/[escript]/branches/clazy/escriptcore/src/DataLazy.cpp
ViewVC logotype

Diff of /branches/clazy/escriptcore/src/DataLazy.cpp

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

trunk/escript/src/DataLazy.cpp revision 4286 by caltinay, Thu Mar 7 04:28:11 2013 UTC trunk/escriptcore/src/DataLazy.cpp revision 6088 by jfenwick, Wed Mar 23 00:44:58 2016 UTC
# Line 1  Line 1 
1    
2  /*****************************************************************************  /*****************************************************************************
3  *  *
4  * Copyright (c) 2003-2013 by University of Queensland  * Copyright (c) 2003-2016 by The University of Queensland
5  * http://www.uq.edu.au  * http://www.uq.edu.au
6  *  *
7  * Primary Business: Queensland, Australia  * Primary Business: Queensland, Australia
# Line 9  Line 9 
9  * http://www.opensource.org/licenses/osl-3.0.php  * http://www.opensource.org/licenses/osl-3.0.php
10  *  *
11  * Development until 2012 by Earth Systems Science Computational Center (ESSCC)  * Development until 2012 by Earth Systems Science Computational Center (ESSCC)
12  * Development since 2012 by School of Earth Sciences  * Development 2012-2013 by School of Earth Sciences
13    * Development from 2014 by Centre for Geoscience Computing (GeoComp)
14  *  *
15  *****************************************************************************/  *****************************************************************************/
16    
   
17  #include "DataLazy.h"  #include "DataLazy.h"
 #include "esysUtils/Esys_MPI.h"  
 #ifdef _OPENMP  
 #include <omp.h>  
 #endif  
 #include "FunctionSpace.h"  
 #include "DataTypes.h"  
18  #include "Data.h"  #include "Data.h"
19  #include "UnaryFuncs.h"     // for escript::fsign  #include "DataTypes.h"
 #include "Utils.h"  
   
20  #include "EscriptParams.h"  #include "EscriptParams.h"
21    #include "FunctionSpace.h"
22    #include "Utils.h"
23    #include "DataVectorOps.h"
24    
25  #ifdef USE_NETCDF  #ifdef USE_NETCDF
26  #include <netcdfcpp.h>  #include <netcdfcpp.h>
27  #endif  #endif
28    
29  #include <iomanip>      // for some fancy formatting in debug  #include <iomanip> // for some fancy formatting in debug
30    
31    using namespace escript::DataTypes;
32    
33    #define NO_ARG
34    
35  // #define LAZYDEBUG(X) if (privdebug){X;}  // #define LAZYDEBUG(X) if (privdebug){X;}
36  #define LAZYDEBUG(X)  #define LAZYDEBUG(X)
# Line 69  I will refer to individual DataLazy obje Line 68  I will refer to individual DataLazy obje
68    
69  Each node also stores:  Each node also stores:
70  - m_readytype \in {'E','T','C','?'} ~ indicates what sort of DataReady would be produced if the expression was  - m_readytype \in {'E','T','C','?'} ~ indicates what sort of DataReady would be produced if the expression was
71      evaluated.          evaluated.
72  - m_buffsrequired ~ the large number of samples which would need to be kept simultaneously in order to  - m_buffsrequired ~ the large number of samples which would need to be kept simultaneously in order to
73      evaluate the expression.          evaluate the expression.
74  - m_samplesize ~ the number of doubles stored in a sample.  - m_samplesize ~ the number of doubles stored in a sample.
75    
76  When a new node is created, the above values are computed based on the values in the child nodes.  When a new node is created, the above values are computed based on the values in the child nodes.
# Line 136  enum ES_opgroup Line 135  enum ES_opgroup
135  {  {
136     G_UNKNOWN,     G_UNKNOWN,
137     G_IDENTITY,     G_IDENTITY,
138     G_BINARY,        // pointwise operations with two arguments     G_BINARY,            // pointwise operations with two arguments
139     G_UNARY,     // pointwise operations with one argument     G_UNARY,             // pointwise operations with one argument
140     G_UNARY_P,       // pointwise operations with one argument, requiring a parameter     G_UNARY_P,           // pointwise operations with one argument, requiring a parameter
141     G_NP1OUT,        // non-pointwise op with one output     G_NP1OUT,            // non-pointwise op with one output
142     G_NP1OUT_P,      // non-pointwise op with one output requiring a parameter     G_NP1OUT_P,          // non-pointwise op with one output requiring a parameter
143     G_TENSORPROD,    // general tensor product     G_TENSORPROD,        // general tensor product
144     G_NP1OUT_2P,     // non-pointwise op with one output requiring two params     G_NP1OUT_2P,         // non-pointwise op with one output requiring two params
145     G_REDUCTION,     // non-pointwise unary op with a scalar output     G_REDUCTION,         // non-pointwise unary op with a scalar output
146     G_CONDEVAL     G_CONDEVAL
147  };  };
148    
# Line 151  enum ES_opgroup Line 150  enum ES_opgroup
150    
151    
152  string ES_opstrings[]={"UNKNOWN","IDENTITY","+","-","*","/","^",  string ES_opstrings[]={"UNKNOWN","IDENTITY","+","-","*","/","^",
153              "sin","cos","tan",                          "sin","cos","tan",
154              "asin","acos","atan","sinh","cosh","tanh","erf",                          "asin","acos","atan","sinh","cosh","tanh","erf",
155              "asinh","acosh","atanh",                          "asinh","acosh","atanh",
156              "log10","log","sign","abs","neg","pos","exp","sqrt",                          "log10","log","sign","abs","neg","pos","exp","sqrt",
157              "1/","where>0","where<0","where>=0","where<=0", "where<>0","where=0",                          "1/","where>0","where<0","where>=0","where<=0", "where<>0","where=0",
158              "symmetric","nonsymmetric",                          "symmetric","nonsymmetric",
159              "prod",                          "prod",
160              "transpose", "trace",                          "transpose", "trace",
161              "swapaxes",                          "swapaxes",
162              "minval", "maxval",                          "minval", "maxval",
163              "condEval"};                          "condEval"};
164  int ES_opcount=44;  int ES_opcount=44;
165  ES_opgroup opgroups[]={G_UNKNOWN,G_IDENTITY,G_BINARY,G_BINARY,G_BINARY,G_BINARY, G_BINARY,  ES_opgroup opgroups[]={G_UNKNOWN,G_IDENTITY,G_BINARY,G_BINARY,G_BINARY,G_BINARY, G_BINARY,
166              G_UNARY,G_UNARY,G_UNARY, //10                          G_UNARY,G_UNARY,G_UNARY, //10
167              G_UNARY,G_UNARY,G_UNARY,G_UNARY,G_UNARY,G_UNARY,G_UNARY,    // 17                          G_UNARY,G_UNARY,G_UNARY,G_UNARY,G_UNARY,G_UNARY,G_UNARY,        // 17
168              G_UNARY,G_UNARY,G_UNARY,                    // 20                          G_UNARY,G_UNARY,G_UNARY,                                        // 20
169              G_UNARY,G_UNARY,G_UNARY,G_UNARY,G_UNARY,G_UNARY,G_UNARY,G_UNARY,    // 28                          G_UNARY,G_UNARY,G_UNARY,G_UNARY,G_UNARY,G_UNARY,G_UNARY,G_UNARY,        // 28
170              G_UNARY,G_UNARY,G_UNARY,G_UNARY,G_UNARY, G_UNARY_P, G_UNARY_P,      // 35                          G_UNARY,G_UNARY,G_UNARY,G_UNARY,G_UNARY, G_UNARY_P, G_UNARY_P,          // 35
171              G_NP1OUT,G_NP1OUT,                          G_NP1OUT,G_NP1OUT,
172              G_TENSORPROD,                          G_TENSORPROD,
173              G_NP1OUT_P, G_NP1OUT_P,                          G_NP1OUT_P, G_NP1OUT_P,
174              G_NP1OUT_2P,                          G_NP1OUT_2P,
175              G_REDUCTION, G_REDUCTION,                          G_REDUCTION, G_REDUCTION,
176              G_CONDEVAL};                          G_CONDEVAL};
177  inline  inline
178  ES_opgroup  ES_opgroup
179  getOpgroup(ES_optype op)  getOpgroup(ES_optype op)
# Line 186  getOpgroup(ES_optype op) Line 185  getOpgroup(ES_optype op)
185  FunctionSpace  FunctionSpace
186  resultFS(DataAbstract_ptr left, DataAbstract_ptr right, ES_optype op)  resultFS(DataAbstract_ptr left, DataAbstract_ptr right, ES_optype op)
187  {  {
188      // perhaps this should call interpolate and throw or something?          // perhaps this should call interpolate and throw or something?
189      // maybe we need an interpolate node -          // maybe we need an interpolate node -
190      // that way, if interpolate is required in any other op we can just throw a          // that way, if interpolate is required in any other op we can just throw a
191      // programming error exception.          // programming error exception.
192    
193    FunctionSpace l=left->getFunctionSpace();    FunctionSpace l=left->getFunctionSpace();
194    FunctionSpace r=right->getFunctionSpace();    FunctionSpace r=right->getFunctionSpace();
# Line 198  resultFS(DataAbstract_ptr left, DataAbst Line 197  resultFS(DataAbstract_ptr left, DataAbst
197      signed char res=r.getDomain()->preferredInterpolationOnDomain(r.getTypeCode(), l.getTypeCode());      signed char res=r.getDomain()->preferredInterpolationOnDomain(r.getTypeCode(), l.getTypeCode());
198      if (res==1)      if (res==1)
199      {      {
200      return l;          return l;
201      }      }
202      if (res==-1)      if (res==-1)
203      {      {
204      return r;          return r;
205      }      }
206      throw DataException("Cannot interpolate between the FunctionSpaces given for operation "+opToString(op)+".");      throw DataException("Cannot interpolate between the FunctionSpaces given for operation "+opToString(op)+".");
207    }    }
# Line 214  resultFS(DataAbstract_ptr left, DataAbst Line 213  resultFS(DataAbstract_ptr left, DataAbst
213  DataTypes::ShapeType  DataTypes::ShapeType
214  resultShape(DataAbstract_ptr left, DataAbstract_ptr right, ES_optype op)  resultShape(DataAbstract_ptr left, DataAbstract_ptr right, ES_optype op)
215  {  {
216      if (left->getShape()!=right->getShape())          if (left->getShape()!=right->getShape())
217      {          {
218        if ((getOpgroup(op)!=G_BINARY) && (getOpgroup(op)!=G_NP1OUT))            if ((getOpgroup(op)!=G_BINARY) && (getOpgroup(op)!=G_NP1OUT))
219        {            {
220          throw DataException("Shapes not the name - shapes must match for (point)binary operations.");                  throw DataException("Shapes not the name - shapes must match for (point)binary operations.");
221        }            }
222    
223        if (left->getRank()==0)   // we need to allow scalar * anything            if (left->getRank()==0)       // we need to allow scalar * anything
224        {            {
225          return right->getShape();                  return right->getShape();
226        }            }
227        if (right->getRank()==0)            if (right->getRank()==0)
228        {            {
229          return left->getShape();                  return left->getShape();
230        }            }
231        throw DataException("Shapes not the same - arguments must have matching shapes (or be scalars) for (point)binary operations on lazy data.");            throw DataException("Shapes not the same - arguments must have matching shapes (or be scalars) for (point)binary operations on lazy data.");
232      }          }
233      return left->getShape();          return left->getShape();
234  }  }
235    
236  // return the shape for "op left"  // return the shape for "op left"
# Line 239  resultShape(DataAbstract_ptr left, DataA Line 238  resultShape(DataAbstract_ptr left, DataA
238  DataTypes::ShapeType  DataTypes::ShapeType
239  resultShape(DataAbstract_ptr left, ES_optype op, int axis_offset)  resultShape(DataAbstract_ptr left, ES_optype op, int axis_offset)
240  {  {
241      switch(op)          switch(op)
242      {          {
243          case TRANS:          case TRANS:
244         {            // for the scoping of variables             {                    // for the scoping of variables
245          const DataTypes::ShapeType& s=left->getShape();                  const DataTypes::ShapeType& s=left->getShape();
246          DataTypes::ShapeType sh;                  DataTypes::ShapeType sh;
247          int rank=left->getRank();                  int rank=left->getRank();
248          if (axis_offset<0 || axis_offset>rank)                  if (axis_offset<0 || axis_offset>rank)
249          {                  {
250              stringstream e;              stringstream e;
251              e << "Error - Data::transpose must have 0 <= axis_offset <= rank=" << rank;              e << "Error - Data::transpose must have 0 <= axis_offset <= rank=" << rank;
252              throw DataException(e.str());              throw DataException(e.str());
253          }          }
254          for (int i=0; i<rank; i++)          for (int i=0; i<rank; i++)
255          {                  {
256             int index = (axis_offset+i)%rank;                     int index = (axis_offset+i)%rank;
257             sh.push_back(s[index]); // Append to new shape             sh.push_back(s[index]); // Append to new shape
258          }          }
259          return sh;                  return sh;
260         }             }
261      break;          break;
262      case TRACE:          case TRACE:
263         {             {
264          int rank=left->getRank();                  int rank=left->getRank();
265          if (rank<2)                  if (rank<2)
266          {                  {
267             throw DataException("Trace can only be computed for objects with rank 2 or greater.");                     throw DataException("Trace can only be computed for objects with rank 2 or greater.");
268          }                  }
269          if ((axis_offset>rank-2) || (axis_offset<0))                  if ((axis_offset>rank-2) || (axis_offset<0))
270          {                  {
271             throw DataException("Trace: axis offset must lie between 0 and rank-2 inclusive.");                     throw DataException("Trace: axis offset must lie between 0 and rank-2 inclusive.");
272          }                  }
273          if (rank==2)                  if (rank==2)
274          {                  {
275             return DataTypes::scalarShape;                     return DataTypes::scalarShape;
276          }                  }
277          else if (rank==3)                  else if (rank==3)
278          {                  {
279             DataTypes::ShapeType sh;                     DataTypes::ShapeType sh;
280                 if (axis_offset==0)                     if (axis_offset==0)
281             {                     {
282                  sh.push_back(left->getShape()[2]);                          sh.push_back(left->getShape()[2]);
283                 }                     }
284                 else     // offset==1                     else         // offset==1
285             {                     {
286              sh.push_back(left->getShape()[0]);                          sh.push_back(left->getShape()[0]);
287                 }                     }
288             return sh;                     return sh;
289          }                  }
290          else if (rank==4)                  else if (rank==4)
291          {                  {
292             DataTypes::ShapeType sh;                     DataTypes::ShapeType sh;
293             const DataTypes::ShapeType& s=left->getShape();                     const DataTypes::ShapeType& s=left->getShape();
294                 if (axis_offset==0)                     if (axis_offset==0)
295             {                     {
296                  sh.push_back(s[2]);                          sh.push_back(s[2]);
297                  sh.push_back(s[3]);                          sh.push_back(s[3]);
298                 }                     }
299                 else if (axis_offset==1)                     else if (axis_offset==1)
300             {                     {
301                  sh.push_back(s[0]);                          sh.push_back(s[0]);
302                  sh.push_back(s[3]);                          sh.push_back(s[3]);
303                 }                     }
304             else     // offset==2                     else         // offset==2
305             {                     {
306              sh.push_back(s[0]);                          sh.push_back(s[0]);
307              sh.push_back(s[1]);                          sh.push_back(s[1]);
308             }                     }
309             return sh;                     return sh;
310          }                  }
311          else        // unknown rank                  else            // unknown rank
312          {                  {
313             throw DataException("Error - Data::trace can only be calculated for rank 2, 3 or 4 object.");                     throw DataException("Error - Data::trace can only be calculated for rank 2, 3 or 4 object.");
314          }                  }
315         }             }
316      break;          break;
317          default:          default:
318      throw DataException("Programmer error - resultShape(left,op) can't compute shapes for operator "+opToString(op)+".");          throw DataException("Programmer error - resultShape(left,op) can't compute shapes for operator "+opToString(op)+".");
319      }          }
320  }  }
321    
322  DataTypes::ShapeType  DataTypes::ShapeType
# Line 373  SwapShape(DataAbstract_ptr left, const i Line 372  SwapShape(DataAbstract_ptr left, const i
372  DataTypes::ShapeType  DataTypes::ShapeType
373  GTPShape(DataAbstract_ptr left, DataAbstract_ptr right, int axis_offset, int transpose, int& SL, int& SM, int& SR)  GTPShape(DataAbstract_ptr left, DataAbstract_ptr right, int axis_offset, int transpose, int& SL, int& SM, int& SR)
374  {  {
375                
376    // Get rank and shape of inputs    // Get rank and shape of inputs
377    int rank0 = left->getRank();    int rank0 = left->getRank();
378    int rank1 = right->getRank();    int rank1 = right->getRank();
# Line 382  GTPShape(DataAbstract_ptr left, DataAbst Line 381  GTPShape(DataAbstract_ptr left, DataAbst
381    
382    // Prepare for the loops of the product and verify compatibility of shapes    // Prepare for the loops of the product and verify compatibility of shapes
383    int start0=0, start1=0;    int start0=0, start1=0;
384    if (transpose == 0)       {}    if (transpose == 0)           {}
385    else if (transpose == 1)  { start0 = axis_offset; }    else if (transpose == 1)      { start0 = axis_offset; }
386    else if (transpose == 2)  { start1 = rank1-axis_offset; }    else if (transpose == 2)      { start1 = rank1-axis_offset; }
387    else              { throw DataException("DataLazy GeneralTensorProduct Constructor: Error - transpose should be 0, 1 or 2"); }    else                          { throw DataException("DataLazy GeneralTensorProduct Constructor: Error - transpose should be 0, 1 or 2"); }
388    
389    if (rank0<axis_offset)    if (rank0<axis_offset)
390    {    {
391      throw DataException("DataLazy GeneralTensorProduct Constructor: Error - rank of left < axisoffset");          throw DataException("DataLazy GeneralTensorProduct Constructor: Error - rank of left < axisoffset");
392    }    }
393    
394    // Adjust the shapes for transpose    // Adjust the shapes for transpose
395    DataTypes::ShapeType tmpShape0(rank0);    // pre-sizing the vectors rather    DataTypes::ShapeType tmpShape0(rank0);        // pre-sizing the vectors rather
396    DataTypes::ShapeType tmpShape1(rank1);    // than using push_back    DataTypes::ShapeType tmpShape1(rank1);        // than using push_back
397    for (int i=0; i<rank0; i++)   { tmpShape0[i]=shape0[(i+start0)%rank0]; }    for (int i=0; i<rank0; i++)   { tmpShape0[i]=shape0[(i+start0)%rank0]; }
398    for (int i=0; i<rank1; i++)   { tmpShape1[i]=shape1[(i+start1)%rank1]; }    for (int i=0; i<rank1; i++)   { tmpShape1[i]=shape1[(i+start1)%rank1]; }
399    
400    // Prepare for the loops of the product    // Prepare for the loops of the product
401    SL=1, SM=1, SR=1;    SL=1, SM=1, SR=1;
402    for (int i=0; i<rank0-axis_offset; i++)   {    for (int i=0; i<rank0-axis_offset; i++)       {
403      SL *= tmpShape0[i];      SL *= tmpShape0[i];
404    }    }
405    for (int i=rank0-axis_offset; i<rank0; i++)   {    for (int i=rank0-axis_offset; i<rank0; i++)   {
406      if (tmpShape0[i] != tmpShape1[i-(rank0-axis_offset)]) {      if (tmpShape0[i] != tmpShape1[i-(rank0-axis_offset)]) {
407        throw DataException("C_GeneralTensorProduct: Error - incompatible shapes");        throw DataException("C_GeneralTensorProduct: Error - incompatible shapes");
408      }      }
409      SM *= tmpShape0[i];      SM *= tmpShape0[i];
410    }    }
411    for (int i=axis_offset; i<rank1; i++)     {    for (int i=axis_offset; i<rank1; i++)         {
412      SR *= tmpShape1[i];      SR *= tmpShape1[i];
413    }    }
414    
415    // Define the shape of the output (rank of shape is the sum of the loop ranges below)    // Define the shape of the output (rank of shape is the sum of the loop ranges below)
416    DataTypes::ShapeType shape2(rank0+rank1-2*axis_offset);      DataTypes::ShapeType shape2(rank0+rank1-2*axis_offset);      
417    {         // block to limit the scope of out_index    {                     // block to limit the scope of out_index
418       int out_index=0;       int out_index=0;
419       for (int i=0; i<rank0-axis_offset; i++, ++out_index) { shape2[out_index]=tmpShape0[i]; } // First part of arg_0_Z       for (int i=0; i<rank0-axis_offset; i++, ++out_index) { shape2[out_index]=tmpShape0[i]; } // First part of arg_0_Z
420       for (int i=axis_offset; i<rank1; i++, ++out_index)   { shape2[out_index]=tmpShape1[i]; } // Last part of arg_1_Z       for (int i=axis_offset; i<rank1; i++, ++out_index)   { shape2[out_index]=tmpShape1[i]; } // Last part of arg_1_Z
# Line 431  GTPShape(DataAbstract_ptr left, DataAbst Line 430  GTPShape(DataAbstract_ptr left, DataAbst
430    return shape2;    return shape2;
431  }  }
432    
433  }   // end anonymous namespace  }       // end anonymous namespace
434    
435    
436    
# Line 466  void DataLazy::LazyNodeSetup() Line 465  void DataLazy::LazyNodeSetup()
465    
466  // Creates an identity node  // Creates an identity node
467  DataLazy::DataLazy(DataAbstract_ptr p)  DataLazy::DataLazy(DataAbstract_ptr p)
468      : parent(p->getFunctionSpace(),p->getShape())          : parent(p->getFunctionSpace(),p->getShape())
469      ,m_sampleids(0),          ,m_sampleids(0),
470      m_samples(1)          m_samples(1)
471  {  {
472     if (p->isLazy())     if (p->isLazy())
473     {     {
474      // I don't want identity of Lazy.          // I don't want identity of Lazy.
475      // Question: Why would that be so bad?          // Question: Why would that be so bad?
476      // Answer: We assume that the child of ID is something we can call getVector on          // Answer: We assume that the child of ID is something we can call getVector on
477      throw DataException("Programmer error - attempt to create identity from a DataLazy.");          throw DataException("Programmer error - attempt to create identity from a DataLazy.");
478     }     }
479     else     else
480     {     {
481      p->makeLazyShared();          DataReady_ptr dr=dynamic_pointer_cast<DataReady>(p);
482      DataReady_ptr dr=dynamic_pointer_cast<DataReady>(p);          makeIdentity(dr);
     makeIdentity(dr);  
483  LAZYDEBUG(cout << "Wrapping " << dr.get() << " id=" << m_id.get() << endl;)  LAZYDEBUG(cout << "Wrapping " << dr.get() << " id=" << m_id.get() << endl;)
484     }     }
485  LAZYDEBUG(cout << "(1)Lazy created with " << m_samplesize << endl;)  LAZYDEBUG(cout << "(1)Lazy created with " << m_samplesize << endl;)
486  }  }
487    
488  DataLazy::DataLazy(DataAbstract_ptr left, ES_optype op)  DataLazy::DataLazy(DataAbstract_ptr left, ES_optype op)
489      : parent(left->getFunctionSpace(),(getOpgroup(op)!=G_REDUCTION)?left->getShape():DataTypes::scalarShape),          : parent(left->getFunctionSpace(),(getOpgroup(op)!=G_REDUCTION)?left->getShape():DataTypes::scalarShape),
490      m_op(op),          m_op(op),
491      m_axis_offset(0),          m_axis_offset(0),
492      m_transpose(0),          m_transpose(0),
493      m_SL(0), m_SM(0), m_SR(0)          m_SL(0), m_SM(0), m_SR(0)
494  {  {
495     if ((getOpgroup(op)!=G_UNARY) && (getOpgroup(op)!=G_NP1OUT) && (getOpgroup(op)!=G_REDUCTION))     if ((getOpgroup(op)!=G_UNARY) && (getOpgroup(op)!=G_NP1OUT) && (getOpgroup(op)!=G_REDUCTION))
496     {     {
497      throw DataException("Programmer error - constructor DataLazy(left, op) will only process UNARY operations.");          throw DataException("Programmer error - constructor DataLazy(left, op) will only process UNARY operations.");
498     }     }
499    
500     DataLazy_ptr lleft;     DataLazy_ptr lleft;
501     if (!left->isLazy())     if (!left->isLazy())
502     {     {
503      lleft=DataLazy_ptr(new DataLazy(left));          lleft=DataLazy_ptr(new DataLazy(left));
504     }     }
505     else     else
506     {     {
507      lleft=dynamic_pointer_cast<DataLazy>(left);          lleft=dynamic_pointer_cast<DataLazy>(left);
508     }     }
509     m_readytype=lleft->m_readytype;     m_readytype=lleft->m_readytype;
510     m_left=lleft;     m_left=lleft;
# Line 520  DataLazy::DataLazy(DataAbstract_ptr left Line 518  DataLazy::DataLazy(DataAbstract_ptr left
518    
519  // In this constructor we need to consider interpolation  // In this constructor we need to consider interpolation
520  DataLazy::DataLazy(DataAbstract_ptr left, DataAbstract_ptr right, ES_optype op)  DataLazy::DataLazy(DataAbstract_ptr left, DataAbstract_ptr right, ES_optype op)
521      : parent(resultFS(left,right,op), resultShape(left,right,op)),          : parent(resultFS(left,right,op), resultShape(left,right,op)),
522      m_op(op),          m_op(op),
523      m_SL(0), m_SM(0), m_SR(0)          m_SL(0), m_SM(0), m_SR(0)
524  {  {
525  LAZYDEBUG(cout << "Forming operator with " << left.get() << " " << right.get() << endl;)  LAZYDEBUG(cout << "Forming operator with " << left.get() << " " << right.get() << endl;)
526     if ((getOpgroup(op)!=G_BINARY))     if ((getOpgroup(op)!=G_BINARY))
527     {     {
528      throw DataException("Programmer error - constructor DataLazy(left, right, op) will only process BINARY operations.");          throw DataException("Programmer error - constructor DataLazy(left, right, op) will only process BINARY operations.");
529     }     }
530    
531     if (getFunctionSpace()!=left->getFunctionSpace())    // left needs to be interpolated     if (getFunctionSpace()!=left->getFunctionSpace())    // left needs to be interpolated
532     {     {
533      FunctionSpace fs=getFunctionSpace();          FunctionSpace fs=getFunctionSpace();
534      Data ltemp(left);          Data ltemp(left);
535      Data tmp(ltemp,fs);          Data tmp(ltemp,fs);
536      left=tmp.borrowDataPtr();          left=tmp.borrowDataPtr();
537     }     }
538     if (getFunctionSpace()!=right->getFunctionSpace())   // right needs to be interpolated     if (getFunctionSpace()!=right->getFunctionSpace())   // right needs to be interpolated
539     {     {
540      Data tmp(Data(right),getFunctionSpace());          Data tmp(Data(right),getFunctionSpace());
541      right=tmp.borrowDataPtr();          right=tmp.borrowDataPtr();
542  LAZYDEBUG(cout << "Right interpolation required " << right.get() << endl;)  LAZYDEBUG(cout << "Right interpolation required " << right.get() << endl;)
543     }     }
544     left->operandCheck(*right);     left->operandCheck(*right);
545    
546     if (left->isLazy())          // the children need to be DataLazy. Wrap them in IDENTITY if required     if (left->isLazy())                  // the children need to be DataLazy. Wrap them in IDENTITY if required
547     {     {
548      m_left=dynamic_pointer_cast<DataLazy>(left);          m_left=dynamic_pointer_cast<DataLazy>(left);
549  LAZYDEBUG(cout << "Left is " << m_left->toString() << endl;)  LAZYDEBUG(cout << "Left is " << m_left->toString() << endl;)
550     }     }
551     else     else
552     {     {
553      m_left=DataLazy_ptr(new DataLazy(left));          m_left=DataLazy_ptr(new DataLazy(left));
554  LAZYDEBUG(cout << "Left " << left.get() << " wrapped " << m_left->m_id.get() << endl;)  LAZYDEBUG(cout << "Left " << left.get() << " wrapped " << m_left->m_id.get() << endl;)
555     }     }
556     if (right->isLazy())     if (right->isLazy())
557     {     {
558      m_right=dynamic_pointer_cast<DataLazy>(right);          m_right=dynamic_pointer_cast<DataLazy>(right);
559  LAZYDEBUG(cout << "Right is " << m_right->toString() << endl;)  LAZYDEBUG(cout << "Right is " << m_right->toString() << endl;)
560     }     }
561     else     else
562     {     {
563      m_right=DataLazy_ptr(new DataLazy(right));          m_right=DataLazy_ptr(new DataLazy(right));
564  LAZYDEBUG(cout << "Right " << right.get() << " wrapped " << m_right->m_id.get() << endl;)  LAZYDEBUG(cout << "Right " << right.get() << " wrapped " << m_right->m_id.get() << endl;)
565     }     }
566     char lt=m_left->m_readytype;     char lt=m_left->m_readytype;
567     char rt=m_right->m_readytype;     char rt=m_right->m_readytype;
568     if (lt=='E' || rt=='E')     if (lt=='E' || rt=='E')
569     {     {
570      m_readytype='E';          m_readytype='E';
571     }     }
572     else if (lt=='T' || rt=='T')     else if (lt=='T' || rt=='T')
573     {     {
574      m_readytype='T';          m_readytype='T';
575     }     }
576     else     else
577     {     {
578      m_readytype='C';          m_readytype='C';
579     }     }
580     m_samplesize=getNumDPPSample()*getNoValues();     m_samplesize=getNumDPPSample()*getNoValues();
581     m_children=m_left->m_children+m_right->m_children+2;     m_children=m_left->m_children+m_right->m_children+2;
# Line 588  LAZYDEBUG(cout << "(3)Lazy created with Line 586  LAZYDEBUG(cout << "(3)Lazy created with
586  }  }
587    
588  DataLazy::DataLazy(DataAbstract_ptr left, DataAbstract_ptr right, ES_optype op, int axis_offset, int transpose)  DataLazy::DataLazy(DataAbstract_ptr left, DataAbstract_ptr right, ES_optype op, int axis_offset, int transpose)
589      : parent(resultFS(left,right,op), GTPShape(left,right, axis_offset, transpose, m_SL,m_SM, m_SR)),          : parent(resultFS(left,right,op), GTPShape(left,right, axis_offset, transpose, m_SL,m_SM, m_SR)),
590      m_op(op),          m_op(op),
591      m_axis_offset(axis_offset),          m_axis_offset(axis_offset),
592      m_transpose(transpose)          m_transpose(transpose)
593  {  {
594     if ((getOpgroup(op)!=G_TENSORPROD))     if ((getOpgroup(op)!=G_TENSORPROD))
595     {     {
596      throw DataException("Programmer error - constructor DataLazy(left, right, op, ax, tr) will only process BINARY operations which require parameters.");          throw DataException("Programmer error - constructor DataLazy(left, right, op, ax, tr) will only process BINARY operations which require parameters.");
597     }     }
598     if ((transpose>2) || (transpose<0))     if ((transpose>2) || (transpose<0))
599     {     {
600      throw DataException("DataLazy GeneralTensorProduct constructor: Error - transpose should be 0, 1 or 2");          throw DataException("DataLazy GeneralTensorProduct constructor: Error - transpose should be 0, 1 or 2");
601     }     }
602     if (getFunctionSpace()!=left->getFunctionSpace())    // left needs to be interpolated     if (getFunctionSpace()!=left->getFunctionSpace())    // left needs to be interpolated
603     {     {
604      FunctionSpace fs=getFunctionSpace();          FunctionSpace fs=getFunctionSpace();
605      Data ltemp(left);          Data ltemp(left);
606      Data tmp(ltemp,fs);          Data tmp(ltemp,fs);
607      left=tmp.borrowDataPtr();          left=tmp.borrowDataPtr();
608     }     }
609     if (getFunctionSpace()!=right->getFunctionSpace())   // right needs to be interpolated     if (getFunctionSpace()!=right->getFunctionSpace())   // right needs to be interpolated
610     {     {
611      Data tmp(Data(right),getFunctionSpace());          Data tmp(Data(right),getFunctionSpace());
612      right=tmp.borrowDataPtr();          right=tmp.borrowDataPtr();
613     }     }
614  //    left->operandCheck(*right);  //    left->operandCheck(*right);
615    
616     if (left->isLazy())          // the children need to be DataLazy. Wrap them in IDENTITY if required     if (left->isLazy())                  // the children need to be DataLazy. Wrap them in IDENTITY if required
617     {     {
618      m_left=dynamic_pointer_cast<DataLazy>(left);          m_left=dynamic_pointer_cast<DataLazy>(left);
619     }     }
620     else     else
621     {     {
622      m_left=DataLazy_ptr(new DataLazy(left));          m_left=DataLazy_ptr(new DataLazy(left));
623     }     }
624     if (right->isLazy())     if (right->isLazy())
625     {     {
626      m_right=dynamic_pointer_cast<DataLazy>(right);          m_right=dynamic_pointer_cast<DataLazy>(right);
627     }     }
628     else     else
629     {     {
630      m_right=DataLazy_ptr(new DataLazy(right));          m_right=DataLazy_ptr(new DataLazy(right));
631     }     }
632     char lt=m_left->m_readytype;     char lt=m_left->m_readytype;
633     char rt=m_right->m_readytype;     char rt=m_right->m_readytype;
634     if (lt=='E' || rt=='E')     if (lt=='E' || rt=='E')
635     {     {
636      m_readytype='E';          m_readytype='E';
637     }     }
638     else if (lt=='T' || rt=='T')     else if (lt=='T' || rt=='T')
639     {     {
640      m_readytype='T';          m_readytype='T';
641     }     }
642     else     else
643     {     {
644      m_readytype='C';          m_readytype='C';
645     }     }
646     m_samplesize=getNumDPPSample()*getNoValues();     m_samplesize=getNumDPPSample()*getNoValues();
647     m_children=m_left->m_children+m_right->m_children+2;     m_children=m_left->m_children+m_right->m_children+2;
# Line 655  LAZYDEBUG(cout << "(4)Lazy created with Line 653  LAZYDEBUG(cout << "(4)Lazy created with
653    
654    
655  DataLazy::DataLazy(DataAbstract_ptr left, ES_optype op, int axis_offset)  DataLazy::DataLazy(DataAbstract_ptr left, ES_optype op, int axis_offset)
656      : parent(left->getFunctionSpace(), resultShape(left,op, axis_offset)),          : parent(left->getFunctionSpace(), resultShape(left,op, axis_offset)),
657      m_op(op),          m_op(op),
658      m_axis_offset(axis_offset),          m_axis_offset(axis_offset),
659      m_transpose(0),          m_transpose(0),
660      m_tol(0)          m_tol(0)
661  {  {
662     if ((getOpgroup(op)!=G_NP1OUT_P))     if ((getOpgroup(op)!=G_NP1OUT_P))
663     {     {
664      throw DataException("Programmer error - constructor DataLazy(left, op, ax) will only process UNARY operations which require parameters.");          throw DataException("Programmer error - constructor DataLazy(left, op, ax) will only process UNARY operations which require parameters.");
665     }     }
666     DataLazy_ptr lleft;     DataLazy_ptr lleft;
667     if (!left->isLazy())     if (!left->isLazy())
668     {     {
669      lleft=DataLazy_ptr(new DataLazy(left));          lleft=DataLazy_ptr(new DataLazy(left));
670     }     }
671     else     else
672     {     {
673      lleft=dynamic_pointer_cast<DataLazy>(left);          lleft=dynamic_pointer_cast<DataLazy>(left);
674     }     }
675     m_readytype=lleft->m_readytype;     m_readytype=lleft->m_readytype;
676     m_left=lleft;     m_left=lleft;
# Line 685  LAZYDEBUG(cout << "(5)Lazy created with Line 683  LAZYDEBUG(cout << "(5)Lazy created with
683  }  }
684    
685  DataLazy::DataLazy(DataAbstract_ptr left, ES_optype op, double tol)  DataLazy::DataLazy(DataAbstract_ptr left, ES_optype op, double tol)
686      : parent(left->getFunctionSpace(), left->getShape()),          : parent(left->getFunctionSpace(), left->getShape()),
687      m_op(op),          m_op(op),
688      m_axis_offset(0),          m_axis_offset(0),
689      m_transpose(0),          m_transpose(0),
690      m_tol(tol)          m_tol(tol)
691  {  {
692     if ((getOpgroup(op)!=G_UNARY_P))     if ((getOpgroup(op)!=G_UNARY_P))
693     {     {
694      throw DataException("Programmer error - constructor DataLazy(left, op, tol) will only process UNARY operations which require parameters.");          throw DataException("Programmer error - constructor DataLazy(left, op, tol) will only process UNARY operations which require parameters.");
695     }     }
696     DataLazy_ptr lleft;     DataLazy_ptr lleft;
697     if (!left->isLazy())     if (!left->isLazy())
698     {     {
699      lleft=DataLazy_ptr(new DataLazy(left));          lleft=DataLazy_ptr(new DataLazy(left));
700     }     }
701     else     else
702     {     {
703      lleft=dynamic_pointer_cast<DataLazy>(left);          lleft=dynamic_pointer_cast<DataLazy>(left);
704     }     }
705     m_readytype=lleft->m_readytype;     m_readytype=lleft->m_readytype;
706     m_left=lleft;     m_left=lleft;
# Line 716  LAZYDEBUG(cout << "(6)Lazy created with Line 714  LAZYDEBUG(cout << "(6)Lazy created with
714    
715    
716  DataLazy::DataLazy(DataAbstract_ptr left, ES_optype op, const int axis0, const int axis1)  DataLazy::DataLazy(DataAbstract_ptr left, ES_optype op, const int axis0, const int axis1)
717      : parent(left->getFunctionSpace(), SwapShape(left,axis0,axis1)),          : parent(left->getFunctionSpace(), SwapShape(left,axis0,axis1)),
718      m_op(op),          m_op(op),
719      m_axis_offset(axis0),          m_axis_offset(axis0),
720      m_transpose(axis1),          m_transpose(axis1),
721      m_tol(0)          m_tol(0)
722  {  {
723     if ((getOpgroup(op)!=G_NP1OUT_2P))     if ((getOpgroup(op)!=G_NP1OUT_2P))
724     {     {
725      throw DataException("Programmer error - constructor DataLazy(left, op, tol) will only process UNARY operations which require two integer parameters.");          throw DataException("Programmer error - constructor DataLazy(left, op, tol) will only process UNARY operations which require two integer parameters.");
726     }     }
727     DataLazy_ptr lleft;     DataLazy_ptr lleft;
728     if (!left->isLazy())     if (!left->isLazy())
729     {     {
730      lleft=DataLazy_ptr(new DataLazy(left));          lleft=DataLazy_ptr(new DataLazy(left));
731     }     }
732     else     else
733     {     {
734      lleft=dynamic_pointer_cast<DataLazy>(left);          lleft=dynamic_pointer_cast<DataLazy>(left);
735     }     }
736     m_readytype=lleft->m_readytype;     m_readytype=lleft->m_readytype;
737     m_left=lleft;     m_left=lleft;
# Line 751  namespace Line 749  namespace
749    
750      inline int max3(int a, int b, int c)      inline int max3(int a, int b, int c)
751      {      {
752      int t=(a>b?a:b);          int t=(a>b?a:b);
753      return (t>c?t:c);          return (t>c?t:c);
754    
755      }      }
756  }  }
757    
758  DataLazy::DataLazy(DataAbstract_ptr mask, DataAbstract_ptr left, DataAbstract_ptr right/*, double tol*/)  DataLazy::DataLazy(DataAbstract_ptr mask, DataAbstract_ptr left, DataAbstract_ptr right/*, double tol*/)
759      : parent(left->getFunctionSpace(), left->getShape()),          : parent(left->getFunctionSpace(), left->getShape()),
760      m_op(CONDEVAL),          m_op(CONDEVAL),
761      m_axis_offset(0),          m_axis_offset(0),
762      m_transpose(0),          m_transpose(0),
763      m_tol(0)          m_tol(0)
764  {  {
765    
766     DataLazy_ptr lmask;     DataLazy_ptr lmask;
# Line 770  DataLazy::DataLazy(DataAbstract_ptr mask Line 768  DataLazy::DataLazy(DataAbstract_ptr mask
768     DataLazy_ptr lright;     DataLazy_ptr lright;
769     if (!mask->isLazy())     if (!mask->isLazy())
770     {     {
771      lmask=DataLazy_ptr(new DataLazy(mask));          lmask=DataLazy_ptr(new DataLazy(mask));
772     }     }
773     else     else
774     {     {
775      lmask=dynamic_pointer_cast<DataLazy>(mask);          lmask=dynamic_pointer_cast<DataLazy>(mask);
776     }     }
777     if (!left->isLazy())     if (!left->isLazy())
778     {     {
779      lleft=DataLazy_ptr(new DataLazy(left));          lleft=DataLazy_ptr(new DataLazy(left));
780     }     }
781     else     else
782     {     {
783      lleft=dynamic_pointer_cast<DataLazy>(left);          lleft=dynamic_pointer_cast<DataLazy>(left);
784     }     }
785     if (!right->isLazy())     if (!right->isLazy())
786     {     {
787      lright=DataLazy_ptr(new DataLazy(right));          lright=DataLazy_ptr(new DataLazy(right));
788     }     }
789     else     else
790     {     {
791      lright=dynamic_pointer_cast<DataLazy>(right);          lright=dynamic_pointer_cast<DataLazy>(right);
792     }     }
793     m_readytype=lmask->m_readytype;     m_readytype=lmask->m_readytype;
794     if ((lleft->m_readytype!=lright->m_readytype) || (lmask->m_readytype!=lleft->m_readytype))     if ((lleft->m_readytype!=lright->m_readytype) || (lmask->m_readytype!=lleft->m_readytype))
795     {     {
796      throw DataException("Programmer Error - condEval arguments must have the same readytype");          throw DataException("Programmer Error - condEval arguments must have the same readytype");
797     }     }
798     m_left=lleft;     m_left=lleft;
799     m_right=lright;     m_right=lright;
# Line 822  DataLazy::~DataLazy() Line 820  DataLazy::~DataLazy()
820    For reasons of efficiency do not call this method on DataExpanded nodes.    For reasons of efficiency do not call this method on DataExpanded nodes.
821  */  */
822  DataReady_ptr  DataReady_ptr
823  DataLazy::collapseToReady()  DataLazy::collapseToReady() const
824  {  {
825    if (m_readytype=='E')    if (m_readytype=='E')
826    { // this is more an efficiency concern than anything else    {     // this is more an efficiency concern than anything else
827      throw DataException("Programmer Error - do not use collapse on Expanded data.");      throw DataException("Programmer Error - do not use collapse on Expanded data.");
828    }    }
829    if (m_op==IDENTITY)    if (m_op==IDENTITY)
# Line 843  DataLazy::collapseToReady() Line 841  DataLazy::collapseToReady()
841    switch(m_op)    switch(m_op)
842    {    {
843      case ADD:      case ADD:
844      result=left+right;          result=left+right;
845      break;          break;
846      case SUB:            case SUB:          
847      result=left-right;          result=left-right;
848      break;          break;
849      case MUL:            case MUL:          
850      result=left*right;          result=left*right;
851      break;          break;
852      case DIV:            case DIV:          
853      result=left/right;          result=left/right;
854      break;          break;
855      case SIN:      case SIN:
856      result=left.sin();            result=left.sin();      
857      break;          break;
858      case COS:      case COS:
859      result=left.cos();          result=left.cos();
860      break;          break;
861      case TAN:      case TAN:
862      result=left.tan();          result=left.tan();
863      break;          break;
864      case ASIN:      case ASIN:
865      result=left.asin();          result=left.asin();
866      break;          break;
867      case ACOS:      case ACOS:
868      result=left.acos();          result=left.acos();
869      break;          break;
870      case ATAN:      case ATAN:
871      result=left.atan();          result=left.atan();
872      break;          break;
873      case SINH:      case SINH:
874      result=left.sinh();          result=left.sinh();
875      break;          break;
876      case COSH:      case COSH:
877      result=left.cosh();          result=left.cosh();
878      break;          break;
879      case TANH:      case TANH:
880      result=left.tanh();          result=left.tanh();
881      break;          break;
882      case ERF:      case ERF:
883      result=left.erf();          result=left.erf();
884      break;          break;
885     case ASINH:     case ASINH:
886      result=left.asinh();          result=left.asinh();
887      break;          break;
888     case ACOSH:     case ACOSH:
889      result=left.acosh();          result=left.acosh();
890      break;          break;
891     case ATANH:     case ATANH:
892      result=left.atanh();          result=left.atanh();
893      break;          break;
894      case LOG10:      case LOG10:
895      result=left.log10();          result=left.log10();
896      break;          break;
897      case LOG:      case LOG:
898      result=left.log();          result=left.log();
899      break;          break;
900      case SIGN:      case SIGN:
901      result=left.sign();          result=left.sign();
902      break;          break;
903      case ABS:      case ABS:
904      result=left.abs();          result=left.abs();
905      break;          break;
906      case NEG:      case NEG:
907      result=left.neg();          result=left.neg();
908      break;          break;
909      case POS:      case POS:
910      // it doesn't mean anything for delayed.          // it doesn't mean anything for delayed.
911      // it will just trigger a deep copy of the lazy object          // it will just trigger a deep copy of the lazy object
912      throw DataException("Programmer error - POS not supported for lazy data.");          throw DataException("Programmer error - POS not supported for lazy data.");
913      break;          break;
914      case EXP:      case EXP:
915      result=left.exp();          result=left.exp();
916      break;          break;
917      case SQRT:      case SQRT:
918      result=left.sqrt();          result=left.sqrt();
919      break;          break;
920      case RECIP:      case RECIP:
921      result=left.oneOver();          result=left.oneOver();
922      break;          break;
923      case GZ:      case GZ:
924      result=left.wherePositive();          result=left.wherePositive();
925      break;          break;
926      case LZ:      case LZ:
927      result=left.whereNegative();          result=left.whereNegative();
928      break;          break;
929      case GEZ:      case GEZ:
930      result=left.whereNonNegative();          result=left.whereNonNegative();
931      break;          break;
932      case LEZ:      case LEZ:
933      result=left.whereNonPositive();          result=left.whereNonPositive();
934      break;          break;
935      case NEZ:      case NEZ:
936      result=left.whereNonZero(m_tol);          result=left.whereNonZero(m_tol);
937      break;          break;
938      case EZ:      case EZ:
939      result=left.whereZero(m_tol);          result=left.whereZero(m_tol);
940      break;          break;
941      case SYM:      case SYM:
942      result=left.symmetric();          result=left.symmetric();
943      break;          break;
944      case NSYM:      case NSYM:
945      result=left.nonsymmetric();          result=left.nonsymmetric();
946      break;          break;
947      case PROD:      case PROD:
948      result=C_GeneralTensorProduct(left,right,m_axis_offset, m_transpose);          result=C_GeneralTensorProduct(left,right,m_axis_offset, m_transpose);
949      break;          break;
950      case TRANS:      case TRANS:
951      result=left.transpose(m_axis_offset);          result=left.transpose(m_axis_offset);
952      break;          break;
953      case TRACE:      case TRACE:
954      result=left.trace(m_axis_offset);          result=left.trace(m_axis_offset);
955      break;          break;
956      case SWAP:      case SWAP:
957      result=left.swapaxes(m_axis_offset, m_transpose);          result=left.swapaxes(m_axis_offset, m_transpose);
958      break;          break;
959      case MINVAL:      case MINVAL:
960      result=left.minval();          result=left.minval();
961      break;          break;
962      case MAXVAL:      case MAXVAL:
963      result=left.minval();          result=left.minval();
964      break;          break;
965      default:      default:
966      throw DataException("Programmer error - collapseToReady does not know how to resolve operator "+opToString(m_op)+".");          throw DataException("Programmer error - collapseToReady does not know how to resolve operator "+opToString(m_op)+".");
967    }    }
968    return result.borrowReadyPtr();    return result.borrowReadyPtr();
969  }  }
# Line 977  DataLazy::collapseToReady() Line 975  DataLazy::collapseToReady()
975     the purpose of using DataLazy in the first place).     the purpose of using DataLazy in the first place).
976  */  */
977  void  void
978  DataLazy::collapse()  DataLazy::collapse() const
979  {  {
980    if (m_op==IDENTITY)    if (m_op==IDENTITY)
981    {    {
982      return;          return;
983    }    }
984    if (m_readytype=='E')    if (m_readytype=='E')
985    { // this is more an efficiency concern than anything else    {     // this is more an efficiency concern than anything else
986      throw DataException("Programmer Error - do not use collapse on Expanded data.");      throw DataException("Programmer Error - do not use collapse on Expanded data.");
987    }    }
988    m_id=collapseToReady();    m_id=collapseToReady();
989    m_op=IDENTITY;    m_op=IDENTITY;
990  }  }
991    
   
   
   
   
   
 #define PROC_OP(TYPE,X)                               \  
     for (int j=0;j<onumsteps;++j)\  
     {\  
       for (int i=0;i<numsteps;++i,resultp+=resultStep) \  
       { \  
 LAZYDEBUG(cout << "[left,right]=[" << lroffset << "," << rroffset << "]" << endl;)\  
 LAZYDEBUG(cout << "{left,right}={" << (*left)[lroffset] << "," << (*right)[rroffset] << "}\n";)\  
          tensor_binary_operation< TYPE >(chunksize, &((*left)[lroffset]), &((*right)[rroffset]), resultp, X); \  
 LAZYDEBUG(cout << " result=      " << resultp[0] << endl;) \  
          lroffset+=leftstep; \  
          rroffset+=rightstep; \  
       }\  
       lroffset+=oleftstep;\  
       rroffset+=orightstep;\  
     }  
   
   
992  // The result will be stored in m_samples  // The result will be stored in m_samples
993  // The return value is a pointer to the DataVector, offset is the offset within the return value  // The return value is a pointer to the DataVector, offset is the offset within the return value
994  const DataTypes::ValueType*  const DataTypes::RealVectorType*
995  DataLazy::resolveNodeSample(int tid, int sampleNo, size_t& roffset)  DataLazy::resolveNodeSample(int tid, int sampleNo, size_t& roffset) const
996  {  {
997  LAZYDEBUG(cout << "Resolve sample " << toString() << endl;)  LAZYDEBUG(cout << "Resolve sample " << toString() << endl;)
998      // collapse so we have a 'E' node or an IDENTITY for some other type          // collapse so we have a 'E' node or an IDENTITY for some other type
999    if (m_readytype!='E' && m_op!=IDENTITY)    if (m_readytype!='E' && m_op!=IDENTITY)
1000    {    {
1001      collapse();          collapse();
1002    }    }
1003    if (m_op==IDENTITY)      if (m_op==IDENTITY)  
1004    {    {
1005      const ValueType& vec=m_id->getVectorRO();      const RealVectorType& vec=m_id->getVectorRO();
1006      roffset=m_id->getPointOffset(sampleNo, 0);      roffset=m_id->getPointOffset(sampleNo, 0);
1007  #ifdef LAZY_STACK_PROF  #ifdef LAZY_STACK_PROF
1008  int x;  int x;
# Line 1043  if (&x<stackend[omp_get_thread_num()]) Line 1019  if (&x<stackend[omp_get_thread_num()])
1019    }    }
1020    if (m_sampleids[tid]==sampleNo)    if (m_sampleids[tid]==sampleNo)
1021    {    {
1022      roffset=tid*m_samplesize;          roffset=tid*m_samplesize;
1023      return &(m_samples);        // sample is already resolved          return &(m_samples);            // sample is already resolved
1024    }    }
1025    m_sampleids[tid]=sampleNo;    m_sampleids[tid]=sampleNo;
1026    
# Line 1064  if (&x<stackend[omp_get_thread_num()]) Line 1040  if (&x<stackend[omp_get_thread_num()])
1040    }    }
1041  }  }
1042    
1043  const DataTypes::ValueType*  const DataTypes::RealVectorType*
1044  DataLazy::resolveNodeUnary(int tid, int sampleNo, size_t& roffset)  DataLazy::resolveNodeUnary(int tid, int sampleNo, size_t& roffset) const
1045  {  {
1046      // we assume that any collapsing has been done before we get here          // we assume that any collapsing has been done before we get here
1047      // since we only have one argument we don't need to think about only          // since we only have one argument we don't need to think about only
1048      // processing single points.          // processing single points.
1049      // we will also know we won't get identity nodes          // we will also know we won't get identity nodes
1050    if (m_readytype!='E')    if (m_readytype!='E')
1051    {    {
1052      throw DataException("Programmer error - resolveUnary should only be called on expanded Data.");      throw DataException("Programmer error - resolveUnary should only be called on expanded Data.");
# Line 1079  DataLazy::resolveNodeUnary(int tid, int Line 1055  DataLazy::resolveNodeUnary(int tid, int
1055    {    {
1056      throw DataException("Programmer error - resolveNodeUnary should not be called on identity nodes.");      throw DataException("Programmer error - resolveNodeUnary should not be called on identity nodes.");
1057    }    }
1058    const DataTypes::ValueType* leftres=m_left->resolveNodeSample(tid, sampleNo, roffset);    const DataTypes::RealVectorType* leftres=m_left->resolveNodeSample(tid, sampleNo, roffset);
1059    const double* left=&((*leftres)[roffset]);    const double* left=&((*leftres)[roffset]);
1060    roffset=m_samplesize*tid;    roffset=m_samplesize*tid;
1061    double* result=&(m_samples[roffset]);    double* result=&(m_samples[roffset]);
1062      escript::ESFunction operation=SINF;
1063    switch (m_op)    switch (m_op)
1064    {    {
1065      case SIN:        case SIN:
1066      tensor_unary_operation<double (*)(double)>(m_samplesize, left, result, ::sin);      operation=SINF;
1067      break;      break;
1068      case COS:      case COS:
1069      tensor_unary_operation<double (*)(double)>(m_samplesize, left, result, ::cos);          operation=COSF;
1070      break;      break;
1071      case TAN:      case TAN:
1072      tensor_unary_operation<double (*)(double)>(m_samplesize, left, result, ::tan);          operation=TANF;
1073      break;      break;
1074      case ASIN:      case ASIN:
1075      tensor_unary_operation<double (*)(double)>(m_samplesize, left, result, ::asin);          operation=ASINF;
1076      break;      break;
1077      case ACOS:      case ACOS:
1078      tensor_unary_operation<double (*)(double)>(m_samplesize, left, result, ::acos);          operation=ACOSF;
1079      break;      break;
1080      case ATAN:      case ATAN:
1081      tensor_unary_operation<double (*)(double)>(m_samplesize, left, result, ::atan);          operation=ATANF;
1082      break;      break;
1083      case SINH:      case SINH:
1084      tensor_unary_operation<double (*)(double)>(m_samplesize, left, result, ::sinh);          operation=SINHF;
1085      break;      break;
1086      case COSH:      case COSH:
1087      tensor_unary_operation<double (*)(double)>(m_samplesize, left, result, ::cosh);          operation=COSHF;
1088      break;      break;
1089      case TANH:      case TANH:
1090      tensor_unary_operation<double (*)(double)>(m_samplesize, left, result, ::tanh);          operation=TANHF;
1091      break;      break;
1092      case ERF:      case ERF:
1093  #if defined (_WIN32) && !defined(__INTEL_COMPILER)          operation=ERFF;
     throw DataException("Error - Data:: erf function is not supported on _WIN32 platforms.");  
 #else  
     tensor_unary_operation(m_samplesize, left, result, ::erf);  
1094      break;      break;
 #endif  
1095     case ASINH:     case ASINH:
1096  #if defined (_WIN32) && !defined(__INTEL_COMPILER)          operation=ASINHF;
     tensor_unary_operation(m_samplesize, left, result, escript::asinh_substitute);  
 #else  
     tensor_unary_operation(m_samplesize, left, result, ::asinh);  
 #endif    
1097      break;      break;
1098     case ACOSH:     case ACOSH:
1099  #if defined (_WIN32) && !defined(__INTEL_COMPILER)          operation=ACOSHF;
     tensor_unary_operation(m_samplesize, left, result, escript::acosh_substitute);  
 #else  
     tensor_unary_operation(m_samplesize, left, result, ::acosh);  
 #endif    
1100      break;      break;
1101     case ATANH:     case ATANH:
1102  #if defined (_WIN32) && !defined(__INTEL_COMPILER)          operation=ATANHF;
     tensor_unary_operation(m_samplesize, left, result, escript::atanh_substitute);  
 #else  
     tensor_unary_operation(m_samplesize, left, result, ::atanh);  
 #endif    
1103      break;      break;
1104      case LOG10:      case LOG10:
1105      tensor_unary_operation<double (*)(double)>(m_samplesize, left, result, ::log10);          operation=LOG10F;
1106      break;      break;
1107      case LOG:      case LOG:
1108      tensor_unary_operation<double (*)(double)>(m_samplesize, left, result, ::log);          operation=LOGF;
1109      break;      break;
1110      case SIGN:      case SIGN:
1111      tensor_unary_operation(m_samplesize, left, result, escript::fsign);          operation=SIGNF;
1112      break;      break;
1113      case ABS:      case ABS:
1114      tensor_unary_operation<double (*)(double)>(m_samplesize, left, result, ::fabs);          operation=ABSF;
1115      break;      break;
1116      case NEG:      case NEG:
1117      tensor_unary_operation(m_samplesize, left, result, negate<double>());          operation=NEGF;
1118      break;      break;
1119      case POS:      case POS:
1120      // it doesn't mean anything for delayed.          // it doesn't mean anything for delayed.
1121      // it will just trigger a deep copy of the lazy object          // it will just trigger a deep copy of the lazy object
1122      throw DataException("Programmer error - POS not supported for lazy data.");          throw DataException("Programmer error - POS not supported for lazy data.");
1123      break;          break;
1124      case EXP:      case EXP:
1125      tensor_unary_operation<double (*)(double)>(m_samplesize, left, result, ::exp);          operation=EXPF;
1126      break;      break;
1127      case SQRT:      case SQRT:
1128      tensor_unary_operation<double (*)(double)>(m_samplesize, left, result, ::sqrt);          operation=SQRTF;
1129      break;      break;
1130      case RECIP:      case RECIP:
1131      tensor_unary_operation(m_samplesize, left, result, bind1st(divides<double>(),1.));          operation=INVF;
1132      break;      break;
1133      case GZ:      case GZ:
1134      tensor_unary_operation(m_samplesize, left, result, bind2nd(greater<double>(),0.0));          operation=GTZEROF;
1135      break;      break;
1136      case LZ:      case LZ:
1137      tensor_unary_operation(m_samplesize, left, result, bind2nd(less<double>(),0.0));          operation=LTZEROF;
1138      break;      break;
1139      case GEZ:      case GEZ:
1140      tensor_unary_operation(m_samplesize, left, result, bind2nd(greater_equal<double>(),0.0));          operation=GEZEROF;
1141      break;      break;
1142      case LEZ:      case LEZ:
1143      tensor_unary_operation(m_samplesize, left, result, bind2nd(less_equal<double>(),0.0));          operation=LEZEROF;
1144      break;      break;
1145  // There are actually G_UNARY_P but I don't see a compelling reason to treat them differently  // There are actually G_UNARY_P but I don't see a compelling reason to treat them differently
1146      case NEZ:      case NEZ:
1147      tensor_unary_operation(m_samplesize, left, result, bind2nd(AbsGT(),m_tol));          operation=NEQZEROF;
1148      break;      break;
1149      case EZ:      case EZ:
1150      tensor_unary_operation(m_samplesize, left, result, bind2nd(AbsLTE(),m_tol));          operation=EQZEROF;
1151      break;      break;
   
1152      default:      default:
1153      throw DataException("Programmer error - resolveUnary can not resolve operator "+opToString(m_op)+".");          throw DataException("Programmer error - resolveUnary can not resolve operator "+opToString(m_op)+".");
1154    }    }
1155      tensor_unary_array_operation(m_samplesize,
1156                                 left,
1157                                 result,
1158                                 operation,
1159                                 m_tol);  
1160    return &(m_samples);    return &(m_samples);
1161  }  }
1162    
1163    
1164  const DataTypes::ValueType*  const DataTypes::RealVectorType*
1165  DataLazy::resolveNodeReduction(int tid, int sampleNo, size_t& roffset)  DataLazy::resolveNodeReduction(int tid, int sampleNo, size_t& roffset) const
1166  {  {
1167      // we assume that any collapsing has been done before we get here          // we assume that any collapsing has been done before we get here
1168      // since we only have one argument we don't need to think about only          // since we only have one argument we don't need to think about only
1169      // processing single points.          // processing single points.
1170      // we will also know we won't get identity nodes          // we will also know we won't get identity nodes
1171    if (m_readytype!='E')    if (m_readytype!='E')
1172    {    {
1173      throw DataException("Programmer error - resolveUnary should only be called on expanded Data.");      throw DataException("Programmer error - resolveUnary should only be called on expanded Data.");
# Line 1212  DataLazy::resolveNodeReduction(int tid, Line 1177  DataLazy::resolveNodeReduction(int tid,
1177      throw DataException("Programmer error - resolveNodeUnary should not be called on identity nodes.");      throw DataException("Programmer error - resolveNodeUnary should not be called on identity nodes.");
1178    }    }
1179    size_t loffset=0;    size_t loffset=0;
1180    const DataTypes::ValueType* leftres=m_left->resolveNodeSample(tid, sampleNo, loffset);    const DataTypes::RealVectorType* leftres=m_left->resolveNodeSample(tid, sampleNo, loffset);
1181    
1182    roffset=m_samplesize*tid;    roffset=m_samplesize*tid;
1183    unsigned int ndpps=getNumDPPSample();    unsigned int ndpps=getNumDPPSample();
# Line 1221  DataLazy::resolveNodeReduction(int tid, Line 1186  DataLazy::resolveNodeReduction(int tid,
1186    switch (m_op)    switch (m_op)
1187    {    {
1188      case MINVAL:      case MINVAL:
1189      {          {
1190        for (unsigned int z=0;z<ndpps;++z)            for (unsigned int z=0;z<ndpps;++z)
1191        {            {
1192          FMin op;              FMin op;
1193          *result=DataMaths::reductionOp(*leftres, m_left->getShape(), loffset, op, numeric_limits<double>::max());              *result=escript::reductionOpVector(*leftres, m_left->getShape(), loffset, op, numeric_limits<double>::max());
1194          loffset+=psize;              loffset+=psize;
1195          result++;              result++;
1196        }            }
1197      }          }
1198      break;          break;
1199      case MAXVAL:      case MAXVAL:
1200      {          {
1201        for (unsigned int z=0;z<ndpps;++z)            for (unsigned int z=0;z<ndpps;++z)
1202        {            {
1203        FMax op;            FMax op;
1204        *result=DataMaths::reductionOp(*leftres, m_left->getShape(), loffset, op, numeric_limits<double>::max()*-1);            *result=escript::reductionOpVector(*leftres, m_left->getShape(), loffset, op, numeric_limits<double>::max()*-1);
1205        loffset+=psize;            loffset+=psize;
1206        result++;            result++;
1207        }            }
1208      }          }
1209      break;          break;
1210      default:      default:
1211      throw DataException("Programmer error - resolveUnary can not resolve operator "+opToString(m_op)+".");          throw DataException("Programmer error - resolveUnary can not resolve operator "+opToString(m_op)+".");
1212    }    }
1213    return &(m_samples);    return &(m_samples);
1214  }  }
1215    
1216  const DataTypes::ValueType*  const DataTypes::RealVectorType*
1217  DataLazy::resolveNodeNP1OUT(int tid, int sampleNo, size_t& roffset)  DataLazy::resolveNodeNP1OUT(int tid, int sampleNo, size_t& roffset) const
1218  {  {
1219      // we assume that any collapsing has been done before we get here          // we assume that any collapsing has been done before we get here
1220      // since we only have one argument we don't need to think about only          // since we only have one argument we don't need to think about only
1221      // processing single points.          // processing single points.
1222    if (m_readytype!='E')    if (m_readytype!='E')
1223    {    {
1224      throw DataException("Programmer error - resolveNodeNP1OUT should only be called on expanded Data.");      throw DataException("Programmer error - resolveNodeNP1OUT should only be called on expanded Data.");
# Line 1263  DataLazy::resolveNodeNP1OUT(int tid, int Line 1228  DataLazy::resolveNodeNP1OUT(int tid, int
1228      throw DataException("Programmer error - resolveNodeNP1OUT should not be called on identity nodes.");      throw DataException("Programmer error - resolveNodeNP1OUT should not be called on identity nodes.");
1229    }    }
1230    size_t subroffset;    size_t subroffset;
1231    const ValueType* leftres=m_left->resolveNodeSample(tid, sampleNo, subroffset);    const RealVectorType* leftres=m_left->resolveNodeSample(tid, sampleNo, subroffset);
1232    roffset=m_samplesize*tid;    roffset=m_samplesize*tid;
1233    size_t loop=0;    size_t loop=0;
1234    size_t numsteps=(m_readytype=='E')?getNumDPPSample():1;    size_t numsteps=(m_readytype=='E')?getNumDPPSample():1;
# Line 1272  DataLazy::resolveNodeNP1OUT(int tid, int Line 1237  DataLazy::resolveNodeNP1OUT(int tid, int
1237    switch (m_op)    switch (m_op)
1238    {    {
1239      case SYM:      case SYM:
1240      for (loop=0;loop<numsteps;++loop)          for (loop=0;loop<numsteps;++loop)
1241      {          {
1242          DataMaths::symmetric(*leftres,m_left->getShape(),subroffset, m_samples, getShape(), offset);              escript::symmetric(*leftres,m_left->getShape(),subroffset, m_samples, getShape(), offset);
1243          subroffset+=step;              subroffset+=step;
1244          offset+=step;              offset+=step;
1245      }          }
1246      break;          break;
1247      case NSYM:      case NSYM:
1248      for (loop=0;loop<numsteps;++loop)          for (loop=0;loop<numsteps;++loop)
1249      {          {
1250          DataMaths::nonsymmetric(*leftres,m_left->getShape(),subroffset, m_samples, getShape(), offset);              escript::nonsymmetric(*leftres,m_left->getShape(),subroffset, m_samples, getShape(), offset);
1251          subroffset+=step;              subroffset+=step;
1252          offset+=step;              offset+=step;
1253      }          }
1254      break;          break;
1255      default:      default:
1256      throw DataException("Programmer error - resolveNP1OUT can not resolve operator "+opToString(m_op)+".");          throw DataException("Programmer error - resolveNP1OUT can not resolve operator "+opToString(m_op)+".");
1257    }    }
1258    return &m_samples;    return &m_samples;
1259  }  }
1260    
1261  const DataTypes::ValueType*  const DataTypes::RealVectorType*
1262  DataLazy::resolveNodeNP1OUT_P(int tid, int sampleNo, size_t& roffset)  DataLazy::resolveNodeNP1OUT_P(int tid, int sampleNo, size_t& roffset) const
1263  {  {
1264      // we assume that any collapsing has been done before we get here          // we assume that any collapsing has been done before we get here
1265      // since we only have one argument we don't need to think about only          // since we only have one argument we don't need to think about only
1266      // processing single points.          // processing single points.
1267    if (m_readytype!='E')    if (m_readytype!='E')
1268    {    {
1269      throw DataException("Programmer error - resolveNodeNP1OUT_P should only be called on expanded Data.");      throw DataException("Programmer error - resolveNodeNP1OUT_P should only be called on expanded Data.");
# Line 1309  DataLazy::resolveNodeNP1OUT_P(int tid, i Line 1274  DataLazy::resolveNodeNP1OUT_P(int tid, i
1274    }    }
1275    size_t subroffset;    size_t subroffset;
1276    size_t offset;    size_t offset;
1277    const ValueType* leftres=m_left->resolveNodeSample(tid, sampleNo, subroffset);    const RealVectorType* leftres=m_left->resolveNodeSample(tid, sampleNo, subroffset);
1278    roffset=m_samplesize*tid;    roffset=m_samplesize*tid;
1279    offset=roffset;    offset=roffset;
1280    size_t loop=0;    size_t loop=0;
# Line 1319  DataLazy::resolveNodeNP1OUT_P(int tid, i Line 1284  DataLazy::resolveNodeNP1OUT_P(int tid, i
1284    switch (m_op)    switch (m_op)
1285    {    {
1286      case TRACE:      case TRACE:
1287      for (loop=0;loop<numsteps;++loop)          for (loop=0;loop<numsteps;++loop)
1288      {          {
1289              DataMaths::trace(*leftres,m_left->getShape(),subroffset, m_samples ,getShape(),offset,m_axis_offset);              escript::trace(*leftres,m_left->getShape(),subroffset, m_samples ,getShape(),offset,m_axis_offset);
1290          subroffset+=instep;              subroffset+=instep;
1291          offset+=outstep;              offset+=outstep;
1292      }          }
1293      break;          break;
1294      case TRANS:      case TRANS:
1295      for (loop=0;loop<numsteps;++loop)          for (loop=0;loop<numsteps;++loop)
1296      {          {
1297              DataMaths::transpose(*leftres,m_left->getShape(),subroffset, m_samples, getShape(),offset,m_axis_offset);              escript::transpose(*leftres,m_left->getShape(),subroffset, m_samples, getShape(),offset,m_axis_offset);
1298          subroffset+=instep;              subroffset+=instep;
1299          offset+=outstep;              offset+=outstep;
1300      }          }
1301      break;          break;
1302      default:      default:
1303      throw DataException("Programmer error - resolveNP1OUTP can not resolve operator "+opToString(m_op)+".");          throw DataException("Programmer error - resolveNP1OUTP can not resolve operator "+opToString(m_op)+".");
1304    }    }
1305    return &m_samples;    return &m_samples;
1306  }  }
1307    
1308    
1309  const DataTypes::ValueType*  const DataTypes::RealVectorType*
1310  DataLazy::resolveNodeNP1OUT_2P(int tid, int sampleNo, size_t& roffset)  DataLazy::resolveNodeNP1OUT_2P(int tid, int sampleNo, size_t& roffset) const
1311  {  {
1312    if (m_readytype!='E')    if (m_readytype!='E')
1313    {    {
# Line 1354  DataLazy::resolveNodeNP1OUT_2P(int tid, Line 1319  DataLazy::resolveNodeNP1OUT_2P(int tid,
1319    }    }
1320    size_t subroffset;    size_t subroffset;
1321    size_t offset;    size_t offset;
1322    const ValueType* leftres=m_left->resolveNodeSample(tid, sampleNo, subroffset);    const RealVectorType* leftres=m_left->resolveNodeSample(tid, sampleNo, subroffset);
1323    roffset=m_samplesize*tid;    roffset=m_samplesize*tid;
1324    offset=roffset;    offset=roffset;
1325    size_t loop=0;    size_t loop=0;
# Line 1364  DataLazy::resolveNodeNP1OUT_2P(int tid, Line 1329  DataLazy::resolveNodeNP1OUT_2P(int tid,
1329    switch (m_op)    switch (m_op)
1330    {    {
1331      case SWAP:      case SWAP:
1332      for (loop=0;loop<numsteps;++loop)          for (loop=0;loop<numsteps;++loop)
1333      {          {
1334              DataMaths::swapaxes(*leftres,m_left->getShape(),subroffset, m_samples, getShape(),offset, m_axis_offset, m_transpose);              escript::swapaxes(*leftres,m_left->getShape(),subroffset, m_samples, getShape(),offset, m_axis_offset, m_transpose);
1335          subroffset+=instep;              subroffset+=instep;
1336          offset+=outstep;              offset+=outstep;
1337      }          }
1338      break;          break;
1339      default:      default:
1340      throw DataException("Programmer error - resolveNodeNP1OUT2P can not resolve operator "+opToString(m_op)+".");          throw DataException("Programmer error - resolveNodeNP1OUT2P can not resolve operator "+opToString(m_op)+".");
1341    }    }
1342    return &m_samples;    return &m_samples;
1343  }  }
1344    
1345  const DataTypes::ValueType*  const DataTypes::RealVectorType*
1346  DataLazy::resolveNodeCondEval(int tid, int sampleNo, size_t& roffset)  DataLazy::resolveNodeCondEval(int tid, int sampleNo, size_t& roffset) const
1347  {  {
1348    if (m_readytype!='E')    if (m_readytype!='E')
1349    {    {
# Line 1390  DataLazy::resolveNodeCondEval(int tid, i Line 1355  DataLazy::resolveNodeCondEval(int tid, i
1355    }    }
1356    size_t subroffset;    size_t subroffset;
1357    
1358    const ValueType* maskres=m_mask->resolveNodeSample(tid, sampleNo, subroffset);    const RealVectorType* maskres=m_mask->resolveNodeSample(tid, sampleNo, subroffset);
1359    const ValueType* srcres=0;    const RealVectorType* srcres=0;
1360    if ((*maskres)[subroffset]>0)    if ((*maskres)[subroffset]>0)
1361    {    {
1362      srcres=m_left->resolveNodeSample(tid, sampleNo, subroffset);          srcres=m_left->resolveNodeSample(tid, sampleNo, subroffset);
1363    }    }
1364    else    else
1365    {    {
1366      srcres=m_right->resolveNodeSample(tid, sampleNo, subroffset);          srcres=m_right->resolveNodeSample(tid, sampleNo, subroffset);
1367    }    }
1368    
1369    // Now we need to copy the result    // Now we need to copy the result
# Line 1406  DataLazy::resolveNodeCondEval(int tid, i Line 1371  DataLazy::resolveNodeCondEval(int tid, i
1371    roffset=m_samplesize*tid;    roffset=m_samplesize*tid;
1372    for (int i=0;i<m_samplesize;++i)    for (int i=0;i<m_samplesize;++i)
1373    {    {
1374      m_samples[roffset+i]=(*srcres)[subroffset+i];            m_samples[roffset+i]=(*srcres)[subroffset+i];  
1375    }    }
1376    
1377    return &m_samples;    return &m_samples;
# Line 1421  DataLazy::resolveNodeCondEval(int tid, i Line 1386  DataLazy::resolveNodeCondEval(int tid, i
1386  // There is an additional complication when scalar operations are considered.  // There is an additional complication when scalar operations are considered.
1387  // For example, 2+Vector.  // For example, 2+Vector.
1388  // In this case each double within the point is treated individually  // In this case each double within the point is treated individually
1389  const DataTypes::ValueType*  const DataTypes::RealVectorType*
1390  DataLazy::resolveNodeBinary(int tid, int sampleNo, size_t& roffset)  DataLazy::resolveNodeBinary(int tid, int sampleNo, size_t& roffset) const
1391  {  {
1392  LAZYDEBUG(cout << "Resolve binary: " << toString() << endl;)  LAZYDEBUG(cout << "Resolve binary: " << toString() << endl;)
1393    
1394    size_t lroffset=0, rroffset=0;    // offsets in the left and right result vectors    size_t lroffset=0, rroffset=0;        // offsets in the left and right result vectors
1395      // first work out which of the children are expanded          // first work out which of the children are expanded
1396    bool leftExp=(m_left->m_readytype=='E');    bool leftExp=(m_left->m_readytype=='E');
1397    bool rightExp=(m_right->m_readytype=='E');    bool rightExp=(m_right->m_readytype=='E');
1398    if (!leftExp && !rightExp)    if (!leftExp && !rightExp)
1399    {    {
1400      throw DataException("Programmer Error - please use collapse if neither argument has type 'E'.");          throw DataException("Programmer Error - please use collapse if neither argument has type 'E'.");
1401    }    }
1402    bool leftScalar=(m_left->getRank()==0);    bool leftScalar=(m_left->getRank()==0);
1403    bool rightScalar=(m_right->getRank()==0);    bool rightScalar=(m_right->getRank()==0);
1404    if ((m_left->getRank()!=m_right->getRank()) && (!leftScalar && !rightScalar))    if ((m_left->getRank()!=m_right->getRank()) && (!leftScalar && !rightScalar))
1405    {    {
1406      throw DataException("resolveBinary - ranks of arguments must match unless one of them is scalar.");          throw DataException("resolveBinary - ranks of arguments must match unless one of them is scalar.");
1407    }    }
1408    size_t leftsize=m_left->getNoValues();    size_t leftsize=m_left->getNoValues();
1409    size_t rightsize=m_right->getNoValues();    size_t rightsize=m_right->getNoValues();
1410    size_t chunksize=1;           // how many doubles will be processed in one go    size_t chunksize=1;                   // how many doubles will be processed in one go
1411    int leftstep=0;       // how far should the left offset advance after each step    int leftstep=0;               // how far should the left offset advance after each step
1412    int rightstep=0;    int rightstep=0;
1413    int numsteps=0;       // total number of steps for the inner loop    int numsteps=0;               // total number of steps for the inner loop
1414    int oleftstep=0;  // the o variables refer to the outer loop    int oleftstep=0;      // the o variables refer to the outer loop
1415    int orightstep=0; // The outer loop is only required in cases where there is an extended scalar    int orightstep=0;     // The outer loop is only required in cases where there is an extended scalar
1416    int onumsteps=1;    int onumsteps=1;
1417        
1418    bool LES=(leftExp && leftScalar); // Left is an expanded scalar    bool LES=(leftExp && leftScalar);     // Left is an expanded scalar
1419    bool RES=(rightExp && rightScalar);    bool RES=(rightExp && rightScalar);
1420    bool LS=(!leftExp && leftScalar); // left is a single scalar    bool LS=(!leftExp && leftScalar);     // left is a single scalar
1421    bool RS=(!rightExp && rightScalar);    bool RS=(!rightExp && rightScalar);
1422    bool LN=(!leftExp && !leftScalar);    // left is a single non-scalar    bool LN=(!leftExp && !leftScalar);    // left is a single non-scalar
1423    bool RN=(!rightExp && !rightScalar);    bool RN=(!rightExp && !rightScalar);
1424    bool LEN=(leftExp && !leftScalar);    // left is an expanded non-scalar    bool LEN=(leftExp && !leftScalar);    // left is an expanded non-scalar
1425    bool REN=(rightExp && !rightScalar);    bool REN=(rightExp && !rightScalar);
1426    
1427    if ((LES && RES) || (LEN && REN)) // both are Expanded scalars or both are expanded non-scalars    if ((LES && RES) || (LEN && REN))     // both are Expanded scalars or both are expanded non-scalars
1428    {    {
1429      chunksize=m_left->getNumDPPSample()*leftsize;          chunksize=m_left->getNumDPPSample()*leftsize;
1430      leftstep=0;          leftstep=0;
1431      rightstep=0;          rightstep=0;
1432      numsteps=1;          numsteps=1;
1433    }    }
1434    else if (LES || RES)    else if (LES || RES)
1435    {    {
1436      chunksize=1;          chunksize=1;
1437      if (LES)        // left is an expanded scalar          if (LES)                // left is an expanded scalar
1438      {          {
1439          if (RS)                  if (RS)
1440          {                  {
1441             leftstep=1;                     leftstep=1;
1442             rightstep=0;                     rightstep=0;
1443             numsteps=m_left->getNumDPPSample();                     numsteps=m_left->getNumDPPSample();
1444          }                  }
1445          else        // RN or REN                  else            // RN or REN
1446          {                  {
1447             leftstep=0;                     leftstep=0;
1448             oleftstep=1;                     oleftstep=1;
1449             rightstep=1;                     rightstep=1;
1450             orightstep=(RN ? -(int)rightsize : 0);                     orightstep=(RN ? -(int)rightsize : 0);
1451             numsteps=rightsize;                     numsteps=rightsize;
1452             onumsteps=m_left->getNumDPPSample();                     onumsteps=m_left->getNumDPPSample();
1453          }                  }
1454      }          }
1455      else        // right is an expanded scalar          else            // right is an expanded scalar
1456      {          {
1457          if (LS)                  if (LS)
1458          {                  {
1459             rightstep=1;                     rightstep=1;
1460             leftstep=0;                     leftstep=0;
1461             numsteps=m_right->getNumDPPSample();                     numsteps=m_right->getNumDPPSample();
1462          }                  }
1463          else                  else
1464          {                  {
1465             rightstep=0;                     rightstep=0;
1466             orightstep=1;                     orightstep=1;
1467             leftstep=1;                     leftstep=1;
1468             oleftstep=(LN ? -(int)leftsize : 0);                     oleftstep=(LN ? -(int)leftsize : 0);
1469             numsteps=leftsize;                     numsteps=leftsize;
1470             onumsteps=m_right->getNumDPPSample();                     onumsteps=m_right->getNumDPPSample();
1471          }                  }
1472      }          }
1473    }    }
1474    else  // this leaves (LEN, RS), (LEN, RN) and their transposes    else  // this leaves (LEN, RS), (LEN, RN) and their transposes
1475    {    {
1476      if (LEN)    // and Right will be a single value          if (LEN)        // and Right will be a single value
1477      {          {
1478          chunksize=rightsize;                  chunksize=rightsize;
1479          leftstep=rightsize;                  leftstep=rightsize;
1480          rightstep=0;                  rightstep=0;
1481          numsteps=m_left->getNumDPPSample();                  numsteps=m_left->getNumDPPSample();
1482          if (RS)                  if (RS)
1483          {                  {
1484             numsteps*=leftsize;                     numsteps*=leftsize;
1485          }                  }
1486      }          }
1487      else    // REN          else    // REN
1488      {          {
1489          chunksize=leftsize;                  chunksize=leftsize;
1490          rightstep=leftsize;                  rightstep=leftsize;
1491          leftstep=0;                  leftstep=0;
1492          numsteps=m_right->getNumDPPSample();                  numsteps=m_right->getNumDPPSample();
1493          if (LS)                  if (LS)
1494          {                  {
1495             numsteps*=rightsize;                     numsteps*=rightsize;
1496          }                  }
1497      }          }
1498    }    }
1499    
1500    int resultStep=max(leftstep,rightstep);   // only one (at most) should be !=0    int resultStep=max(leftstep,rightstep);       // only one (at most) should be !=0
1501      // Get the values of sub-expressions          // Get the values of sub-expressions
1502    const ValueType* left=m_left->resolveNodeSample(tid,sampleNo,lroffset);      const RealVectorType* left=m_left->resolveNodeSample(tid,sampleNo,lroffset);      
1503    const ValueType* right=m_right->resolveNodeSample(tid,sampleNo,rroffset);    const RealVectorType* right=m_right->resolveNodeSample(tid,sampleNo,rroffset);
1504  LAZYDEBUG(cout << "Post sub calls in " << toString() << endl;)  LAZYDEBUG(cout << "Post sub calls in " << toString() << endl;)
1505  LAZYDEBUG(cout << "shapes=" << DataTypes::shapeToString(m_left->getShape()) << "," << DataTypes::shapeToString(m_right->getShape()) << endl;)  LAZYDEBUG(cout << "shapes=" << DataTypes::shapeToString(m_left->getShape()) << "," << DataTypes::shapeToString(m_right->getShape()) << endl;)
1506  LAZYDEBUG(cout << "chunksize=" << chunksize << endl << "leftstep=" << leftstep << " rightstep=" << rightstep;)  LAZYDEBUG(cout << "chunksize=" << chunksize << endl << "leftstep=" << leftstep << " rightstep=" << rightstep;)
# Line 1549  LAZYDEBUG(cout << "Right res["<< rroffse Line 1514  LAZYDEBUG(cout << "Right res["<< rroffse
1514    
1515    
1516    roffset=m_samplesize*tid;    roffset=m_samplesize*tid;
1517    double* resultp=&(m_samples[roffset]);        // results are stored at the vector offset we received    double* resultp=&(m_samples[roffset]);                // results are stored at the vector offset we received
1518    switch(m_op)    switch(m_op)
1519    {    {
1520      case ADD:      case ADD:
1521          PROC_OP(NO_ARG,plus<double>());          //PROC_OP(NO_ARG,plus<double>());
1522      break;        escript::binaryOpVectorLazyHelper<real_t, real_t, real_t>(resultp,
1523                 &(*left)[0],
1524                 &(*right)[0],
1525                 chunksize,
1526                 onumsteps,
1527                 numsteps,
1528                 resultStep,
1529                 leftstep,
1530                 rightstep,
1531                 oleftstep,
1532                 orightstep,
1533                 lroffset,
1534                 rroffset,
1535                 escript::ESFunction::PLUSF);  
1536            break;
1537      case SUB:      case SUB:
1538      PROC_OP(NO_ARG,minus<double>());        escript::binaryOpVectorLazyHelper<real_t, real_t, real_t>(resultp,
1539      break;               &(*left)[0],
1540                 &(*right)[0],
1541                 chunksize,
1542                 onumsteps,
1543                 numsteps,
1544                 resultStep,
1545                 leftstep,
1546                 rightstep,
1547                 oleftstep,
1548                 orightstep,
1549                 lroffset,
1550                 rroffset,
1551                 escript::ESFunction::MINUSF);        
1552            //PROC_OP(NO_ARG,minus<double>());
1553            break;
1554      case MUL:      case MUL:
1555      PROC_OP(NO_ARG,multiplies<double>());          //PROC_OP(NO_ARG,multiplies<double>());
1556      break;        escript::binaryOpVectorLazyHelper<real_t, real_t, real_t>(resultp,
1557                 &(*left)[0],
1558                 &(*right)[0],
1559                 chunksize,
1560                 onumsteps,
1561                 numsteps,
1562                 resultStep,
1563                 leftstep,
1564                 rightstep,
1565                 oleftstep,
1566                 orightstep,
1567                 lroffset,
1568                 rroffset,
1569                 escript::ESFunction::MULTIPLIESF);      
1570            break;
1571      case DIV:      case DIV:
1572      PROC_OP(NO_ARG,divides<double>());          //PROC_OP(NO_ARG,divides<double>());
1573      break;        escript::binaryOpVectorLazyHelper<real_t, real_t, real_t>(resultp,
1574                 &(*left)[0],
1575                 &(*right)[0],
1576                 chunksize,
1577                 onumsteps,
1578                 numsteps,
1579                 resultStep,
1580                 leftstep,
1581                 rightstep,
1582                 oleftstep,
1583                 orightstep,
1584                 lroffset,
1585                 rroffset,
1586                 escript::ESFunction::DIVIDESF);          
1587            break;
1588      case POW:      case POW:
1589         PROC_OP(double (double,double),::pow);         //PROC_OP(double (double,double),::pow);
1590      break;        escript::binaryOpVectorLazyHelper<real_t, real_t, real_t>(resultp,
1591                 &(*left)[0],
1592                 &(*right)[0],
1593                 chunksize,
1594                 onumsteps,
1595                 numsteps,
1596                 resultStep,
1597                 leftstep,
1598                 rightstep,
1599                 oleftstep,
1600                 orightstep,
1601                 lroffset,
1602                 rroffset,
1603                 escript::ESFunction::POWF);          
1604            break;
1605      default:      default:
1606      throw DataException("Programmer error - resolveBinary can not resolve operator "+opToString(m_op)+".");          throw DataException("Programmer error - resolveBinary can not resolve operator "+opToString(m_op)+".");
1607    }    }
1608  LAZYDEBUG(cout << "Result res[" << roffset<< "]" << m_samples[roffset] << endl;)  LAZYDEBUG(cout << "Result res[" << roffset<< "]" << m_samples[roffset] << endl;)
1609    return &m_samples;    return &m_samples;
# Line 1578  LAZYDEBUG(cout << "Result res[" << roffs Line 1613  LAZYDEBUG(cout << "Result res[" << roffs
1613  // This method assumes that any subexpressions which evaluate to Constant or Tagged Data  // This method assumes that any subexpressions which evaluate to Constant or Tagged Data
1614  // have already been collapsed to IDENTITY. So we must have at least one expanded child.  // have already been collapsed to IDENTITY. So we must have at least one expanded child.
1615  // unlike the other resolve helpers, we must treat these datapoints separately.  // unlike the other resolve helpers, we must treat these datapoints separately.
1616  const DataTypes::ValueType*  const DataTypes::RealVectorType*
1617  DataLazy::resolveNodeTProd(int tid, int sampleNo, size_t& roffset)  DataLazy::resolveNodeTProd(int tid, int sampleNo, size_t& roffset) const
1618  {  {
1619  LAZYDEBUG(cout << "Resolve TensorProduct: " << toString() << endl;)  LAZYDEBUG(cout << "Resolve TensorProduct: " << toString() << endl;)
1620    
1621    size_t lroffset=0, rroffset=0;    // offsets in the left and right result vectors    size_t lroffset=0, rroffset=0;        // offsets in the left and right result vectors
1622      // first work out which of the children are expanded          // first work out which of the children are expanded
1623    bool leftExp=(m_left->m_readytype=='E');    bool leftExp=(m_left->m_readytype=='E');
1624    bool rightExp=(m_right->m_readytype=='E');    bool rightExp=(m_right->m_readytype=='E');
1625    int steps=getNumDPPSample();    int steps=getNumDPPSample();
1626    int leftStep=(leftExp? m_left->getNoValues() : 0);        // do not have scalars as input to this method    int leftStep=(leftExp? m_left->getNoValues() : 0);            // do not have scalars as input to this method
1627    int rightStep=(rightExp?m_right->getNoValues() : 0);    int rightStep=(rightExp?m_right->getNoValues() : 0);
1628    
1629    int resultStep=getNoValues();    int resultStep=getNoValues();
1630    roffset=m_samplesize*tid;    roffset=m_samplesize*tid;
1631    size_t offset=roffset;    size_t offset=roffset;
1632    
1633    const ValueType* left=m_left->resolveNodeSample(tid, sampleNo, lroffset);    const RealVectorType* left=m_left->resolveNodeSample(tid, sampleNo, lroffset);
1634    
1635    const ValueType* right=m_right->resolveNodeSample(tid, sampleNo, rroffset);    const RealVectorType* right=m_right->resolveNodeSample(tid, sampleNo, rroffset);
1636    
1637  LAZYDEBUG(cerr << "[Left shape]=" << DataTypes::shapeToString(m_left->getShape()) << "\n[Right shape]=" << DataTypes::shapeToString(m_right->getShape()) << " result=" <<DataTypes::shapeToString(getShape()) <<  endl;  LAZYDEBUG(cerr << "[Left shape]=" << DataTypes::shapeToString(m_left->getShape()) << "\n[Right shape]=" << DataTypes::shapeToString(m_right->getShape()) << " result=" <<DataTypes::shapeToString(getShape()) <<  endl;
1638  cout << getNoValues() << endl;)  cout << getNoValues() << endl;)
# Line 1611  LAZYDEBUG(cout << "m_samplesize=" << m_s Line 1646  LAZYDEBUG(cout << "m_samplesize=" << m_s
1646  LAZYDEBUG(cout << "outputshape=" << DataTypes::shapeToString(getShape()) << endl;)  LAZYDEBUG(cout << "outputshape=" << DataTypes::shapeToString(getShape()) << endl;)
1647  LAZYDEBUG(cout << "DPPS=" << m_right->getNumDPPSample() <<"."<<endl;)  LAZYDEBUG(cout << "DPPS=" << m_right->getNumDPPSample() <<"."<<endl;)
1648    
1649    double* resultp=&(m_samples[offset]);     // results are stored at the vector offset we received    double* resultp=&(m_samples[offset]);         // results are stored at the vector offset we received
1650    switch(m_op)    switch(m_op)
1651    {    {
1652      case PROD:      case PROD:
1653      for (int i=0;i<steps;++i,resultp+=resultStep)          for (int i=0;i<steps;++i,resultp+=resultStep)
1654      {          {
1655            const double *ptr_0 = &((*left)[lroffset]);            const double *ptr_0 = &((*left)[lroffset]);
1656            const double *ptr_1 = &((*right)[rroffset]);            const double *ptr_1 = &((*right)[rroffset]);
1657    
1658  LAZYDEBUG(cout << DataTypes::pointToString(*left, m_left->getShape(),lroffset,"LEFT") << endl;)  LAZYDEBUG(cout << DataTypes::pointToString(*left, m_left->getShape(),lroffset,"LEFT") << endl;)
1659  LAZYDEBUG(cout << DataTypes::pointToString(*right,m_right->getShape(),rroffset, "RIGHT") << endl;)  LAZYDEBUG(cout << DataTypes::pointToString(*right,m_right->getShape(),rroffset, "RIGHT") << endl;)
1660    
1661            matrix_matrix_product(m_SL, m_SM, m_SR, ptr_0, ptr_1, resultp, m_transpose);            matrix_matrix_product(m_SL, m_SM, m_SR, ptr_0, ptr_1, resultp, m_transpose);
1662    
1663        lroffset+=leftStep;            lroffset+=leftStep;
1664        rroffset+=rightStep;            rroffset+=rightStep;
1665      }          }
1666      break;          break;
1667      default:      default:
1668      throw DataException("Programmer error - resolveTProduct can not resolve operator "+opToString(m_op)+".");          throw DataException("Programmer error - resolveTProduct can not resolve operator "+opToString(m_op)+".");
1669    }    }
1670    roffset=offset;    roffset=offset;
1671    return &m_samples;    return &m_samples;
1672  }  }
1673    
1674    
1675  const DataTypes::ValueType*  const DataTypes::RealVectorType*
1676  DataLazy::resolveSample(int sampleNo, size_t& roffset)  DataLazy::resolveSample(int sampleNo, size_t& roffset) const
1677  {  {
1678  #ifdef _OPENMP  #ifdef _OPENMP
1679      int tid=omp_get_thread_num();          int tid=omp_get_thread_num();
1680  #else  #else
1681      int tid=0;          int tid=0;
1682  #endif  #endif
1683    
1684  #ifdef LAZY_STACK_PROF  #ifdef LAZY_STACK_PROF
1685      stackstart[tid]=&tid;          stackstart[tid]=&tid;
1686      stackend[tid]=&tid;          stackend[tid]=&tid;
1687      const DataTypes::ValueType* r=resolveNodeSample(tid, sampleNo, roffset);          const DataTypes::RealVectorType* r=resolveNodeSample(tid, sampleNo, roffset);
1688      size_t d=(size_t)stackstart[tid]-(size_t)stackend[tid];          size_t d=(size_t)stackstart[tid]-(size_t)stackend[tid];
1689      #pragma omp critical          #pragma omp critical
1690      if (d>maxstackuse)          if (d>maxstackuse)
1691      {          {
1692  cout << "Max resolve Stack use " << d << endl;  cout << "Max resolve Stack use " << d << endl;
1693          maxstackuse=d;                  maxstackuse=d;
1694      }          }
1695      return r;          return r;
1696  #else  #else
1697      return resolveNodeSample(tid, sampleNo, roffset);          return resolveNodeSample(tid, sampleNo, roffset);
1698  #endif  #endif
1699  }  }
1700    
# Line 1669  void Line 1704  void
1704  DataLazy::resolveToIdentity()  DataLazy::resolveToIdentity()
1705  {  {
1706     if (m_op==IDENTITY)     if (m_op==IDENTITY)
1707      return;          return;
1708     DataReady_ptr p=resolveNodeWorker();     DataReady_ptr p=resolveNodeWorker();
1709     makeIdentity(p);     makeIdentity(p);
1710  }  }
# Line 1706  DataLazy::resolveGroupWorker(std::vector Line 1741  DataLazy::resolveGroupWorker(std::vector
1741  {  {
1742    if (dats.empty())    if (dats.empty())
1743    {    {
1744      return;          return;
1745    }    }
1746    vector<DataLazy*> work;    vector<DataLazy*> work;
1747    FunctionSpace fs=dats[0]->getFunctionSpace();    FunctionSpace fs=dats[0]->getFunctionSpace();
1748    bool match=true;    bool match=true;
1749    for (int i=dats.size()-1;i>=0;--i)    for (int i=dats.size()-1;i>=0;--i)
1750    {    {
1751      if (dats[i]->m_readytype!='E')          if (dats[i]->m_readytype!='E')
1752      {          {
1753          dats[i]->collapse();                  dats[i]->collapse();
1754      }          }
1755      if (dats[i]->m_op!=IDENTITY)          if (dats[i]->m_op!=IDENTITY)
1756      {          {
1757          work.push_back(dats[i]);                  work.push_back(dats[i]);
1758          if (fs!=dats[i]->getFunctionSpace())                  if (fs!=dats[i]->getFunctionSpace())
1759          {                  {
1760              match=false;                          match=false;
1761          }                  }
1762      }          }
1763    }    }
1764    if (work.empty())    if (work.empty())
1765    {    {
1766      return;     // no work to do          return;         // no work to do
1767    }    }
1768    if (match)    // all functionspaces match.  Yes I realise this is overly strict    if (match)    // all functionspaces match.  Yes I realise this is overly strict
1769    {     // it is possible that dats[0] is one of the objects which we discarded and    {             // it is possible that dats[0] is one of the objects which we discarded and
1770          // all the other functionspaces match.                  // all the other functionspaces match.
1771      vector<DataExpanded*> dep;          vector<DataExpanded*> dep;
1772      vector<ValueType*> vecs;          vector<RealVectorType*> vecs;
1773      for (int i=0;i<work.size();++i)          for (int i=0;i<work.size();++i)
1774      {          {
1775          dep.push_back(new DataExpanded(fs,work[i]->getShape(), ValueType(work[i]->getNoValues())));                  dep.push_back(new DataExpanded(fs,work[i]->getShape(), RealVectorType(work[i]->getNoValues())));
1776          vecs.push_back(&(dep[i]->getVectorRW()));                  vecs.push_back(&(dep[i]->getVectorRW()));
1777      }          }
1778      int totalsamples=work[0]->getNumSamples();          int totalsamples=work[0]->getNumSamples();
1779      const ValueType* res=0; // Storage for answer          const RealVectorType* res=0; // Storage for answer
1780      int sample;          int sample;
1781      #pragma omp parallel private(sample, res)          #pragma omp parallel private(sample, res)
1782      {          {
1783          size_t roffset=0;              size_t roffset=0;
1784          #pragma omp for schedule(static)              #pragma omp for schedule(static)
1785          for (sample=0;sample<totalsamples;++sample)              for (sample=0;sample<totalsamples;++sample)
1786          {              {
1787          roffset=0;                  roffset=0;
1788          int j;                  int j;
1789          for (j=work.size()-1;j>=0;--j)                  for (j=work.size()-1;j>=0;--j)
1790          {                  {
1791  #ifdef _OPENMP  #ifdef _OPENMP
1792                  res=work[j]->resolveNodeSample(omp_get_thread_num(),sample,roffset);                      res=work[j]->resolveNodeSample(omp_get_thread_num(),sample,roffset);
1793  #else  #else
1794                  res=work[j]->resolveNodeSample(0,sample,roffset);                      res=work[j]->resolveNodeSample(0,sample,roffset);
1795  #endif  #endif
1796                  DataVector::size_type outoffset=dep[j]->getPointOffset(sample,0);                      RealVectorType::size_type outoffset=dep[j]->getPointOffset(sample,0);
1797                  memcpy(&((*vecs[j])[outoffset]),&((*res)[roffset]),work[j]->m_samplesize*sizeof(DataVector::ElementType));                      memcpy(&((*vecs[j])[outoffset]),&((*res)[roffset]),work[j]->m_samplesize*sizeof(RealVectorType::ElementType));
1798          }                  }
1799          }              }
1800      }          }
1801      // Now we need to load the new results as identity ops into the lazy nodes          // Now we need to load the new results as identity ops into the lazy nodes
1802      for (int i=work.size()-1;i>=0;--i)          for (int i=work.size()-1;i>=0;--i)
1803      {          {
1804          work[i]->makeIdentity(boost::dynamic_pointer_cast<DataReady>(dep[i]->getPtr()));              work[i]->makeIdentity(REFCOUNTNS::dynamic_pointer_cast<DataReady>(dep[i]->getPtr()));
1805      }          }
1806    }    }
1807    else  // functionspaces do not match    else  // functionspaces do not match
1808    {    {
1809      for (int i=0;i<work.size();++i)          for (int i=0;i<work.size();++i)
1810      {          {
1811          work[i]->resolveToIdentity();                  work[i]->resolveToIdentity();
1812      }          }
1813    }    }
1814  }  }
1815    
# Line 1784  DataLazy::resolveGroupWorker(std::vector Line 1819  DataLazy::resolveGroupWorker(std::vector
1819  DataReady_ptr  DataReady_ptr
1820  DataLazy::resolveNodeWorker()  DataLazy::resolveNodeWorker()
1821  {  {
1822    if (m_readytype!='E')     // if the whole sub-expression is Constant or Tagged, then evaluate it normally    if (m_readytype!='E')         // if the whole sub-expression is Constant or Tagged, then evaluate it normally
1823    {    {
1824      collapse();      collapse();
1825    }    }
1826    if (m_op==IDENTITY)       // So a lazy expression of Constant or Tagged data will be returned here.    if (m_op==IDENTITY)           // So a lazy expression of Constant or Tagged data will be returned here.
1827    {    {
1828      return m_id;      return m_id;
1829    }    }
1830      // from this point on we must have m_op!=IDENTITY and m_readytype=='E'          // from this point on we must have m_op!=IDENTITY and m_readytype=='E'
1831    DataExpanded* result=new DataExpanded(getFunctionSpace(),getShape(),  ValueType(getNoValues()));    DataExpanded* result=new DataExpanded(getFunctionSpace(),getShape(),  RealVectorType(getNoValues()));
1832    ValueType& resvec=result->getVectorRW();    RealVectorType& resvec=result->getVectorRW();
1833    DataReady_ptr resptr=DataReady_ptr(result);    DataReady_ptr resptr=DataReady_ptr(result);
1834    
1835    int sample;    int sample;
1836    int totalsamples=getNumSamples();    int totalsamples=getNumSamples();
1837    const ValueType* res=0;   // Storage for answer    const RealVectorType* res=0;       // Storage for answer
1838  LAZYDEBUG(cout << "Total number of samples=" <<totalsamples << endl;)  LAZYDEBUG(cout << "Total number of samples=" <<totalsamples << endl;)
1839    #pragma omp parallel private(sample,res)    #pragma omp parallel private(sample,res)
1840    {    {
1841      size_t roffset=0;          size_t roffset=0;
1842  #ifdef LAZY_STACK_PROF  #ifdef LAZY_STACK_PROF
1843      stackstart[omp_get_thread_num()]=&roffset;          stackstart[omp_get_thread_num()]=&roffset;
1844      stackend[omp_get_thread_num()]=&roffset;          stackend[omp_get_thread_num()]=&roffset;
1845  #endif  #endif
1846      #pragma omp for schedule(static)          #pragma omp for schedule(static)
1847      for (sample=0;sample<totalsamples;++sample)          for (sample=0;sample<totalsamples;++sample)
1848      {          {
1849          roffset=0;                  roffset=0;
1850  #ifdef _OPENMP  #ifdef _OPENMP
1851              res=resolveNodeSample(omp_get_thread_num(),sample,roffset);                  res=resolveNodeSample(omp_get_thread_num(),sample,roffset);
1852  #else  #else
1853              res=resolveNodeSample(0,sample,roffset);                  res=resolveNodeSample(0,sample,roffset);
1854  #endif  #endif
1855  LAZYDEBUG(cout << "Sample #" << sample << endl;)  LAZYDEBUG(cout << "Sample #" << sample << endl;)
1856  LAZYDEBUG(cout << "Final res[" << roffset<< "]=" << (*res)[roffset] << (*res)[roffset]<< endl; )  LAZYDEBUG(cout << "Final res[" << roffset<< "]=" << (*res)[roffset] << (*res)[roffset]<< endl; )
1857              DataVector::size_type outoffset=result->getPointOffset(sample,0);                  RealVectorType::size_type outoffset=result->getPointOffset(sample,0);
1858              memcpy(&(resvec[outoffset]),&((*res)[roffset]),m_samplesize*sizeof(DataVector::ElementType));                  memcpy(&(resvec[outoffset]),&((*res)[roffset]),m_samplesize*sizeof(RealVectorType::ElementType));
1859      }          }
1860    }    }
1861  #ifdef LAZY_STACK_PROF  #ifdef LAZY_STACK_PROF
1862    for (int i=0;i<getNumberOfThreads();++i)    for (int i=0;i<getNumberOfThreads();++i)
1863    {    {
1864      size_t r=((size_t)stackstart[i] - (size_t)stackend[i]);          size_t r=((size_t)stackstart[i] - (size_t)stackend[i]);
1865  //  cout << i << " " << stackstart[i] << " .. " << stackend[i] << " = " <<  r << endl;  //      cout << i << " " << stackstart[i] << " .. " << stackend[i] << " = " <<  r << endl;
1866      if (r>maxstackuse)          if (r>maxstackuse)
1867      {          {
1868          maxstackuse=r;                  maxstackuse=r;
1869      }          }
1870    }    }
1871    cout << "Max resolve Stack use=" << maxstackuse << endl;    cout << "Max resolve Stack use=" << maxstackuse << endl;
1872  #endif  #endif
# Line 1845  DataLazy::toString() const Line 1880  DataLazy::toString() const
1880    oss << "Lazy Data: [depth=" << m_height<< "] ";    oss << "Lazy Data: [depth=" << m_height<< "] ";
1881    switch (escriptParams.getLAZY_STR_FMT())    switch (escriptParams.getLAZY_STR_FMT())
1882    {    {
1883    case 1:   // tree format    case 1:       // tree format
1884      oss << endl;          oss << endl;
1885      intoTreeString(oss,"");          intoTreeString(oss,"");
1886      break;          break;
1887    case 2:   // just the depth    case 2:       // just the depth
1888      break;          break;
1889    default:    default:
1890      intoString(oss);          intoString(oss);
1891      break;          break;
1892    }    }
1893    return oss.str();    return oss.str();
1894  }  }
# Line 1866  DataLazy::intoString(ostringstream& oss) Line 1901  DataLazy::intoString(ostringstream& oss)
1901    switch (getOpgroup(m_op))    switch (getOpgroup(m_op))
1902    {    {
1903    case G_IDENTITY:    case G_IDENTITY:
1904      if (m_id->isExpanded())          if (m_id->isExpanded())
1905      {          {
1906         oss << "E";             oss << "E";
1907      }          }
1908      else if (m_id->isTagged())          else if (m_id->isTagged())
1909      {          {
1910        oss << "T";            oss << "T";
1911      }          }
1912      else if (m_id->isConstant())          else if (m_id->isConstant())
1913      {          {
1914        oss << "C";            oss << "C";
1915      }          }
1916      else          else
1917      {          {
1918        oss << "?";            oss << "?";
1919      }          }
1920      oss << '@' << m_id.get();          oss << '@' << m_id.get();
1921      break;          break;
1922    case G_BINARY:    case G_BINARY:
1923      oss << '(';          oss << '(';
1924      m_left->intoString(oss);          m_left->intoString(oss);
1925      oss << ' ' << opToString(m_op) << ' ';          oss << ' ' << opToString(m_op) << ' ';
1926      m_right->intoString(oss);          m_right->intoString(oss);
1927      oss << ')';          oss << ')';
1928      break;          break;
1929    case G_UNARY:    case G_UNARY:
1930    case G_UNARY_P:    case G_UNARY_P:
1931    case G_NP1OUT:    case G_NP1OUT:
1932    case G_NP1OUT_P:    case G_NP1OUT_P:
1933    case G_REDUCTION:    case G_REDUCTION:
1934      oss << opToString(m_op) << '(';          oss << opToString(m_op) << '(';
1935      m_left->intoString(oss);          m_left->intoString(oss);
1936      oss << ')';          oss << ')';
1937      break;          break;
1938    case G_TENSORPROD:    case G_TENSORPROD:
1939      oss << opToString(m_op) << '(';          oss << opToString(m_op) << '(';
1940      m_left->intoString(oss);          m_left->intoString(oss);
1941      oss << ", ";          oss << ", ";
1942      m_right->intoString(oss);          m_right->intoString(oss);
1943      oss << ')';          oss << ')';
1944      break;          break;
1945    case G_NP1OUT_2P:    case G_NP1OUT_2P:
1946      oss << opToString(m_op) << '(';          oss << opToString(m_op) << '(';
1947      m_left->intoString(oss);          m_left->intoString(oss);
1948      oss << ", " << m_axis_offset << ", " << m_transpose;          oss << ", " << m_axis_offset << ", " << m_transpose;
1949      oss << ')';          oss << ')';
1950      break;          break;
1951    case G_CONDEVAL:    case G_CONDEVAL:
1952      oss << opToString(m_op)<< '(' ;          oss << opToString(m_op)<< '(' ;
1953      m_mask->intoString(oss);          m_mask->intoString(oss);
1954      oss << " ? ";          oss << " ? ";
1955      m_left->intoString(oss);          m_left->intoString(oss);
1956      oss << " : ";          oss << " : ";
1957      m_right->intoString(oss);          m_right->intoString(oss);
1958      oss << ')';          oss << ')';
1959      break;          break;
1960    default:    default:
1961      oss << "UNKNOWN";          oss << "UNKNOWN";
1962    }    }
1963  }  }
1964    
# Line 1935  DataLazy::intoTreeString(ostringstream& Line 1970  DataLazy::intoTreeString(ostringstream&
1970    switch (getOpgroup(m_op))    switch (getOpgroup(m_op))
1971    {    {
1972    case G_IDENTITY:    case G_IDENTITY:
1973      if (m_id->isExpanded())          if (m_id->isExpanded())
1974      {          {
1975         oss << "E";             oss << "E";
1976      }          }
1977      else if (m_id->isTagged())          else if (m_id->isTagged())
1978      {          {
1979        oss << "T";            oss << "T";
1980      }          }
1981      else if (m_id->isConstant())          else if (m_id->isConstant())
1982      {          {
1983        oss << "C";            oss << "C";
1984      }          }
1985      else          else
1986      {          {
1987        oss << "?";            oss << "?";
1988      }          }
1989      oss << '@' << m_id.get() << endl;          oss << '@' << m_id.get() << endl;
1990      break;          break;
1991    case G_BINARY:    case G_BINARY:
1992      oss << opToString(m_op) << endl;          oss << opToString(m_op) << endl;
1993      indent+='.';          indent+='.';
1994      m_left->intoTreeString(oss, indent);          m_left->intoTreeString(oss, indent);
1995      m_right->intoTreeString(oss, indent);          m_right->intoTreeString(oss, indent);
1996      break;          break;
1997    case G_UNARY:    case G_UNARY:
1998    case G_UNARY_P:    case G_UNARY_P:
1999    case G_NP1OUT:    case G_NP1OUT:
2000    case G_NP1OUT_P:    case G_NP1OUT_P:
2001    case G_REDUCTION:    case G_REDUCTION:
2002      oss << opToString(m_op) << endl;          oss << opToString(m_op) << endl;
2003      indent+='.';          indent+='.';
2004      m_left->intoTreeString(oss, indent);          m_left->intoTreeString(oss, indent);
2005      break;          break;
2006    case G_TENSORPROD:    case G_TENSORPROD:
2007      oss << opToString(m_op) << endl;          oss << opToString(m_op) << endl;
2008      indent+='.';          indent+='.';
2009      m_left->intoTreeString(oss, indent);          m_left->intoTreeString(oss, indent);
2010      m_right->intoTreeString(oss, indent);          m_right->intoTreeString(oss, indent);
2011      break;          break;
2012    case G_NP1OUT_2P:    case G_NP1OUT_2P:
2013      oss << opToString(m_op) << ", " << m_axis_offset << ", " << m_transpose<< endl;          oss << opToString(m_op) << ", " << m_axis_offset << ", " << m_transpose<< endl;
2014      indent+='.';          indent+='.';
2015      m_left->intoTreeString(oss, indent);          m_left->intoTreeString(oss, indent);
2016      break;          break;
2017    default:    default:
2018      oss << "UNKNOWN";          oss << "UNKNOWN";
2019    }    }
2020  }  }
2021    
2022    
2023  DataAbstract*  DataAbstract*
2024  DataLazy::deepCopy()  DataLazy::deepCopy() const
2025  {  {
2026    switch (getOpgroup(m_op))    switch (getOpgroup(m_op))
2027    {    {
2028    case G_IDENTITY:  return new DataLazy(m_id->deepCopy()->getPtr());    case G_IDENTITY:  return new DataLazy(m_id->deepCopy()->getPtr());
2029    case G_UNARY:    case G_UNARY:
2030    case G_REDUCTION:      return new DataLazy(m_left->deepCopy()->getPtr(),m_op);    case G_REDUCTION:      return new DataLazy(m_left->deepCopy()->getPtr(),m_op);
2031    case G_UNARY_P:   return new DataLazy(m_left->deepCopy()->getPtr(), m_op, m_tol);    case G_UNARY_P:       return new DataLazy(m_left->deepCopy()->getPtr(), m_op, m_tol);
2032    case G_BINARY:    return new DataLazy(m_left->deepCopy()->getPtr(),m_right->deepCopy()->getPtr(),m_op);    case G_BINARY:        return new DataLazy(m_left->deepCopy()->getPtr(),m_right->deepCopy()->getPtr(),m_op);
2033    case G_NP1OUT: return new DataLazy(m_left->deepCopy()->getPtr(), m_right->deepCopy()->getPtr(),m_op);    case G_NP1OUT: return new DataLazy(m_left->deepCopy()->getPtr(), m_right->deepCopy()->getPtr(),m_op);
2034    case G_TENSORPROD: return new DataLazy(m_left->deepCopy()->getPtr(), m_right->deepCopy()->getPtr(), m_op, m_axis_offset, m_transpose);    case G_TENSORPROD: return new DataLazy(m_left->deepCopy()->getPtr(), m_right->deepCopy()->getPtr(), m_op, m_axis_offset, m_transpose);
2035    case G_NP1OUT_P:   return new DataLazy(m_left->deepCopy()->getPtr(),m_op,  m_axis_offset);    case G_NP1OUT_P:   return new DataLazy(m_left->deepCopy()->getPtr(),m_op,  m_axis_offset);
2036    case G_NP1OUT_2P:  return new DataLazy(m_left->deepCopy()->getPtr(), m_op, m_axis_offset, m_transpose);    case G_NP1OUT_2P:  return new DataLazy(m_left->deepCopy()->getPtr(), m_op, m_axis_offset, m_transpose);
2037    default:    default:
2038      throw DataException("Programmer error - do not know how to deepcopy operator "+opToString(m_op)+".");          throw DataException("Programmer error - do not know how to deepcopy operator "+opToString(m_op)+".");
2039    }    }
2040  }  }
2041    
# Line 2012  DataLazy::deepCopy() Line 2047  DataLazy::deepCopy()
2047  // or it could be some function of the lengths of the DataReady instances which  // or it could be some function of the lengths of the DataReady instances which
2048  // form part of the expression.  // form part of the expression.
2049  // Rather than have people making assumptions, I have disabled the method.  // Rather than have people making assumptions, I have disabled the method.
2050  DataTypes::ValueType::size_type  DataTypes::RealVectorType::size_type
2051  DataLazy::getLength() const  DataLazy::getLength() const
2052  {  {
2053    throw DataException("getLength() does not make sense for lazy data.");    throw DataException("getLength() does not make sense for lazy data.");
# Line 2027  DataLazy::getSlice(const DataTypes::Regi Line 2062  DataLazy::getSlice(const DataTypes::Regi
2062    
2063    
2064  // To do this we need to rely on our child nodes  // To do this we need to rely on our child nodes
2065  DataTypes::ValueType::size_type  DataTypes::RealVectorType::size_type
2066  DataLazy::getPointOffset(int sampleNo,  DataLazy::getPointOffset(int sampleNo,
2067                   int dataPointNo)                   int dataPointNo)
2068  {  {
2069    if (m_op==IDENTITY)    if (m_op==IDENTITY)
2070    {    {
2071      return m_id->getPointOffset(sampleNo,dataPointNo);          return m_id->getPointOffset(sampleNo,dataPointNo);
2072    }    }
2073    if (m_readytype!='E')    if (m_readytype!='E')
2074    {    {
2075      collapse();          collapse();
2076      return m_id->getPointOffset(sampleNo,dataPointNo);          return m_id->getPointOffset(sampleNo,dataPointNo);
2077    }    }
2078    // at this point we do not have an identity node and the expression will be Expanded    // at this point we do not have an identity node and the expression will be Expanded
2079    // so we only need to know which child to ask    // so we only need to know which child to ask
2080    if (m_left->m_readytype=='E')    if (m_left->m_readytype=='E')
2081    {    {
2082      return m_left->getPointOffset(sampleNo,dataPointNo);          return m_left->getPointOffset(sampleNo,dataPointNo);
2083    }    }
2084    else    else
2085    {    {
2086      return m_right->getPointOffset(sampleNo,dataPointNo);          return m_right->getPointOffset(sampleNo,dataPointNo);
2087    }    }
2088  }  }
2089    
2090  // To do this we need to rely on our child nodes  // To do this we need to rely on our child nodes
2091  DataTypes::ValueType::size_type  DataTypes::RealVectorType::size_type
2092  DataLazy::getPointOffset(int sampleNo,  DataLazy::getPointOffset(int sampleNo,
2093                   int dataPointNo) const                   int dataPointNo) const
2094  {  {
2095    if (m_op==IDENTITY)    if (m_op==IDENTITY)
2096    {    {
2097      return m_id->getPointOffset(sampleNo,dataPointNo);          return m_id->getPointOffset(sampleNo,dataPointNo);
2098    }    }
2099    if (m_readytype=='E')    if (m_readytype=='E')
2100    {    {
# Line 2067  DataLazy::getPointOffset(int sampleNo, Line 2102  DataLazy::getPointOffset(int sampleNo,
2102      // so we only need to know which child to ask      // so we only need to know which child to ask
2103      if (m_left->m_readytype=='E')      if (m_left->m_readytype=='E')
2104      {      {
2105      return m_left->getPointOffset(sampleNo,dataPointNo);          return m_left->getPointOffset(sampleNo,dataPointNo);
2106      }      }
2107      else      else
2108      {      {
2109      return m_right->getPointOffset(sampleNo,dataPointNo);          return m_right->getPointOffset(sampleNo,dataPointNo);
2110      }      }
2111    }    }
2112    if (m_readytype=='C')    if (m_readytype=='C')
2113    {    {
2114      return m_left->getPointOffset(sampleNo,dataPointNo); // which child doesn't matter          return m_left->getPointOffset(sampleNo,dataPointNo); // which child doesn't matter
2115    }    }
2116    throw DataException("Programmer error - getPointOffset on lazy data may require collapsing (but this object is marked const).");    throw DataException("Programmer error - getPointOffset on lazy data may require collapsing (but this object is marked const).");
2117  }  }
# Line 2086  DataLazy::getPointOffset(int sampleNo, Line 2121  DataLazy::getPointOffset(int sampleNo,
2121  void  void
2122  DataLazy::setToZero()  DataLazy::setToZero()
2123  {  {
2124  //   DataTypes::ValueType v(getNoValues(),0);  //   DataTypes::RealVectorType v(getNoValues(),0);
2125  //   m_id=DataReady_ptr(new DataConstant(getFunctionSpace(),getShape(),v));  //   m_id=DataReady_ptr(new DataConstant(getFunctionSpace(),getShape(),v));
2126  //   m_op=IDENTITY;  //   m_op=IDENTITY;
2127  //   m_right.reset();    //   m_right.reset();  
# Line 2094  DataLazy::setToZero() Line 2129  DataLazy::setToZero()
2129  //   m_readytype='C';  //   m_readytype='C';
2130  //   m_buffsRequired=1;  //   m_buffsRequired=1;
2131    
2132    privdebug=privdebug;  // to stop the compiler complaining about unused privdebug    (void)privdebug;  // to stop the compiler complaining about unused privdebug
2133    throw DataException("Programmer error - setToZero not supported for DataLazy (DataLazy objects should be read only).");    throw DataException("Programmer error - setToZero not supported for DataLazy (DataLazy objects should be read only).");
2134  }  }
2135    
2136  bool  bool
2137  DataLazy::actsExpanded() const  DataLazy::actsExpanded() const
2138  {  {
2139      return (m_readytype=='E');          return (m_readytype=='E');
2140  }  }
2141    
2142  }   // end namespace  } // end namespace
2143    

Legend:
Removed from v.4286  
changed lines
  Added in v.6088

  ViewVC Help
Powered by ViewVC 1.1.26