[j]->resolveNodeSample(omp_get_thread_num(),sample,roffset);
1794  #else  #else
1795                  res=work[j]->resolveNodeSample(0,sample,roffset);                      res=work[j]->resolveNodeSample(0,sample,roffset);
1796  #endif  #endif
1797                  DataVector::size_type outoffset=dep[j]->getPointOffset(sample,0);                      RealVectorType::size_type outoffset=dep[j]->getPointOffset(sample,0);
1798                  memcpy(&((*vecs[j])[outoffset]),&((*res)[roffset]),work[j]->m_samplesize*sizeof(DataVector::ElementType));                      memcpy(&((*vecs[j])[outoffset]),&((*res)[roffset]),work[j]->m_samplesize*sizeof(RealVectorType::ElementType));
1799          }                  }
1800          }              }
1801      }          }
1802      // Now we need to load the new results as identity ops into the lazy nodes          // Now we need to load the new results as identity ops into the lazy nodes
1803      for (int i=work.size()-1;i>=0;--i)          for (int i=work.size()-1;i>=0;--i)
1804      {          {
1805          work[i]->makeIdentity(boost::dynamic_pointer_cast<DataReady>(dep[i]->getPtr()));              work[i]->makeIdentity(REFCOUNTNS::dynamic_pointer_cast<DataReady>(dep[i]->getPtr()));
1806      }          }
1807    }    }
1808    else  // functionspaces do not match    else  // functionspaces do not match
1809    {    {
1810      for (int i=0;i<work.size();++i)          for (int i=0;i<work.size();++i)
1811      {          {
1812          work[i]->resolveToIdentity();                  work[i]->resolveToIdentity();
1813      }          }
1814    }    }
1815  }  }
1816    
# Line 1784  DataLazy::resolveGroupWorker(std::vector Line 1820  DataLazy::resolveGroupWorker(std::vector
1820  DataReady_ptr  DataReady_ptr
1821  DataLazy::resolveNodeWorker()  DataLazy::resolveNodeWorker()
1822  {  {
1823    if (m_readytype!='E')     // if the whole sub-expression is Constant or Tagged, then evaluate it normally    if (m_readytype!='E')         // if the whole sub-expression is Constant or Tagged, then evaluate it normally
1824    {    {
1825      collapse();      collapse();
1826    }    }
1827    if (m_op==IDENTITY)       // So a lazy expression of Constant or Tagged data will be returned here.    if (m_op==IDENTITY)           // So a lazy expression of Constant or Tagged data will be returned here.
1828    {    {
1829      return m_id;      return m_id;
1830    }    }
1831      // from this point on we must have m_op!=IDENTITY and m_readytype=='E'          // from this point on we must have m_op!=IDENTITY and m_readytype=='E'
1832    DataExpanded* result=new DataExpanded(getFunctionSpace(),getShape(),  ValueType(getNoValues()));    DataExpanded* result=new DataExpanded(getFunctionSpace(),getShape(),  RealVectorType(getNoValues()));
1833    ValueType& resvec=result->getVectorRW();    RealVectorType& resvec=result->getVectorRW();
1834    DataReady_ptr resptr=DataReady_ptr(result);    DataReady_ptr resptr=DataReady_ptr(result);
1835    
1836    int sample;    int sample;
1837    int totalsamples=getNumSamples();    int totalsamples=getNumSamples();
1838    const ValueType* res=0;   // Storage for answer    const RealVectorType* res=0;       // Storage for answer
1839  LAZYDEBUG(cout << "Total number of samples=" <<totalsamples << endl;)  LAZYDEBUG(cout << "Total number of samples=" <<totalsamples << endl;)
1840    #pragma omp parallel private(sample,res)    #pragma omp parallel private(sample,res)
1841    {    {
1842      size_t roffset=0;          size_t roffset=0;
1843  #ifdef LAZY_STACK_PROF  #ifdef LAZY_STACK_PROF
1844      stackstart[omp_get_thread_num()]=&roffset;          stackstart[omp_get_thread_num()]=&roffset;
1845      stackend[omp_get_thread_num()]=&roffset;          stackend[omp_get_thread_num()]=&roffset;
1846  #endif  #endif
1847      #pragma omp for schedule(static)          #pragma omp for schedule(static)
1848      for (sample=0;sample<totalsamples;++sample)          for (sample=0;sample<totalsamples;++sample)
1849      {          {
1850          roffset=0;                  roffset=0;
1851  #ifdef _OPENMP  #ifdef _OPENMP
1852              res=resolveNodeSample(omp_get_thread_num(),sample,roffset);                  res=resolveNodeSample(omp_get_thread_num(),sample,roffset);
1853  #else  #else
1854              res=resolveNodeSample(0,sample,roffset);                  res=resolveNodeSample(0,sample,roffset);
1855  #endif  #endif
1856  LAZYDEBUG(cout << "Sample #" << sample << endl;)  LAZYDEBUG(cout << "Sample #" << sample << endl;)
1857  LAZYDEBUG(cout << "Final res[" << roffset<< "]=" << (*res)[roffset] << (*res)[roffset]<< endl; )  LAZYDEBUG(cout << "Final res[" << roffset<< "]=" << (*res)[roffset] << (*res)[roffset]<< endl; )
1858              DataVector::size_type outoffset=result->getPointOffset(sample,0);                  RealVectorType::size_type outoffset=result->getPointOffset(sample,0);
1859              memcpy(&(resvec[outoffset]),&((*res)[roffset]),m_samplesize*sizeof(DataVector::ElementType));                  memcpy(&(resvec[outoffset]),&((*res)[roffset]),m_samplesize*sizeof(RealVectorType::ElementType));
1860      }          }
1861    }    }
1862  #ifdef LAZY_STACK_PROF  #ifdef LAZY_STACK_PROF
1863    for (int i=0;i<getNumberOfThreads();++i)    for (int i=0;i<getNumberOfThreads();++i)
1864    {    {
1865      size_t r=((size_t)stackstart[i] - (size_t)stackend[i]);          size_t r=((size_t)stackstart[i] - (size_t)stackend[i]);
1866  //  cout << i << " " << stackstart[i] << " .. " << stackend[i] << " = " <<  r << endl;  //      cout << i << " " << stackstart[i] << " .. " << stackend[i] << " = " <<  r << endl;
1867      if (r>maxstackuse)          if (r>maxstackuse)
1868      {          {
1869          maxstackuse=r;                  maxstackuse=r;
1870      }          }
1871    }    }
1872    cout << "Max resolve Stack use=" << maxstackuse << endl;    cout << "Max resolve Stack use=" << maxstackuse << endl;
1873  #endif  #endif
# Line 1845  DataLazy::toString() const Line 1881  DataLazy::toString() const
1881    oss << "Lazy Data: [depth=" << m_height<< "] ";    oss << "Lazy Data: [depth=" << m_height<< "] ";
1882    switch (escriptParams.getLAZY_STR_FMT())    switch (escriptParams.getLAZY_STR_FMT())
1883    {    {
1884    case 1:   // tree format    case 1:       // tree format
1885      oss << endl;          oss << endl;
1886      intoTreeString(oss,"");          intoTreeString(oss,"");
1887      break;          break;
1888    case 2:   // just the depth    case 2:       // just the depth
1889      break;          break;
1890    default:    default:
1891      intoString(oss);          intoString(oss);
1892      break;          break;
1893    }    }
1894    return oss.str();    return oss.str();
1895  }  }
# Line 1866  DataLazy::intoString(ostringstream& oss) Line 1902  DataLazy::intoString(ostringstream& oss)
1902    switch (getOpgroup(m_op))    switch (getOpgroup(m_op))
1903    {    {
1904    case G_IDENTITY:    case G_IDENTITY:
1905      if (m_id->isExpanded())          if (m_id->isExpanded())
1906      {          {
1907         oss << "E";             oss << "E";
1908      }          }
1909      else if (m_id->isTagged())          else if (m_id->isTagged())
1910      {          {
1911        oss << "T";            oss << "T";
1912      }          }
1913      else if (m_id->isConstant())          else if (m_id->isConstant())
1914      {          {
1915        oss << "C";            oss << "C";
1916      }          }
1917      else          else
1918      {          {
1919        oss << "?";            oss << "?";
1920      }          }
1921      oss << '@' << m_id.get();          oss << '@' << m_id.get();
1922      break;          break;
1923    case G_BINARY:    case G_BINARY:
1924      oss << '(';          oss << '(';
1925      m_left->intoString(oss);          m_left->intoString(oss);
1926      oss << ' ' << opToString(m_op) << ' ';          oss << ' ' << opToString(m_op) << ' ';
1927      m_right->intoString(oss);          m_right->intoString(oss);
1928      oss << ')';          oss << ')';
1929      break;          break;
1930    case G_UNARY:    case G_UNARY:
1931    case G_UNARY_P:    case G_UNARY_P:
1932    case G_NP1OUT:    case G_NP1OUT:
1933    case G_NP1OUT_P:    case G_NP1OUT_P:
1934    case G_REDUCTION:    case G_REDUCTION:
1935      oss << opToString(m_op) << '(';          oss << opToString(m_op) << '(';
1936      m_left->intoString(oss);          m_left->intoString(oss);
1937      oss << ')';          oss << ')';
1938      break;          break;
1939    case G_TENSORPROD:    case G_TENSORPROD:
1940      oss << opToString(m_op) << '(';          oss << opToString(m_op) << '(';
1941      m_left->intoString(oss);          m_left->intoString(oss);
1942      oss << ", ";          oss << ", ";
1943      m_right->intoString(oss);          m_right->intoString(oss);
1944      oss << ')';          oss << ')';
1945      break;          break;
1946    case G_NP1OUT_2P:    case G_NP1OUT_2P:
1947      oss << opToString(m_op) << '(';          oss << opToString(m_op) << '(';
1948      m_left->intoString(oss);          m_left->intoString(oss);
1949      oss << ", " << m_axis_offset << ", " << m_transpose;          oss << ", " << m_axis_offset << ", " << m_transpose;
1950      oss << ')';          oss << ')';
1951      break;          break;
1952    case G_CONDEVAL:    case G_CONDEVAL:
1953      oss << opToString(m_op)<< '(' ;          oss << opToString(m_op)<< '(' ;
1954      m_mask->intoString(oss);          m_mask->intoString(oss);
1955      oss << " ? ";          oss << " ? ";
1956      m_left->intoString(oss);          m_left->intoString(oss);
1957      oss << " : ";          oss << " : ";
1958      m_right->intoString(oss);          m_right->intoString(oss);
1959      oss << ')';          oss << ')';
1960      break;          break;
1961    default:    default:
1962      oss << "UNKNOWN";          oss << "UNKNOWN";
1963    }    }
1964  }  }
1965    
# Line 1935  DataLazy::intoTreeString(ostringstream& Line 1971  DataLazy::intoTreeString(ostringstream&
1971    switch (getOpgroup(m_op))    switch (getOpgroup(m_op))
1972    {    {
1973    case G_IDENTITY:    case G_IDENTITY:
1974      if (m_id->isExpanded())          if (m_id->isExpanded())
1975      {          {
1976         oss << "E";             oss << "E";
1977      }          }
1978      else if (m_id->isTagged())          else if (m_id->isTagged())
1979      {          {
1980        oss << "T";            oss << "T";
1981      }          }
1982      else if (m_id->isConstant())          else if (m_id->isConstant())
1983      {          {
1984        oss << "C";            oss << "C";
1985      }          }
1986      else          else
1987      {          {
1988        oss << "?";            oss << "?";
1989      }          }
1990      oss << '@' << m_id.get() << endl;          oss << '@' << m_id.get() << endl;
1991      break;          break;
1992    case G_BINARY:    case G_BINARY:
1993      oss << opToString(m_op) << endl;          oss << opToString(m_op) << endl;
1994      indent+='.';          indent+='.';
1995      m_left->intoTreeString(oss, indent);          m_left->intoTreeString(oss, indent);
1996      m_right->intoTreeString(oss, indent);          m_right->intoTreeString(oss, indent);
1997      break;          break;
1998    case G_UNARY:    case G_UNARY:
1999    case G_UNARY_P:    case G_UNARY_P:
2000    case G_NP1OUT:    case G_NP1OUT:
2001    case G_NP1OUT_P:    case G_NP1OUT_P:
2002    case G_REDUCTION:    case G_REDUCTION:
2003      oss << opToString(m_op) << endl;          oss << opToString(m_op) << endl;
2004      indent+='.';          indent+='.';
2005      m_left->intoTreeString(oss, indent);          m_left->intoTreeString(oss, indent);
2006      break;          break;
2007    case G_TENSORPROD:    case G_TENSORPROD:
2008      oss << opToString(m_op) << endl;          oss << opToString(m_op) << endl;
2009      indent+='.';          indent+='.';
2010      m_left->intoTreeString(oss, indent);          m_left->intoTreeString(oss, indent);
2011      m_right->intoTreeString(oss, indent);          m_right->intoTreeString(oss, indent);
2012      break;          break;
2013    case G_NP1OUT_2P:    case G_NP1OUT_2P:
2014      oss << opToString(m_op) << ", " << m_axis_offset << ", " << m_transpose<< endl;          oss << opToString(m_op) << ", " << m_axis_offset << ", " << m_transpose<< endl;
2015      indent+='.';          indent+='.';
2016      m_left->intoTreeString(oss, indent);          m_left->intoTreeString(oss, indent);
2017      break;          break;
2018    default:    default:
2019      oss << "UNKNOWN";          oss << "UNKNOWN";
2020    }    }
2021  }  }
2022    
2023    
2024  DataAbstract*  DataAbstract*
2025  DataLazy::deepCopy()  DataLazy::deepCopy() const
2026  {  {
2027    switch (getOpgroup(m_op))    switch (getOpgroup(m_op))
2028    {    {
2029    case G_IDENTITY:  return new DataLazy(m_id->deepCopy()->getPtr());    case G_IDENTITY:  return new DataLazy(m_id->deepCopy()->getPtr());
2030    case G_UNARY:    case G_UNARY:
2031    case G_REDUCTION:      return new DataLazy(m_left->deepCopy()->getPtr(),m_op);    case G_REDUCTION:      return new DataLazy(m_left->deepCopy()->getPtr(),m_op);
2032    case G_UNARY_P:   return new DataLazy(m_left->deepCopy()->getPtr(), m_op, m_tol);    case G_UNARY_P:       return new DataLazy(m_left->deepCopy()->getPtr(), m_op, m_tol);
2033    case G_BINARY:    return new DataLazy(m_left->deepCopy()->getPtr(),m_right->deepCopy()->getPtr(),m_op);    case G_BINARY:        return new DataLazy(m_left->deepCopy()->getPtr(),m_right->deepCopy()->getPtr(),m_op);
2034    case G_NP1OUT: return new DataLazy(m_left->deepCopy()->getPtr(), m_right->deepCopy()->getPtr(),m_op);    case G_NP1OUT: return new DataLazy(m_left->deepCopy()->getPtr(), m_right->deepCopy()->getPtr(),m_op);
2035    case G_TENSORPROD: return new DataLazy(m_left->deepCopy()->getPtr(), m_right->deepCopy()->getPtr(), m_op, m_axis_offset, m_transpose);    case G_TENSORPROD: return new DataLazy(m_left->deepCopy()->getPtr(), m_right->deepCopy()->getPtr(), m_op, m_axis_offset, m_transpose);
2036    case G_NP1OUT_P:   return new DataLazy(m_left->deepCopy()->getPtr(),m_op,  m_axis_offset);    case G_NP1OUT_P:   return new DataLazy(m_left->deepCopy()->getPtr(),m_op,  m_axis_offset);
2037    case G_NP1OUT_2P:  return new DataLazy(m_left->deepCopy()->getPtr(), m_op, m_axis_offset, m_transpose);    case G_NP1OUT_2P:  return new DataLazy(m_left->deepCopy()->getPtr(), m_op, m_axis_offset, m_transpose);
2038    default:    default:
2039      throw DataException("Programmer error - do not know how to deepcopy operator "+opToString(m_op)+".");          throw DataException("Programmer error - do not know how to deepcopy operator "+opToString(m_op)+".");
2040    }    }
2041  }  }
2042    
# Line 2012  DataLazy::deepCopy() Line 2048  DataLazy::deepCopy()
2048  // or it could be some function of the lengths of the DataReady instances which  // or it could be some function of the lengths of the DataReady instances which
2049  // form part of the expression.  // form part of the expression.
2050  // Rather than have people making assumptions, I have disabled the method.  // Rather than have people making assumptions, I have disabled the method.
2051  DataTypes::ValueType::size_type  DataTypes::RealVectorType::size_type
2052  DataLazy::getLength() const  DataLazy::getLength() const
2053  {  {
2054    throw DataException("getLength() does not make sense for lazy data.");    throw DataException("getLength() does not make sense for lazy data.");
# Line 2027  DataLazy::getSlice(const DataTypes::Regi Line 2063  DataLazy::getSlice(const DataTypes::Regi
2063    
2064    
2065  // To do this we need to rely on our child nodes  // To do this we need to rely on our child nodes
2066  DataTypes::ValueType::size_type  DataTypes::RealVectorType::size_type
2067  DataLazy::getPointOffset(int sampleNo,  DataLazy::getPointOffset(int sampleNo,
2068                   int dataPointNo)                   int dataPointNo)
2069  {  {
2070    if (m_op==IDENTITY)    if (m_op==IDENTITY)
2071    {    {
2072      return m_id->getPointOffset(sampleNo,dataPointNo);          return m_id->getPointOffset(sampleNo,dataPointNo);
2073    }    }
2074    if (m_readytype!='E')    if (m_readytype!='E')
2075    {    {
2076      collapse();          collapse();
2077      return m_id->getPointOffset(sampleNo,dataPointNo);          return m_id->getPointOffset(sampleNo,dataPointNo);
2078    }    }
2079    // at this point we do not have an identity node and the expression will be Expanded    // at this point we do not have an identity node and the expression will be Expanded
2080    // so we only need to know which child to ask    // so we only need to know which child to ask
2081    if (m_left->m_readytype=='E')    if (m_left->m_readytype=='E')
2082    {    {
2083      return m_left->getPointOffset(sampleNo,dataPointNo);          return m_left->getPointOffset(sampleNo,dataPointNo);
2084    }    }
2085    else    else
2086    {    {
2087      return m_right->getPointOffset(sampleNo,dataPointNo);          return m_right->getPointOffset(sampleNo,dataPointNo);
2088    }    }
2089  }  }
2090    
2091  // To do this we need to rely on our child nodes  // To do this we need to rely on our child nodes
2092  DataTypes::ValueType::size_type  DataTypes::RealVectorType::size_type
2093  DataLazy::getPointOffset(int sampleNo,  DataLazy::getPointOffset(int sampleNo,
2094                   int dataPointNo) const                   int dataPointNo) const
2095  {  {
2096    if (m_op==IDENTITY)    if (m_op==IDENTITY)
2097    {    {
2098      return m_id->getPointOffset(sampleNo,dataPointNo);          return m_id->getPointOffset(sampleNo,dataPointNo);
2099    }    }
2100    if (m_readytype=='E')    if (m_readytype=='E')
2101    {    {
# Line 2067  DataLazy::getPointOffset(int sampleNo, Line 2103  DataLazy::getPointOffset(int sampleNo,
2103      // so we only need to know which child to ask      // so we only need to know which child to ask
2104      if (m_left->m_readytype=='E')      if (m_left->m_readytype=='E')
2105      {      {
2106      return m_left->getPointOffset(sampleNo,dataPointNo);          return m_left->getPointOffset(sampleNo,dataPointNo);
2107      }      }
2108      else      else
2109      {      {
2110      return m_right->getPointOffset(sampleNo,dataPointNo);          return m_right->getPointOffset(sampleNo,dataPointNo);
2111      }      }
2112    }    }
2113    if (m_readytype=='C')    if (m_readytype=='C')
2114    {    {
2115      return m_left->getPointOffset(sampleNo,dataPointNo); // which child doesn't matter          return m_left->getPointOffset(sampleNo,dataPointNo); // which child doesn't matter
2116    }    }
2117    throw DataException("Programmer error - getPointOffset on lazy data may require collapsing (but this object is marked const).");    throw DataException("Programmer error - getPointOffset on lazy data may require collapsing (but this object is marked const).");
2118  }  }
# Line 2086  DataLazy::getPointOffset(int sampleNo, Line 2122  DataLazy::getPointOffset(int sampleNo,
2122  void  void
2123  DataLazy::setToZero()  DataLazy::setToZero()
2124  {  {
2125  //   DataTypes::ValueType v(getNoValues(),0);  //   DataTypes::RealVectorType v(getNoValues(),0);
2126  //   m_id=DataReady_ptr(new DataConstant(getFunctionSpace(),getShape(),v));  //   m_id=DataReady_ptr(new DataConstant(getFunctionSpace(),getShape(),v));
2127  //   m_op=IDENTITY;  //   m_op=IDENTITY;
2128  //   m_right.reset();    //   m_right.reset();  
# Line 2094  DataLazy::setToZero() Line 2130  DataLazy::setToZero()
2130  //   m_readytype='C';  //   m_readytype='C';
2131  //   m_buffsRequired=1;  //   m_buffsRequired=1;
2132    
2133    privdebug=privdebug;  // to stop the compiler complaining about unused privdebug    (void)privdebug;  // to stop the compiler complaining about unused privdebug
2134    throw DataException("Programmer error - setToZero not supported for DataLazy (DataLazy objects should be read only).");    throw DataException("Programmer error - setToZero not supported for DataLazy (DataLazy objects should be read only).");
2135  }  }
2136    
2137  bool  bool
2138  DataLazy::actsExpanded() const  DataLazy::actsExpanded() const
2139  {  {
2140      return (m_readytype=='E');          return (m_readytype=='E');
2141  }  }
2142    
2143  }   // end namespace  } // end namespace
2144    

Legend:
Removed from v.4286  
changed lines
  Added in v.6082

  ViewVC Help
Powered by ViewVC 1.1.26