/[escript]/branches/clazy/escriptcore/src/DataLazy.cpp
ViewVC logotype

Diff of /branches/clazy/escriptcore/src/DataLazy.cpp

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 4621 by jfenwick, Thu Jan 16 10:07:44 2014 UTC revision 5997 by caltinay, Mon Feb 29 07:24:47 2016 UTC
# Line 1  Line 1 
1    
2  /*****************************************************************************  /*****************************************************************************
3  *  *
4  * Copyright (c) 2003-2013 by University of Queensland  * Copyright (c) 2003-2016 by The University of Queensland
5  * http://www.uq.edu.au  * http://www.uq.edu.au
6  *  *
7  * Primary Business: Queensland, Australia  * Primary Business: Queensland, Australia
# Line 9  Line 9 
9  * http://www.opensource.org/licenses/osl-3.0.php  * http://www.opensource.org/licenses/osl-3.0.php
10  *  *
11  * Development until 2012 by Earth Systems Science Computational Center (ESSCC)  * Development until 2012 by Earth Systems Science Computational Center (ESSCC)
12  * Development since 2012 by School of Earth Sciences  * Development 2012-2013 by School of Earth Sciences
13    * Development from 2014 by Centre for Geoscience Computing (GeoComp)
14  *  *
15  *****************************************************************************/  *****************************************************************************/
16    
17    #define ESNEEDPYTHON
18    #include "esysUtils/first.h"
19    
20  #include "DataLazy.h"  #include "DataLazy.h"
 #include "esysUtils/Esys_MPI.h"  
 #ifdef _OPENMP  
 #include <omp.h>  
 #endif  
 #include "FunctionSpace.h"  
 #include "DataTypes.h"  
21  #include "Data.h"  #include "Data.h"
22  #include "UnaryFuncs.h"     // for escript::fsign  #include "DataTypes.h"
 #include "Utils.h"  
   
23  #include "EscriptParams.h"  #include "EscriptParams.h"
24    #include "FunctionSpace.h"
25    #include "UnaryFuncs.h"    // for escript::fsign
26    #include "Utils.h"
27    
28  #ifdef USE_NETCDF  #ifdef USE_NETCDF
29  #include <netcdfcpp.h>  #include <netcdfcpp.h>
30  #endif  #endif
31    
32  #include <iomanip>      // for some fancy formatting in debug  #include <iomanip> // for some fancy formatting in debug
33    
34    using namespace escript::DataTypes;
35    
36    #define NO_ARG
37    
38  // #define LAZYDEBUG(X) if (privdebug){X;}  // #define LAZYDEBUG(X) if (privdebug){X;}
39  #define LAZYDEBUG(X)  #define LAZYDEBUG(X)
# Line 69  I will refer to individual DataLazy obje Line 71  I will refer to individual DataLazy obje
71    
72  Each node also stores:  Each node also stores:
73  - m_readytype \in {'E','T','C','?'} ~ indicates what sort of DataReady would be produced if the expression was  - m_readytype \in {'E','T','C','?'} ~ indicates what sort of DataReady would be produced if the expression was
74      evaluated.          evaluated.
75  - m_buffsrequired ~ the large number of samples which would need to be kept simultaneously in order to  - m_buffsrequired ~ the large number of samples which would need to be kept simultaneously in order to
76      evaluate the expression.          evaluate the expression.
77  - m_samplesize ~ the number of doubles stored in a sample.  - m_samplesize ~ the number of doubles stored in a sample.
78    
79  When a new node is created, the above values are computed based on the values in the child nodes.  When a new node is created, the above values are computed based on the values in the child nodes.
# Line 136  enum ES_opgroup Line 138  enum ES_opgroup
138  {  {
139     G_UNKNOWN,     G_UNKNOWN,
140     G_IDENTITY,     G_IDENTITY,
141     G_BINARY,        // pointwise operations with two arguments     G_BINARY,            // pointwise operations with two arguments
142     G_UNARY,     // pointwise operations with one argument     G_UNARY,             // pointwise operations with one argument
143     G_UNARY_P,       // pointwise operations with one argument, requiring a parameter     G_UNARY_P,           // pointwise operations with one argument, requiring a parameter
144     G_NP1OUT,        // non-pointwise op with one output     G_NP1OUT,            // non-pointwise op with one output
145     G_NP1OUT_P,      // non-pointwise op with one output requiring a parameter     G_NP1OUT_P,          // non-pointwise op with one output requiring a parameter
146     G_TENSORPROD,    // general tensor product     G_TENSORPROD,        // general tensor product
147     G_NP1OUT_2P,     // non-pointwise op with one output requiring two params     G_NP1OUT_2P,         // non-pointwise op with one output requiring two params
148     G_REDUCTION,     // non-pointwise unary op with a scalar output     G_REDUCTION,         // non-pointwise unary op with a scalar output
149     G_CONDEVAL     G_CONDEVAL
150  };  };
151    
# Line 151  enum ES_opgroup Line 153  enum ES_opgroup
153    
154    
155  string ES_opstrings[]={"UNKNOWN","IDENTITY","+","-","*","/","^",  string ES_opstrings[]={"UNKNOWN","IDENTITY","+","-","*","/","^",
156              "sin","cos","tan",                          "sin","cos","tan",
157              "asin","acos","atan","sinh","cosh","tanh","erf",                          "asin","acos","atan","sinh","cosh","tanh","erf",
158              "asinh","acosh","atanh",                          "asinh","acosh","atanh",
159              "log10","log","sign","abs","neg","pos","exp","sqrt",                          "log10","log","sign","abs","neg","pos","exp","sqrt",
160              "1/","where>0","where<0","where>=0","where<=0", "where<>0","where=0",                          "1/","where>0","where<0","where>=0","where<=0", "where<>0","where=0",
161              "symmetric","nonsymmetric",                          "symmetric","nonsymmetric",
162              "prod",                          "prod",
163              "transpose", "trace",                          "transpose", "trace",
164              "swapaxes",                          "swapaxes",
165              "minval", "maxval",                          "minval", "maxval",
166              "condEval"};                          "condEval"};
167  int ES_opcount=44;  int ES_opcount=44;
168  ES_opgroup opgroups[]={G_UNKNOWN,G_IDENTITY,G_BINARY,G_BINARY,G_BINARY,G_BINARY, G_BINARY,  ES_opgroup opgroups[]={G_UNKNOWN,G_IDENTITY,G_BINARY,G_BINARY,G_BINARY,G_BINARY, G_BINARY,
169              G_UNARY,G_UNARY,G_UNARY, //10                          G_UNARY,G_UNARY,G_UNARY, //10
170              G_UNARY,G_UNARY,G_UNARY,G_UNARY,G_UNARY,G_UNARY,G_UNARY,    // 17                          G_UNARY,G_UNARY,G_UNARY,G_UNARY,G_UNARY,G_UNARY,G_UNARY,        // 17
171              G_UNARY,G_UNARY,G_UNARY,                    // 20                          G_UNARY,G_UNARY,G_UNARY,                                        // 20
172              G_UNARY,G_UNARY,G_UNARY,G_UNARY,G_UNARY,G_UNARY,G_UNARY,G_UNARY,    // 28                          G_UNARY,G_UNARY,G_UNARY,G_UNARY,G_UNARY,G_UNARY,G_UNARY,G_UNARY,        // 28
173              G_UNARY,G_UNARY,G_UNARY,G_UNARY,G_UNARY, G_UNARY_P, G_UNARY_P,      // 35                          G_UNARY,G_UNARY,G_UNARY,G_UNARY,G_UNARY, G_UNARY_P, G_UNARY_P,          // 35
174              G_NP1OUT,G_NP1OUT,                          G_NP1OUT,G_NP1OUT,
175              G_TENSORPROD,                          G_TENSORPROD,
176              G_NP1OUT_P, G_NP1OUT_P,                          G_NP1OUT_P, G_NP1OUT_P,
177              G_NP1OUT_2P,                          G_NP1OUT_2P,
178              G_REDUCTION, G_REDUCTION,                          G_REDUCTION, G_REDUCTION,
179              G_CONDEVAL};                          G_CONDEVAL};
180  inline  inline
181  ES_opgroup  ES_opgroup
182  getOpgroup(ES_optype op)  getOpgroup(ES_optype op)
# Line 186  getOpgroup(ES_optype op) Line 188  getOpgroup(ES_optype op)
188  FunctionSpace  FunctionSpace
189  resultFS(DataAbstract_ptr left, DataAbstract_ptr right, ES_optype op)  resultFS(DataAbstract_ptr left, DataAbstract_ptr right, ES_optype op)
190  {  {
191      // perhaps this should call interpolate and throw or something?          // perhaps this should call interpolate and throw or something?
192      // maybe we need an interpolate node -          // maybe we need an interpolate node -
193      // that way, if interpolate is required in any other op we can just throw a          // that way, if interpolate is required in any other op we can just throw a
194      // programming error exception.          // programming error exception.
195    
196    FunctionSpace l=left->getFunctionSpace();    FunctionSpace l=left->getFunctionSpace();
197    FunctionSpace r=right->getFunctionSpace();    FunctionSpace r=right->getFunctionSpace();
# Line 198  resultFS(DataAbstract_ptr left, DataAbst Line 200  resultFS(DataAbstract_ptr left, DataAbst
200      signed char res=r.getDomain()->preferredInterpolationOnDomain(r.getTypeCode(), l.getTypeCode());      signed char res=r.getDomain()->preferredInterpolationOnDomain(r.getTypeCode(), l.getTypeCode());
201      if (res==1)      if (res==1)
202      {      {
203      return l;          return l;
204      }      }
205      if (res==-1)      if (res==-1)
206      {      {
207      return r;          return r;
208      }      }
209      throw DataException("Cannot interpolate between the FunctionSpaces given for operation "+opToString(op)+".");      throw DataException("Cannot interpolate between the FunctionSpaces given for operation "+opToString(op)+".");
210    }    }
# Line 214  resultFS(DataAbstract_ptr left, DataAbst Line 216  resultFS(DataAbstract_ptr left, DataAbst
216  DataTypes::ShapeType  DataTypes::ShapeType
217  resultShape(DataAbstract_ptr left, DataAbstract_ptr right, ES_optype op)  resultShape(DataAbstract_ptr left, DataAbstract_ptr right, ES_optype op)
218  {  {
219      if (left->getShape()!=right->getShape())          if (left->getShape()!=right->getShape())
220      {          {
221        if ((getOpgroup(op)!=G_BINARY) && (getOpgroup(op)!=G_NP1OUT))            if ((getOpgroup(op)!=G_BINARY) && (getOpgroup(op)!=G_NP1OUT))
222        {            {
223          throw DataException("Shapes not the name - shapes must match for (point)binary operations.");                  throw DataException("Shapes not the name - shapes must match for (point)binary operations.");
224        }            }
225    
226        if (left->getRank()==0)   // we need to allow scalar * anything            if (left->getRank()==0)       // we need to allow scalar * anything
227        {            {
228          return right->getShape();                  return right->getShape();
229        }            }
230        if (right->getRank()==0)            if (right->getRank()==0)
231        {            {
232          return left->getShape();                  return left->getShape();
233        }            }
234        throw DataException("Shapes not the same - arguments must have matching shapes (or be scalars) for (point)binary operations on lazy data.");            throw DataException("Shapes not the same - arguments must have matching shapes (or be scalars) for (point)binary operations on lazy data.");
235      }          }
236      return left->getShape();          return left->getShape();
237  }  }
238    
239  // return the shape for "op left"  // return the shape for "op left"
# Line 239  resultShape(DataAbstract_ptr left, DataA Line 241  resultShape(DataAbstract_ptr left, DataA
241  DataTypes::ShapeType  DataTypes::ShapeType
242  resultShape(DataAbstract_ptr left, ES_optype op, int axis_offset)  resultShape(DataAbstract_ptr left, ES_optype op, int axis_offset)
243  {  {
244      switch(op)          switch(op)
245      {          {
246          case TRANS:          case TRANS:
247         {            // for the scoping of variables             {                    // for the scoping of variables
248          const DataTypes::ShapeType& s=left->getShape();                  const DataTypes::ShapeType& s=left->getShape();
249          DataTypes::ShapeType sh;                  DataTypes::ShapeType sh;
250          int rank=left->getRank();                  int rank=left->getRank();
251          if (axis_offset<0 || axis_offset>rank)                  if (axis_offset<0 || axis_offset>rank)
252          {                  {
253              stringstream e;              stringstream e;
254              e << "Error - Data::transpose must have 0 <= axis_offset <= rank=" << rank;              e << "Error - Data::transpose must have 0 <= axis_offset <= rank=" << rank;
255              throw DataException(e.str());              throw DataException(e.str());
256          }          }
257          for (int i=0; i<rank; i++)          for (int i=0; i<rank; i++)
258          {                  {
259             int index = (axis_offset+i)%rank;                     int index = (axis_offset+i)%rank;
260             sh.push_back(s[index]); // Append to new shape             sh.push_back(s[index]); // Append to new shape
261          }          }
262          return sh;                  return sh;
263         }             }
264      break;          break;
265      case TRACE:          case TRACE:
266         {             {
267          int rank=left->getRank();                  int rank=left->getRank();
268          if (rank<2)                  if (rank<2)
269          {                  {
270             throw DataException("Trace can only be computed for objects with rank 2 or greater.");                     throw DataException("Trace can only be computed for objects with rank 2 or greater.");
271          }                  }
272          if ((axis_offset>rank-2) || (axis_offset<0))                  if ((axis_offset>rank-2) || (axis_offset<0))
273          {                  {
274             throw DataException("Trace: axis offset must lie between 0 and rank-2 inclusive.");                     throw DataException("Trace: axis offset must lie between 0 and rank-2 inclusive.");
275          }                  }
276          if (rank==2)                  if (rank==2)
277          {                  {
278             return DataTypes::scalarShape;                     return DataTypes::scalarShape;
279          }                  }
280          else if (rank==3)                  else if (rank==3)
281          {                  {
282             DataTypes::ShapeType sh;                     DataTypes::ShapeType sh;
283                 if (axis_offset==0)                     if (axis_offset==0)
284             {                     {
285                  sh.push_back(left->getShape()[2]);                          sh.push_back(left->getShape()[2]);
286                 }                     }
287                 else     // offset==1                     else         // offset==1
288             {                     {
289              sh.push_back(left->getShape()[0]);                          sh.push_back(left->getShape()[0]);
290                 }                     }
291             return sh;                     return sh;
292          }                  }
293          else if (rank==4)                  else if (rank==4)
294          {                  {
295             DataTypes::ShapeType sh;                     DataTypes::ShapeType sh;
296             const DataTypes::ShapeType& s=left->getShape();                     const DataTypes::ShapeType& s=left->getShape();
297                 if (axis_offset==0)                     if (axis_offset==0)
298             {                     {
299                  sh.push_back(s[2]);                          sh.push_back(s[2]);
300                  sh.push_back(s[3]);                          sh.push_back(s[3]);
301                 }                     }
302                 else if (axis_offset==1)                     else if (axis_offset==1)
303             {                     {
304                  sh.push_back(s[0]);                          sh.push_back(s[0]);
305                  sh.push_back(s[3]);                          sh.push_back(s[3]);
306                 }                     }
307             else     // offset==2                     else         // offset==2
308             {                     {
309              sh.push_back(s[0]);                          sh.push_back(s[0]);
310              sh.push_back(s[1]);                          sh.push_back(s[1]);
311             }                     }
312             return sh;                     return sh;
313          }                  }
314          else        // unknown rank                  else            // unknown rank
315          {                  {
316             throw DataException("Error - Data::trace can only be calculated for rank 2, 3 or 4 object.");                     throw DataException("Error - Data::trace can only be calculated for rank 2, 3 or 4 object.");
317          }                  }
318         }             }
319      break;          break;
320          default:          default:
321      throw DataException("Programmer error - resultShape(left,op) can't compute shapes for operator "+opToString(op)+".");          throw DataException("Programmer error - resultShape(left,op) can't compute shapes for operator "+opToString(op)+".");
322      }          }
323  }  }
324    
325  DataTypes::ShapeType  DataTypes::ShapeType
# Line 373  SwapShape(DataAbstract_ptr left, const i Line 375  SwapShape(DataAbstract_ptr left, const i
375  DataTypes::ShapeType  DataTypes::ShapeType
376  GTPShape(DataAbstract_ptr left, DataAbstract_ptr right, int axis_offset, int transpose, int& SL, int& SM, int& SR)  GTPShape(DataAbstract_ptr left, DataAbstract_ptr right, int axis_offset, int transpose, int& SL, int& SM, int& SR)
377  {  {
378                
379    // Get rank and shape of inputs    // Get rank and shape of inputs
380    int rank0 = left->getRank();    int rank0 = left->getRank();
381    int rank1 = right->getRank();    int rank1 = right->getRank();
# Line 382  GTPShape(DataAbstract_ptr left, DataAbst Line 384  GTPShape(DataAbstract_ptr left, DataAbst
384    
385    // Prepare for the loops of the product and verify compatibility of shapes    // Prepare for the loops of the product and verify compatibility of shapes
386    int start0=0, start1=0;    int start0=0, start1=0;
387    if (transpose == 0)       {}    if (transpose == 0)           {}
388    else if (transpose == 1)  { start0 = axis_offset; }    else if (transpose == 1)      { start0 = axis_offset; }
389    else if (transpose == 2)  { start1 = rank1-axis_offset; }    else if (transpose == 2)      { start1 = rank1-axis_offset; }
390    else              { throw DataException("DataLazy GeneralTensorProduct Constructor: Error - transpose should be 0, 1 or 2"); }    else                          { throw DataException("DataLazy GeneralTensorProduct Constructor: Error - transpose should be 0, 1 or 2"); }
391    
392    if (rank0<axis_offset)    if (rank0<axis_offset)
393    {    {
394      throw DataException("DataLazy GeneralTensorProduct Constructor: Error - rank of left < axisoffset");          throw DataException("DataLazy GeneralTensorProduct Constructor: Error - rank of left < axisoffset");
395    }    }
396    
397    // Adjust the shapes for transpose    // Adjust the shapes for transpose
398    DataTypes::ShapeType tmpShape0(rank0);    // pre-sizing the vectors rather    DataTypes::ShapeType tmpShape0(rank0);        // pre-sizing the vectors rather
399    DataTypes::ShapeType tmpShape1(rank1);    // than using push_back    DataTypes::ShapeType tmpShape1(rank1);        // than using push_back
400    for (int i=0; i<rank0; i++)   { tmpShape0[i]=shape0[(i+start0)%rank0]; }    for (int i=0; i<rank0; i++)   { tmpShape0[i]=shape0[(i+start0)%rank0]; }
401    for (int i=0; i<rank1; i++)   { tmpShape1[i]=shape1[(i+start1)%rank1]; }    for (int i=0; i<rank1; i++)   { tmpShape1[i]=shape1[(i+start1)%rank1]; }
402    
403    // Prepare for the loops of the product    // Prepare for the loops of the product
404    SL=1, SM=1, SR=1;    SL=1, SM=1, SR=1;
405    for (int i=0; i<rank0-axis_offset; i++)   {    for (int i=0; i<rank0-axis_offset; i++)       {
406      SL *= tmpShape0[i];      SL *= tmpShape0[i];
407    }    }
408    for (int i=rank0-axis_offset; i<rank0; i++)   {    for (int i=rank0-axis_offset; i<rank0; i++)   {
409      if (tmpShape0[i] != tmpShape1[i-(rank0-axis_offset)]) {      if (tmpShape0[i] != tmpShape1[i-(rank0-axis_offset)]) {
410        throw DataException("C_GeneralTensorProduct: Error - incompatible shapes");        throw DataException("C_GeneralTensorProduct: Error - incompatible shapes");
411      }      }
412      SM *= tmpShape0[i];      SM *= tmpShape0[i];
413    }    }
414    for (int i=axis_offset; i<rank1; i++)     {    for (int i=axis_offset; i<rank1; i++)         {
415      SR *= tmpShape1[i];      SR *= tmpShape1[i];
416    }    }
417    
418    // Define the shape of the output (rank of shape is the sum of the loop ranges below)    // Define the shape of the output (rank of shape is the sum of the loop ranges below)
419    DataTypes::ShapeType shape2(rank0+rank1-2*axis_offset);      DataTypes::ShapeType shape2(rank0+rank1-2*axis_offset);      
420    {         // block to limit the scope of out_index    {                     // block to limit the scope of out_index
421       int out_index=0;       int out_index=0;
422       for (int i=0; i<rank0-axis_offset; i++, ++out_index) { shape2[out_index]=tmpShape0[i]; } // First part of arg_0_Z       for (int i=0; i<rank0-axis_offset; i++, ++out_index) { shape2[out_index]=tmpShape0[i]; } // First part of arg_0_Z
423       for (int i=axis_offset; i<rank1; i++, ++out_index)   { shape2[out_index]=tmpShape1[i]; } // Last part of arg_1_Z       for (int i=axis_offset; i<rank1; i++, ++out_index)   { shape2[out_index]=tmpShape1[i]; } // Last part of arg_1_Z
# Line 431  GTPShape(DataAbstract_ptr left, DataAbst Line 433  GTPShape(DataAbstract_ptr left, DataAbst
433    return shape2;    return shape2;
434  }  }
435    
436  }   // end anonymous namespace  }       // end anonymous namespace
437    
438    
439    
# Line 466  void DataLazy::LazyNodeSetup() Line 468  void DataLazy::LazyNodeSetup()
468    
469  // Creates an identity node  // Creates an identity node
470  DataLazy::DataLazy(DataAbstract_ptr p)  DataLazy::DataLazy(DataAbstract_ptr p)
471      : parent(p->getFunctionSpace(),p->getShape())          : parent(p->getFunctionSpace(),p->getShape())
472      ,m_sampleids(0),          ,m_sampleids(0),
473      m_samples(1)          m_samples(1)
474  {  {
475     if (p->isLazy())     if (p->isLazy())
476     {     {
477      // I don't want identity of Lazy.          // I don't want identity of Lazy.
478      // Question: Why would that be so bad?          // Question: Why would that be so bad?
479      // Answer: We assume that the child of ID is something we can call getVector on          // Answer: We assume that the child of ID is something we can call getVector on
480      throw DataException("Programmer error - attempt to create identity from a DataLazy.");          throw DataException("Programmer error - attempt to create identity from a DataLazy.");
481     }     }
482     else     else
483     {     {
484      p->makeLazyShared();          p->makeLazyShared();
485      DataReady_ptr dr=dynamic_pointer_cast<DataReady>(p);          DataReady_ptr dr=dynamic_pointer_cast<DataReady>(p);
486      makeIdentity(dr);          makeIdentity(dr);
487  LAZYDEBUG(cout << "Wrapping " << dr.get() << " id=" << m_id.get() << endl;)  LAZYDEBUG(cout << "Wrapping " << dr.get() << " id=" << m_id.get() << endl;)
488     }     }
489  LAZYDEBUG(cout << "(1)Lazy created with " << m_samplesize << endl;)  LAZYDEBUG(cout << "(1)Lazy created with " << m_samplesize << endl;)
490  }  }
491    
492  DataLazy::DataLazy(DataAbstract_ptr left, ES_optype op)  DataLazy::DataLazy(DataAbstract_ptr left, ES_optype op)
493      : parent(left->getFunctionSpace(),(getOpgroup(op)!=G_REDUCTION)?left->getShape():DataTypes::scalarShape),          : parent(left->getFunctionSpace(),(getOpgroup(op)!=G_REDUCTION)?left->getShape():DataTypes::scalarShape),
494      m_op(op),          m_op(op),
495      m_axis_offset(0),          m_axis_offset(0),
496      m_transpose(0),          m_transpose(0),
497      m_SL(0), m_SM(0), m_SR(0)          m_SL(0), m_SM(0), m_SR(0)
498  {  {
499     if ((getOpgroup(op)!=G_UNARY) && (getOpgroup(op)!=G_NP1OUT) && (getOpgroup(op)!=G_REDUCTION))     if ((getOpgroup(op)!=G_UNARY) && (getOpgroup(op)!=G_NP1OUT) && (getOpgroup(op)!=G_REDUCTION))
500     {     {
501      throw DataException("Programmer error - constructor DataLazy(left, op) will only process UNARY operations.");          throw DataException("Programmer error - constructor DataLazy(left, op) will only process UNARY operations.");
502     }     }
503    
504     DataLazy_ptr lleft;     DataLazy_ptr lleft;
505     if (!left->isLazy())     if (!left->isLazy())
506     {     {
507      lleft=DataLazy_ptr(new DataLazy(left));          lleft=DataLazy_ptr(new DataLazy(left));
508     }     }
509     else     else
510     {     {
511      lleft=dynamic_pointer_cast<DataLazy>(left);          lleft=dynamic_pointer_cast<DataLazy>(left);
512     }     }
513     m_readytype=lleft->m_readytype;     m_readytype=lleft->m_readytype;
514     m_left=lleft;     m_left=lleft;
# Line 520  DataLazy::DataLazy(DataAbstract_ptr left Line 522  DataLazy::DataLazy(DataAbstract_ptr left
522    
523  // In this constructor we need to consider interpolation  // In this constructor we need to consider interpolation
524  DataLazy::DataLazy(DataAbstract_ptr left, DataAbstract_ptr right, ES_optype op)  DataLazy::DataLazy(DataAbstract_ptr left, DataAbstract_ptr right, ES_optype op)
525      : parent(resultFS(left,right,op), resultShape(left,right,op)),          : parent(resultFS(left,right,op), resultShape(left,right,op)),
526      m_op(op),          m_op(op),
527      m_SL(0), m_SM(0), m_SR(0)          m_SL(0), m_SM(0), m_SR(0)
528  {  {
529  LAZYDEBUG(cout << "Forming operator with " << left.get() << " " << right.get() << endl;)  LAZYDEBUG(cout << "Forming operator with " << left.get() << " " << right.get() << endl;)
530     if ((getOpgroup(op)!=G_BINARY))     if ((getOpgroup(op)!=G_BINARY))
531     {     {
532      throw DataException("Programmer error - constructor DataLazy(left, right, op) will only process BINARY operations.");          throw DataException("Programmer error - constructor DataLazy(left, right, op) will only process BINARY operations.");
533     }     }
534    
535     if (getFunctionSpace()!=left->getFunctionSpace())    // left needs to be interpolated     if (getFunctionSpace()!=left->getFunctionSpace())    // left needs to be interpolated
536     {     {
537      FunctionSpace fs=getFunctionSpace();          FunctionSpace fs=getFunctionSpace();
538      Data ltemp(left);          Data ltemp(left);
539      Data tmp(ltemp,fs);          Data tmp(ltemp,fs);
540      left=tmp.borrowDataPtr();          left=tmp.borrowDataPtr();
541     }     }
542     if (getFunctionSpace()!=right->getFunctionSpace())   // right needs to be interpolated     if (getFunctionSpace()!=right->getFunctionSpace())   // right needs to be interpolated
543     {     {
544      Data tmp(Data(right),getFunctionSpace());          Data tmp(Data(right),getFunctionSpace());
545      right=tmp.borrowDataPtr();          right=tmp.borrowDataPtr();
546  LAZYDEBUG(cout << "Right interpolation required " << right.get() << endl;)  LAZYDEBUG(cout << "Right interpolation required " << right.get() << endl;)
547     }     }
548     left->operandCheck(*right);     left->operandCheck(*right);
549    
550     if (left->isLazy())          // the children need to be DataLazy. Wrap them in IDENTITY if required     if (left->isLazy())                  // the children need to be DataLazy. Wrap them in IDENTITY if required
551     {     {
552      m_left=dynamic_pointer_cast<DataLazy>(left);          m_left=dynamic_pointer_cast<DataLazy>(left);
553  LAZYDEBUG(cout << "Left is " << m_left->toString() << endl;)  LAZYDEBUG(cout << "Left is " << m_left->toString() << endl;)
554     }     }
555     else     else
556     {     {
557      m_left=DataLazy_ptr(new DataLazy(left));          m_left=DataLazy_ptr(new DataLazy(left));
558  LAZYDEBUG(cout << "Left " << left.get() << " wrapped " << m_left->m_id.get() << endl;)  LAZYDEBUG(cout << "Left " << left.get() << " wrapped " << m_left->m_id.get() << endl;)
559     }     }
560     if (right->isLazy())     if (right->isLazy())
561     {     {
562      m_right=dynamic_pointer_cast<DataLazy>(right);          m_right=dynamic_pointer_cast<DataLazy>(right);
563  LAZYDEBUG(cout << "Right is " << m_right->toString() << endl;)  LAZYDEBUG(cout << "Right is " << m_right->toString() << endl;)
564     }     }
565     else     else
566     {     {
567      m_right=DataLazy_ptr(new DataLazy(right));          m_right=DataLazy_ptr(new DataLazy(right));
568  LAZYDEBUG(cout << "Right " << right.get() << " wrapped " << m_right->m_id.get() << endl;)  LAZYDEBUG(cout << "Right " << right.get() << " wrapped " << m_right->m_id.get() << endl;)
569     }     }
570     char lt=m_left->m_readytype;     char lt=m_left->m_readytype;
571     char rt=m_right->m_readytype;     char rt=m_right->m_readytype;
572     if (lt=='E' || rt=='E')     if (lt=='E' || rt=='E')
573     {     {
574      m_readytype='E';          m_readytype='E';
575     }     }
576     else if (lt=='T' || rt=='T')     else if (lt=='T' || rt=='T')
577     {     {
578      m_readytype='T';          m_readytype='T';
579     }     }
580     else     else
581     {     {
582      m_readytype='C';          m_readytype='C';
583     }     }
584     m_samplesize=getNumDPPSample()*getNoValues();     m_samplesize=getNumDPPSample()*getNoValues();
585     m_children=m_left->m_children+m_right->m_children+2;     m_children=m_left->m_children+m_right->m_children+2;
# Line 588  LAZYDEBUG(cout << "(3)Lazy created with Line 590  LAZYDEBUG(cout << "(3)Lazy created with
590  }  }
591    
592  DataLazy::DataLazy(DataAbstract_ptr left, DataAbstract_ptr right, ES_optype op, int axis_offset, int transpose)  DataLazy::DataLazy(DataAbstract_ptr left, DataAbstract_ptr right, ES_optype op, int axis_offset, int transpose)
593      : parent(resultFS(left,right,op), GTPShape(left,right, axis_offset, transpose, m_SL,m_SM, m_SR)),          : parent(resultFS(left,right,op), GTPShape(left,right, axis_offset, transpose, m_SL,m_SM, m_SR)),
594      m_op(op),          m_op(op),
595      m_axis_offset(axis_offset),          m_axis_offset(axis_offset),
596      m_transpose(transpose)          m_transpose(transpose)
597  {  {
598     if ((getOpgroup(op)!=G_TENSORPROD))     if ((getOpgroup(op)!=G_TENSORPROD))
599     {     {
600      throw DataException("Programmer error - constructor DataLazy(left, right, op, ax, tr) will only process BINARY operations which require parameters.");          throw DataException("Programmer error - constructor DataLazy(left, right, op, ax, tr) will only process BINARY operations which require parameters.");
601     }     }
602     if ((transpose>2) || (transpose<0))     if ((transpose>2) || (transpose<0))
603     {     {
604      throw DataException("DataLazy GeneralTensorProduct constructor: Error - transpose should be 0, 1 or 2");          throw DataException("DataLazy GeneralTensorProduct constructor: Error - transpose should be 0, 1 or 2");
605     }     }
606     if (getFunctionSpace()!=left->getFunctionSpace())    // left needs to be interpolated     if (getFunctionSpace()!=left->getFunctionSpace())    // left needs to be interpolated
607     {     {
608      FunctionSpace fs=getFunctionSpace();          FunctionSpace fs=getFunctionSpace();
609      Data ltemp(left);          Data ltemp(left);
610      Data tmp(ltemp,fs);          Data tmp(ltemp,fs);
611      left=tmp.borrowDataPtr();          left=tmp.borrowDataPtr();
612     }     }
613     if (getFunctionSpace()!=right->getFunctionSpace())   // right needs to be interpolated     if (getFunctionSpace()!=right->getFunctionSpace())   // right needs to be interpolated
614     {     {
615      Data tmp(Data(right),getFunctionSpace());          Data tmp(Data(right),getFunctionSpace());
616      right=tmp.borrowDataPtr();          right=tmp.borrowDataPtr();
617     }     }
618  //    left->operandCheck(*right);  //    left->operandCheck(*right);
619    
620     if (left->isLazy())          // the children need to be DataLazy. Wrap them in IDENTITY if required     if (left->isLazy())                  // the children need to be DataLazy. Wrap them in IDENTITY if required
621     {     {
622      m_left=dynamic_pointer_cast<DataLazy>(left);          m_left=dynamic_pointer_cast<DataLazy>(left);
623     }     }
624     else     else
625     {     {
626      m_left=DataLazy_ptr(new DataLazy(left));          m_left=DataLazy_ptr(new DataLazy(left));
627     }     }
628     if (right->isLazy())     if (right->isLazy())
629     {     {
630      m_right=dynamic_pointer_cast<DataLazy>(right);          m_right=dynamic_pointer_cast<DataLazy>(right);
631     }     }
632     else     else
633     {     {
634      m_right=DataLazy_ptr(new DataLazy(right));          m_right=DataLazy_ptr(new DataLazy(right));
635     }     }
636     char lt=m_left->m_readytype;     char lt=m_left->m_readytype;
637     char rt=m_right->m_readytype;     char rt=m_right->m_readytype;
638     if (lt=='E' || rt=='E')     if (lt=='E' || rt=='E')
639     {     {
640      m_readytype='E';          m_readytype='E';
641     }     }
642     else if (lt=='T' || rt=='T')     else if (lt=='T' || rt=='T')
643     {     {
644      m_readytype='T';          m_readytype='T';
645     }     }
646     else     else
647     {     {
648      m_readytype='C';          m_readytype='C';
649     }     }
650     m_samplesize=getNumDPPSample()*getNoValues();     m_samplesize=getNumDPPSample()*getNoValues();
651     m_children=m_left->m_children+m_right->m_children+2;     m_children=m_left->m_children+m_right->m_children+2;
# Line 655  LAZYDEBUG(cout << "(4)Lazy created with Line 657  LAZYDEBUG(cout << "(4)Lazy created with
657    
658    
659  DataLazy::DataLazy(DataAbstract_ptr left, ES_optype op, int axis_offset)  DataLazy::DataLazy(DataAbstract_ptr left, ES_optype op, int axis_offset)
660      : parent(left->getFunctionSpace(), resultShape(left,op, axis_offset)),          : parent(left->getFunctionSpace(), resultShape(left,op, axis_offset)),
661      m_op(op),          m_op(op),
662      m_axis_offset(axis_offset),          m_axis_offset(axis_offset),
663      m_transpose(0),          m_transpose(0),
664      m_tol(0)          m_tol(0)
665  {  {
666     if ((getOpgroup(op)!=G_NP1OUT_P))     if ((getOpgroup(op)!=G_NP1OUT_P))
667     {     {
668      throw DataException("Programmer error - constructor DataLazy(left, op, ax) will only process UNARY operations which require parameters.");          throw DataException("Programmer error - constructor DataLazy(left, op, ax) will only process UNARY operations which require parameters.");
669     }     }
670     DataLazy_ptr lleft;     DataLazy_ptr lleft;
671     if (!left->isLazy())     if (!left->isLazy())
672     {     {
673      lleft=DataLazy_ptr(new DataLazy(left));          lleft=DataLazy_ptr(new DataLazy(left));
674     }     }
675     else     else
676     {     {
677      lleft=dynamic_pointer_cast<DataLazy>(left);          lleft=dynamic_pointer_cast<DataLazy>(left);
678     }     }
679     m_readytype=lleft->m_readytype;     m_readytype=lleft->m_readytype;
680     m_left=lleft;     m_left=lleft;
# Line 685  LAZYDEBUG(cout << "(5)Lazy created with Line 687  LAZYDEBUG(cout << "(5)Lazy created with
687  }  }
688    
689  DataLazy::DataLazy(DataAbstract_ptr left, ES_optype op, double tol)  DataLazy::DataLazy(DataAbstract_ptr left, ES_optype op, double tol)
690      : parent(left->getFunctionSpace(), left->getShape()),          : parent(left->getFunctionSpace(), left->getShape()),
691      m_op(op),          m_op(op),
692      m_axis_offset(0),          m_axis_offset(0),
693      m_transpose(0),          m_transpose(0),
694      m_tol(tol)          m_tol(tol)
695  {  {
696     if ((getOpgroup(op)!=G_UNARY_P))     if ((getOpgroup(op)!=G_UNARY_P))
697     {     {
698      throw DataException("Programmer error - constructor DataLazy(left, op, tol) will only process UNARY operations which require parameters.");          throw DataException("Programmer error - constructor DataLazy(left, op, tol) will only process UNARY operations which require parameters.");
699     }     }
700     DataLazy_ptr lleft;     DataLazy_ptr lleft;
701     if (!left->isLazy())     if (!left->isLazy())
702     {     {
703      lleft=DataLazy_ptr(new DataLazy(left));          lleft=DataLazy_ptr(new DataLazy(left));
704     }     }
705     else     else
706     {     {
707      lleft=dynamic_pointer_cast<DataLazy>(left);          lleft=dynamic_pointer_cast<DataLazy>(left);
708     }     }
709     m_readytype=lleft->m_readytype;     m_readytype=lleft->m_readytype;
710     m_left=lleft;     m_left=lleft;
# Line 716  LAZYDEBUG(cout << "(6)Lazy created with Line 718  LAZYDEBUG(cout << "(6)Lazy created with
718    
719    
720  DataLazy::DataLazy(DataAbstract_ptr left, ES_optype op, const int axis0, const int axis1)  DataLazy::DataLazy(DataAbstract_ptr left, ES_optype op, const int axis0, const int axis1)
721      : parent(left->getFunctionSpace(), SwapShape(left,axis0,axis1)),          : parent(left->getFunctionSpace(), SwapShape(left,axis0,axis1)),
722      m_op(op),          m_op(op),
723      m_axis_offset(axis0),          m_axis_offset(axis0),
724      m_transpose(axis1),          m_transpose(axis1),
725      m_tol(0)          m_tol(0)
726  {  {
727     if ((getOpgroup(op)!=G_NP1OUT_2P))     if ((getOpgroup(op)!=G_NP1OUT_2P))
728     {     {
729      throw DataException("Programmer error - constructor DataLazy(left, op, tol) will only process UNARY operations which require two integer parameters.");          throw DataException("Programmer error - constructor DataLazy(left, op, tol) will only process UNARY operations which require two integer parameters.");
730     }     }
731     DataLazy_ptr lleft;     DataLazy_ptr lleft;
732     if (!left->isLazy())     if (!left->isLazy())
733     {     {
734      lleft=DataLazy_ptr(new DataLazy(left));          lleft=DataLazy_ptr(new DataLazy(left));
735     }     }
736     else     else
737     {     {
738      lleft=dynamic_pointer_cast<DataLazy>(left);          lleft=dynamic_pointer_cast<DataLazy>(left);
739     }     }
740     m_readytype=lleft->m_readytype;     m_readytype=lleft->m_readytype;
741     m_left=lleft;     m_left=lleft;
# Line 751  namespace Line 753  namespace
753    
754      inline int max3(int a, int b, int c)      inline int max3(int a, int b, int c)
755      {      {
756      int t=(a>b?a:b);          int t=(a>b?a:b);
757      return (t>c?t:c);          return (t>c?t:c);
758    
759      }      }
760  }  }
761    
762  DataLazy::DataLazy(DataAbstract_ptr mask, DataAbstract_ptr left, DataAbstract_ptr right/*, double tol*/)  DataLazy::DataLazy(DataAbstract_ptr mask, DataAbstract_ptr left, DataAbstract_ptr right/*, double tol*/)
763      : parent(left->getFunctionSpace(), left->getShape()),          : parent(left->getFunctionSpace(), left->getShape()),
764      m_op(CONDEVAL),          m_op(CONDEVAL),
765      m_axis_offset(0),          m_axis_offset(0),
766      m_transpose(0),          m_transpose(0),
767      m_tol(0)          m_tol(0)
768  {  {
769    
770     DataLazy_ptr lmask;     DataLazy_ptr lmask;
# Line 770  DataLazy::DataLazy(DataAbstract_ptr mask Line 772  DataLazy::DataLazy(DataAbstract_ptr mask
772     DataLazy_ptr lright;     DataLazy_ptr lright;
773     if (!mask->isLazy())     if (!mask->isLazy())
774     {     {
775      lmask=DataLazy_ptr(new DataLazy(mask));          lmask=DataLazy_ptr(new DataLazy(mask));
776     }     }
777     else     else
778     {     {
779      lmask=dynamic_pointer_cast<DataLazy>(mask);          lmask=dynamic_pointer_cast<DataLazy>(mask);
780     }     }
781     if (!left->isLazy())     if (!left->isLazy())
782     {     {
783      lleft=DataLazy_ptr(new DataLazy(left));          lleft=DataLazy_ptr(new DataLazy(left));
784     }     }
785     else     else
786     {     {
787      lleft=dynamic_pointer_cast<DataLazy>(left);          lleft=dynamic_pointer_cast<DataLazy>(left);
788     }     }
789     if (!right->isLazy())     if (!right->isLazy())
790     {     {
791      lright=DataLazy_ptr(new DataLazy(right));          lright=DataLazy_ptr(new DataLazy(right));
792     }     }
793     else     else
794     {     {
795      lright=dynamic_pointer_cast<DataLazy>(right);          lright=dynamic_pointer_cast<DataLazy>(right);
796     }     }
797     m_readytype=lmask->m_readytype;     m_readytype=lmask->m_readytype;
798     if ((lleft->m_readytype!=lright->m_readytype) || (lmask->m_readytype!=lleft->m_readytype))     if ((lleft->m_readytype!=lright->m_readytype) || (lmask->m_readytype!=lleft->m_readytype))
799     {     {
800      throw DataException("Programmer Error - condEval arguments must have the same readytype");          throw DataException("Programmer Error - condEval arguments must have the same readytype");
801     }     }
802     m_left=lleft;     m_left=lleft;
803     m_right=lright;     m_right=lright;
# Line 825  DataReady_ptr Line 827  DataReady_ptr
827  DataLazy::collapseToReady() const  DataLazy::collapseToReady() const
828  {  {
829    if (m_readytype=='E')    if (m_readytype=='E')
830    { // this is more an efficiency concern than anything else    {     // this is more an efficiency concern than anything else
831      throw DataException("Programmer Error - do not use collapse on Expanded data.");      throw DataException("Programmer Error - do not use collapse on Expanded data.");
832    }    }
833    if (m_op==IDENTITY)    if (m_op==IDENTITY)
# Line 843  DataLazy::collapseToReady() const Line 845  DataLazy::collapseToReady() const
845    switch(m_op)    switch(m_op)
846    {    {
847      case ADD:      case ADD:
848      result=left+right;          result=left+right;
849      break;          break;
850      case SUB:            case SUB:          
851      result=left-right;          result=left-right;
852      break;          break;
853      case MUL:            case MUL:          
854      result=left*right;          result=left*right;
855      break;          break;
856      case DIV:            case DIV:          
857      result=left/right;          result=left/right;
858      break;          break;
859      case SIN:      case SIN:
860      result=left.sin();            result=left.sin();      
861      break;          break;
862      case COS:      case COS:
863      result=left.cos();          result=left.cos();
864      break;          break;
865      case TAN:      case TAN:
866      result=left.tan();          result=left.tan();
867      break;          break;
868      case ASIN:      case ASIN:
869      result=left.asin();          result=left.asin();
870      break;          break;
871      case ACOS:      case ACOS:
872      result=left.acos();          result=left.acos();
873      break;          break;
874      case ATAN:      case ATAN:
875      result=left.atan();          result=left.atan();
876      break;          break;
877      case SINH:      case SINH:
878      result=left.sinh();          result=left.sinh();
879      break;          break;
880      case COSH:      case COSH:
881      result=left.cosh();          result=left.cosh();
882      break;          break;
883      case TANH:      case TANH:
884      result=left.tanh();          result=left.tanh();
885      break;          break;
886      case ERF:      case ERF:
887      result=left.erf();          result=left.erf();
888      break;          break;
889     case ASINH:     case ASINH:
890      result=left.asinh();          result=left.asinh();
891      break;          break;
892     case ACOSH:     case ACOSH:
893      result=left.acosh();          result=left.acosh();
894      break;          break;
895     case ATANH:     case ATANH:
896      result=left.atanh();          result=left.atanh();
897      break;          break;
898      case LOG10:      case LOG10:
899      result=left.log10();          result=left.log10();
900      break;          break;
901      case LOG:      case LOG:
902      result=left.log();          result=left.log();
903      break;          break;
904      case SIGN:      case SIGN:
905      result=left.sign();          result=left.sign();
906      break;          break;
907      case ABS:      case ABS:
908      result=left.abs();          result=left.abs();
909      break;          break;
910      case NEG:      case NEG:
911      result=left.neg();          result=left.neg();
912      break;          break;
913      case POS:      case POS:
914      // it doesn't mean anything for delayed.          // it doesn't mean anything for delayed.
915      // it will just trigger a deep copy of the lazy object          // it will just trigger a deep copy of the lazy object
916      throw DataException("Programmer error - POS not supported for lazy data.");          throw DataException("Programmer error - POS not supported for lazy data.");
917      break;          break;
918      case EXP:      case EXP:
919      result=left.exp();          result=left.exp();
920      break;          break;
921      case SQRT:      case SQRT:
922      result=left.sqrt();          result=left.sqrt();
923      break;          break;
924      case RECIP:      case RECIP:
925      result=left.oneOver();          result=left.oneOver();
926      break;          break;
927      case GZ:      case GZ:
928      result=left.wherePositive();          result=left.wherePositive();
929      break;          break;
930      case LZ:      case LZ:
931      result=left.whereNegative();          result=left.whereNegative();
932      break;          break;
933      case GEZ:      case GEZ:
934      result=left.whereNonNegative();          result=left.whereNonNegative();
935      break;          break;
936      case LEZ:      case LEZ:
937      result=left.whereNonPositive();          result=left.whereNonPositive();
938      break;          break;
939      case NEZ:      case NEZ:
940      result=left.whereNonZero(m_tol);          result=left.whereNonZero(m_tol);
941      break;          break;
942      case EZ:      case EZ:
943      result=left.whereZero(m_tol);          result=left.whereZero(m_tol);
944      break;          break;
945      case SYM:      case SYM:
946      result=left.symmetric();          result=left.symmetric();
947      break;          break;
948      case NSYM:      case NSYM:
949      result=left.nonsymmetric();          result=left.nonsymmetric();
950      break;          break;
951      case PROD:      case PROD:
952      result=C_GeneralTensorProduct(left,right,m_axis_offset, m_transpose);          result=C_GeneralTensorProduct(left,right,m_axis_offset, m_transpose);
953      break;          break;
954      case TRANS:      case TRANS:
955      result=left.transpose(m_axis_offset);          result=left.transpose(m_axis_offset);
956      break;          break;
957      case TRACE:      case TRACE:
958      result=left.trace(m_axis_offset);          result=left.trace(m_axis_offset);
959      break;          break;
960      case SWAP:      case SWAP:
961      result=left.swapaxes(m_axis_offset, m_transpose);          result=left.swapaxes(m_axis_offset, m_transpose);
962      break;          break;
963      case MINVAL:      case MINVAL:
964      result=left.minval();          result=left.minval();
965      break;          break;
966      case MAXVAL:      case MAXVAL:
967      result=left.minval();          result=left.minval();
968      break;          break;
969      default:      default:
970      throw DataException("Programmer error - collapseToReady does not know how to resolve operator "+opToString(m_op)+".");          throw DataException("Programmer error - collapseToReady does not know how to resolve operator "+opToString(m_op)+".");
971    }    }
972    return result.borrowReadyPtr();    return result.borrowReadyPtr();
973  }  }
# Line 981  DataLazy::collapse() const Line 983  DataLazy::collapse() const
983  {  {
984    if (m_op==IDENTITY)    if (m_op==IDENTITY)
985    {    {
986      return;          return;
987    }    }
988    if (m_readytype=='E')    if (m_readytype=='E')
989    { // this is more an efficiency concern than anything else    {     // this is more an efficiency concern than anything else
990      throw DataException("Programmer Error - do not use collapse on Expanded data.");      throw DataException("Programmer Error - do not use collapse on Expanded data.");
991    }    }
992    m_id=collapseToReady();    m_id=collapseToReady();
# Line 997  DataLazy::collapse() const Line 999  DataLazy::collapse() const
999    
1000    
1001  #define PROC_OP(TYPE,X)                               \  #define PROC_OP(TYPE,X)                               \
1002      for (int j=0;j<onumsteps;++j)\          for (int j=0;j<onumsteps;++j)\
1003      {\          {\
1004        for (int i=0;i<numsteps;++i,resultp+=resultStep) \            for (int i=0;i<numsteps;++i,resultp+=resultStep) \
1005        { \            { \
1006  LAZYDEBUG(cout << "[left,right]=[" << lroffset << "," << rroffset << "]" << endl;)\  LAZYDEBUG(cout << "[left,right]=[" << lroffset << "," << rroffset << "]" << endl;)\
1007  LAZYDEBUG(cout << "{left,right}={" << (*left)[lroffset] << "," << (*right)[rroffset] << "}\n";)\  LAZYDEBUG(cout << "{left,right}={" << (*left)[lroffset] << "," << (*right)[rroffset] << "}\n";)\
1008           tensor_binary_operation< TYPE >(chunksize, &((*left)[lroffset]), &((*right)[rroffset]), resultp, X); \               tensor_binary_operation< TYPE >(chunksize, &((*left)[lroffset]), &((*right)[rroffset]), resultp, X); \
1009  LAZYDEBUG(cout << " result=      " << resultp[0] << endl;) \  LAZYDEBUG(cout << " result=      " << resultp[0] << endl;) \
1010           lroffset+=leftstep; \               lroffset+=leftstep; \
1011           rroffset+=rightstep; \               rroffset+=rightstep; \
1012        }\            }\
1013        lroffset+=oleftstep;\            lroffset+=oleftstep;\
1014        rroffset+=orightstep;\            rroffset+=orightstep;\
1015      }          }
1016    
1017    
1018  // The result will be stored in m_samples  // The result will be stored in m_samples
1019  // The return value is a pointer to the DataVector, offset is the offset within the return value  // The return value is a pointer to the DataVector, offset is the offset within the return value
1020  const DataTypes::ValueType*  const DataTypes::RealVectorType*
1021  DataLazy::resolveNodeSample(int tid, int sampleNo, size_t& roffset) const  DataLazy::resolveNodeSample(int tid, int sampleNo, size_t& roffset) const
1022  {  {
1023  LAZYDEBUG(cout << "Resolve sample " << toString() << endl;)  LAZYDEBUG(cout << "Resolve sample " << toString() << endl;)
1024      // collapse so we have a 'E' node or an IDENTITY for some other type          // collapse so we have a 'E' node or an IDENTITY for some other type
1025    if (m_readytype!='E' && m_op!=IDENTITY)    if (m_readytype!='E' && m_op!=IDENTITY)
1026    {    {
1027      collapse();          collapse();
1028    }    }
1029    if (m_op==IDENTITY)      if (m_op==IDENTITY)  
1030    {    {
1031      const ValueType& vec=m_id->getVectorRO();      const ValueType& vec=m_id->getVectorRO();
1032      roffset=m_id->getPointOffset(sampleNo, 0);      roffset=m_id->getPointOffset(sampleNo, 0);
# Line 1043  if (&x<stackend[omp_get_thread_num()]) Line 1045  if (&x<stackend[omp_get_thread_num()])
1045    }    }
1046    if (m_sampleids[tid]==sampleNo)    if (m_sampleids[tid]==sampleNo)
1047    {    {
1048      roffset=tid*m_samplesize;          roffset=tid*m_samplesize;
1049      return &(m_samples);        // sample is already resolved          return &(m_samples);            // sample is already resolved
1050    }    }
1051    m_sampleids[tid]=sampleNo;    m_sampleids[tid]=sampleNo;
1052    
# Line 1064  if (&x<stackend[omp_get_thread_num()]) Line 1066  if (&x<stackend[omp_get_thread_num()])
1066    }    }
1067  }  }
1068    
1069  const DataTypes::ValueType*  const DataTypes::RealVectorType*
1070  DataLazy::resolveNodeUnary(int tid, int sampleNo, size_t& roffset) const  DataLazy::resolveNodeUnary(int tid, int sampleNo, size_t& roffset) const
1071  {  {
1072      // we assume that any collapsing has been done before we get here          // we assume that any collapsing has been done before we get here
1073      // since we only have one argument we don't need to think about only          // since we only have one argument we don't need to think about only
1074      // processing single points.          // processing single points.
1075      // we will also know we won't get identity nodes          // we will also know we won't get identity nodes
1076    if (m_readytype!='E')    if (m_readytype!='E')
1077    {    {
1078      throw DataException("Programmer error - resolveUnary should only be called on expanded Data.");      throw DataException("Programmer error - resolveUnary should only be called on expanded Data.");
# Line 1079  DataLazy::resolveNodeUnary(int tid, int Line 1081  DataLazy::resolveNodeUnary(int tid, int
1081    {    {
1082      throw DataException("Programmer error - resolveNodeUnary should not be called on identity nodes.");      throw DataException("Programmer error - resolveNodeUnary should not be called on identity nodes.");
1083    }    }
1084    const DataTypes::ValueType* leftres=m_left->resolveNodeSample(tid, sampleNo, roffset);    const DataTypes::RealVectorType* leftres=m_left->resolveNodeSample(tid, sampleNo, roffset);
1085    const double* left=&((*leftres)[roffset]);    const double* left=&((*leftres)[roffset]);
1086    roffset=m_samplesize*tid;    roffset=m_samplesize*tid;
1087    double* result=&(m_samples[roffset]);    double* result=&(m_samples[roffset]);
1088    switch (m_op)    switch (m_op)
1089    {    {
1090      case SIN:        case SIN:  
1091      tensor_unary_operation<double (*)(double)>(m_samplesize, left, result, ::sin);          tensor_unary_operation<double (*)(double)>(m_samplesize, left, result, ::sin);
1092      break;          break;
1093      case COS:      case COS:
1094      tensor_unary_operation<double (*)(double)>(m_samplesize, left, result, ::cos);          tensor_unary_operation<double (*)(double)>(m_samplesize, left, result, ::cos);
1095      break;          break;
1096      case TAN:      case TAN:
1097      tensor_unary_operation<double (*)(double)>(m_samplesize, left, result, ::tan);          tensor_unary_operation<double (*)(double)>(m_samplesize, left, result, ::tan);
1098      break;          break;
1099      case ASIN:      case ASIN:
1100      tensor_unary_operation<double (*)(double)>(m_samplesize, left, result, ::asin);          tensor_unary_operation<double (*)(double)>(m_samplesize, left, result, ::asin);
1101      break;          break;
1102      case ACOS:      case ACOS:
1103      tensor_unary_operation<double (*)(double)>(m_samplesize, left, result, ::acos);          tensor_unary_operation<double (*)(double)>(m_samplesize, left, result, ::acos);
1104      break;          break;
1105      case ATAN:      case ATAN:
1106      tensor_unary_operation<double (*)(double)>(m_samplesize, left, result, ::atan);          tensor_unary_operation<double (*)(double)>(m_samplesize, left, result, ::atan);
1107      break;          break;
1108      case SINH:      case SINH:
1109      tensor_unary_operation<double (*)(double)>(m_samplesize, left, result, ::sinh);          tensor_unary_operation<double (*)(double)>(m_samplesize, left, result, ::sinh);
1110      break;          break;
1111      case COSH:      case COSH:
1112      tensor_unary_operation<double (*)(double)>(m_samplesize, left, result, ::cosh);          tensor_unary_operation<double (*)(double)>(m_samplesize, left, result, ::cosh);
1113      break;          break;
1114      case TANH:      case TANH:
1115      tensor_unary_operation<double (*)(double)>(m_samplesize, left, result, ::tanh);          tensor_unary_operation<double (*)(double)>(m_samplesize, left, result, ::tanh);
1116      break;          break;
1117      case ERF:      case ERF:
1118  #if defined (_WIN32) && !defined(__INTEL_COMPILER)  #if defined (_WIN32) && !defined(__INTEL_COMPILER)
1119      throw DataException("Error - Data:: erf function is not supported on _WIN32 platforms.");          throw DataException("Error - Data:: erf function is not supported on _WIN32 platforms.");
1120  #else  #else
1121      tensor_unary_operation(m_samplesize, left, result, ::erf);          tensor_unary_operation(m_samplesize, left, result, ::erf);
1122      break;          break;
1123  #endif  #endif
1124     case ASINH:     case ASINH:
1125  #if defined (_WIN32) && !defined(__INTEL_COMPILER)  #if defined (_WIN32) && !defined(__INTEL_COMPILER)
1126      tensor_unary_operation(m_samplesize, left, result, escript::asinh_substitute);          tensor_unary_operation(m_samplesize, left, result, escript::asinh_substitute);
1127  #else  #else
1128      tensor_unary_operation(m_samplesize, left, result, ::asinh);          tensor_unary_operation(m_samplesize, left, result, ::asinh);
1129  #endif    #endif  
1130      break;          break;
1131     case ACOSH:     case ACOSH:
1132  #if defined (_WIN32) && !defined(__INTEL_COMPILER)  #if defined (_WIN32) && !defined(__INTEL_COMPILER)
1133      tensor_unary_operation(m_samplesize, left, result, escript::acosh_substitute);          tensor_unary_operation(m_samplesize, left, result, escript::acosh_substitute);
1134  #else  #else
1135      tensor_unary_operation(m_samplesize, left, result, ::acosh);          tensor_unary_operation(m_samplesize, left, result, ::acosh);
1136  #endif    #endif  
1137      break;          break;
1138     case ATANH:     case ATANH:
1139  #if defined (_WIN32) && !defined(__INTEL_COMPILER)  #if defined (_WIN32) && !defined(__INTEL_COMPILER)
1140      tensor_unary_operation(m_samplesize, left, result, escript::atanh_substitute);          tensor_unary_operation(m_samplesize, left, result, escript::atanh_substitute);
1141  #else  #else
1142      tensor_unary_operation(m_samplesize, left, result, ::atanh);          tensor_unary_operation(m_samplesize, left, result, ::atanh);
1143  #endif    #endif  
1144      break;          break;
1145      case LOG10:      case LOG10:
1146      tensor_unary_operation<double (*)(double)>(m_samplesize, left, result, ::log10);          tensor_unary_operation<double (*)(double)>(m_samplesize, left, result, ::log10);
1147      break;          break;
1148      case LOG:      case LOG:
1149      tensor_unary_operation<double (*)(double)>(m_samplesize, left, result, ::log);          tensor_unary_operation<double (*)(double)>(m_samplesize, left, result, ::log);
1150      break;          break;
1151      case SIGN:      case SIGN:
1152      tensor_unary_operation(m_samplesize, left, result, escript::fsign);          tensor_unary_operation(m_samplesize, left, result, escript::fsign);
1153      break;          break;
1154      case ABS:      case ABS:
1155      tensor_unary_operation<double (*)(double)>(m_samplesize, left, result, ::fabs);          tensor_unary_operation<double (*)(double)>(m_samplesize, left, result, ::fabs);
1156      break;          break;
1157      case NEG:      case NEG:
1158      tensor_unary_operation(m_samplesize, left, result, negate<double>());          tensor_unary_operation(m_samplesize, left, result, negate<double>());
1159      break;          break;
1160      case POS:      case POS:
1161      // it doesn't mean anything for delayed.          // it doesn't mean anything for delayed.
1162      // it will just trigger a deep copy of the lazy object          // it will just trigger a deep copy of the lazy object
1163      throw DataException("Programmer error - POS not supported for lazy data.");          throw DataException("Programmer error - POS not supported for lazy data.");
1164      break;          break;
1165      case EXP:      case EXP:
1166      tensor_unary_operation<double (*)(double)>(m_samplesize, left, result, ::exp);          tensor_unary_operation<double (*)(double)>(m_samplesize, left, result, ::exp);
1167      break;          break;
1168      case SQRT:      case SQRT:
1169      tensor_unary_operation<double (*)(double)>(m_samplesize, left, result, ::sqrt);          tensor_unary_operation<double (*)(double)>(m_samplesize, left, result, ::sqrt);
1170      break;          break;
1171      case RECIP:      case RECIP:
1172      tensor_unary_operation(m_samplesize, left, result, bind1st(divides<double>(),1.));          tensor_unary_operation(m_samplesize, left, result, bind1st(divides<double>(),1.));
1173      break;          break;
1174      case GZ:      case GZ:
1175      tensor_unary_operation(m_samplesize, left, result, bind2nd(greater<double>(),0.0));          tensor_unary_operation(m_samplesize, left, result, bind2nd(greater<double>(),0.0));
1176      break;          break;
1177      case LZ:      case LZ:
1178      tensor_unary_operation(m_samplesize, left, result, bind2nd(less<double>(),0.0));          tensor_unary_operation(m_samplesize, left, result, bind2nd(less<double>(),0.0));
1179      break;          break;
1180      case GEZ:      case GEZ:
1181      tensor_unary_operation(m_samplesize, left, result, bind2nd(greater_equal<double>(),0.0));          tensor_unary_operation(m_samplesize, left, result, bind2nd(greater_equal<double>(),0.0));
1182      break;          break;
1183      case LEZ:      case LEZ:
1184      tensor_unary_operation(m_samplesize, left, result, bind2nd(less_equal<double>(),0.0));          tensor_unary_operation(m_samplesize, left, result, bind2nd(less_equal<double>(),0.0));
1185      break;          break;
1186  // There are actually G_UNARY_P but I don't see a compelling reason to treat them differently  // There are actually G_UNARY_P but I don't see a compelling reason to treat them differently
1187      case NEZ:      case NEZ:
1188      tensor_unary_operation(m_samplesize, left, result, bind2nd(AbsGT(),m_tol));          tensor_unary_operation(m_samplesize, left, result, bind2nd(AbsGT(),m_tol));
1189      break;          break;
1190      case EZ:      case EZ:
1191      tensor_unary_operation(m_samplesize, left, result, bind2nd(AbsLTE(),m_tol));          tensor_unary_operation(m_samplesize, left, result, bind2nd(AbsLTE(),m_tol));
1192      break;          break;
1193    
1194      default:      default:
1195      throw DataException("Programmer error - resolveUnary can not resolve operator "+opToString(m_op)+".");          throw DataException("Programmer error - resolveUnary can not resolve operator "+opToString(m_op)+".");
1196    }    }
1197    return &(m_samples);    return &(m_samples);
1198  }  }
1199    
1200    
1201  const DataTypes::ValueType*  const DataTypes::RealVectorType*
1202  DataLazy::resolveNodeReduction(int tid, int sampleNo, size_t& roffset) const  DataLazy::resolveNodeReduction(int tid, int sampleNo, size_t& roffset) const
1203  {  {
1204      // we assume that any collapsing has been done before we get here          // we assume that any collapsing has been done before we get here
1205      // since we only have one argument we don't need to think about only          // since we only have one argument we don't need to think about only
1206      // processing single points.          // processing single points.
1207      // we will also know we won't get identity nodes          // we will also know we won't get identity nodes
1208    if (m_readytype!='E')    if (m_readytype!='E')
1209    {    {
1210      throw DataException("Programmer error - resolveUnary should only be called on expanded Data.");      throw DataException("Programmer error - resolveUnary should only be called on expanded Data.");
# Line 1212  DataLazy::resolveNodeReduction(int tid, Line 1214  DataLazy::resolveNodeReduction(int tid,
1214      throw DataException("Programmer error - resolveNodeUnary should not be called on identity nodes.");      throw DataException("Programmer error - resolveNodeUnary should not be called on identity nodes.");
1215    }    }
1216    size_t loffset=0;    size_t loffset=0;
1217    const DataTypes::ValueType* leftres=m_left->resolveNodeSample(tid, sampleNo, loffset);    const DataTypes::RealVectorType* leftres=m_left->resolveNodeSample(tid, sampleNo, loffset);
1218    
1219    roffset=m_samplesize*tid;    roffset=m_samplesize*tid;
1220    unsigned int ndpps=getNumDPPSample();    unsigned int ndpps=getNumDPPSample();
# Line 1221  DataLazy::resolveNodeReduction(int tid, Line 1223  DataLazy::resolveNodeReduction(int tid,
1223    switch (m_op)    switch (m_op)
1224    {    {
1225      case MINVAL:      case MINVAL:
1226      {          {
1227        for (unsigned int z=0;z<ndpps;++z)            for (unsigned int z=0;z<ndpps;++z)
1228        {            {
1229          FMin op;              FMin op;
1230          *result=DataMaths::reductionOp(*leftres, m_left->getShape(), loffset, op, numeric_limits<double>::max());              *result=DataMaths::reductionOp(*leftres, m_left->getShape(), loffset, op, numeric_limits<double>::max());
1231          loffset+=psize;              loffset+=psize;
1232          result++;              result++;
1233        }            }
1234      }          }
1235      break;          break;
1236      case MAXVAL:      case MAXVAL:
1237      {          {
1238        for (unsigned int z=0;z<ndpps;++z)            for (unsigned int z=0;z<ndpps;++z)
1239        {            {
1240        FMax op;            FMax op;
1241        *result=DataMaths::reductionOp(*leftres, m_left->getShape(), loffset, op, numeric_limits<double>::max()*-1);            *result=DataMaths::reductionOp(*leftres, m_left->getShape(), loffset, op, numeric_limits<double>::max()*-1);
1242        loffset+=psize;            loffset+=psize;
1243        result++;            result++;
1244        }            }
1245      }          }
1246      break;          break;
1247      default:      default:
1248      throw DataException("Programmer error - resolveUnary can not resolve operator "+opToString(m_op)+".");          throw DataException("Programmer error - resolveUnary can not resolve operator "+opToString(m_op)+".");
1249    }    }
1250    return &(m_samples);    return &(m_samples);
1251  }  }
1252    
1253  const DataTypes::ValueType*  const DataTypes::RealVectorType*
1254  DataLazy::resolveNodeNP1OUT(int tid, int sampleNo, size_t& roffset) const  DataLazy::resolveNodeNP1OUT(int tid, int sampleNo, size_t& roffset) const
1255  {  {
1256      // we assume that any collapsing has been done before we get here          // we assume that any collapsing has been done before we get here
1257      // since we only have one argument we don't need to think about only          // since we only have one argument we don't need to think about only
1258      // processing single points.          // processing single points.
1259    if (m_readytype!='E')    if (m_readytype!='E')
1260    {    {
1261      throw DataException("Programmer error - resolveNodeNP1OUT should only be called on expanded Data.");      throw DataException("Programmer error - resolveNodeNP1OUT should only be called on expanded Data.");
# Line 1272  DataLazy::resolveNodeNP1OUT(int tid, int Line 1274  DataLazy::resolveNodeNP1OUT(int tid, int
1274    switch (m_op)    switch (m_op)
1275    {    {
1276      case SYM:      case SYM:
1277      for (loop=0;loop<numsteps;++loop)          for (loop=0;loop<numsteps;++loop)
1278      {          {
1279          DataMaths::symmetric(*leftres,m_left->getShape(),subroffset, m_samples, getShape(), offset);              DataMaths::symmetric(*leftres,m_left->getShape(),subroffset, m_samples, getShape(), offset);
1280          subroffset+=step;              subroffset+=step;
1281          offset+=step;              offset+=step;
1282      }          }
1283      break;          break;
1284      case NSYM:      case NSYM:
1285      for (loop=0;loop<numsteps;++loop)          for (loop=0;loop<numsteps;++loop)
1286      {          {
1287          DataMaths::nonsymmetric(*leftres,m_left->getShape(),subroffset, m_samples, getShape(), offset);              DataMaths::nonsymmetric(*leftres,m_left->getShape(),subroffset, m_samples, getShape(), offset);
1288          subroffset+=step;              subroffset+=step;
1289          offset+=step;              offset+=step;
1290      }          }
1291      break;          break;
1292      default:      default:
1293      throw DataException("Programmer error - resolveNP1OUT can not resolve operator "+opToString(m_op)+".");          throw DataException("Programmer error - resolveNP1OUT can not resolve operator "+opToString(m_op)+".");
1294    }    }
1295    return &m_samples;    return &m_samples;
1296  }  }
1297    
1298  const DataTypes::ValueType*  const DataTypes::RealVectorType*
1299  DataLazy::resolveNodeNP1OUT_P(int tid, int sampleNo, size_t& roffset) const  DataLazy::resolveNodeNP1OUT_P(int tid, int sampleNo, size_t& roffset) const
1300  {  {
1301      // we assume that any collapsing has been done before we get here          // we assume that any collapsing has been done before we get here
1302      // since we only have one argument we don't need to think about only          // since we only have one argument we don't need to think about only
1303      // processing single points.          // processing single points.
1304    if (m_readytype!='E')    if (m_readytype!='E')
1305    {    {
1306      throw DataException("Programmer error - resolveNodeNP1OUT_P should only be called on expanded Data.");      throw DataException("Programmer error - resolveNodeNP1OUT_P should only be called on expanded Data.");
# Line 1319  DataLazy::resolveNodeNP1OUT_P(int tid, i Line 1321  DataLazy::resolveNodeNP1OUT_P(int tid, i
1321    switch (m_op)    switch (m_op)
1322    {    {
1323      case TRACE:      case TRACE:
1324      for (loop=0;loop<numsteps;++loop)          for (loop=0;loop<numsteps;++loop)
1325      {          {
1326              DataMaths::trace(*leftres,m_left->getShape(),subroffset, m_samples ,getShape(),offset,m_axis_offset);              DataMaths::trace(*leftres,m_left->getShape(),subroffset, m_samples ,getShape(),offset,m_axis_offset);
1327          subroffset+=instep;              subroffset+=instep;
1328          offset+=outstep;              offset+=outstep;
1329      }          }
1330      break;          break;
1331      case TRANS:      case TRANS:
1332      for (loop=0;loop<numsteps;++loop)          for (loop=0;loop<numsteps;++loop)
1333      {          {
1334              DataMaths::transpose(*leftres,m_left->getShape(),subroffset, m_samples, getShape(),offset,m_axis_offset);              DataMaths::transpose(*leftres,m_left->getShape(),subroffset, m_samples, getShape(),offset,m_axis_offset);
1335          subroffset+=instep;              subroffset+=instep;
1336          offset+=outstep;              offset+=outstep;
1337      }          }
1338      break;          break;
1339      default:      default:
1340      throw DataException("Programmer error - resolveNP1OUTP can not resolve operator "+opToString(m_op)+".");          throw DataException("Programmer error - resolveNP1OUTP can not resolve operator "+opToString(m_op)+".");
1341    }    }
1342    return &m_samples;    return &m_samples;
1343  }  }
1344    
1345    
1346  const DataTypes::ValueType*  const DataTypes::RealVectorType*
1347  DataLazy::resolveNodeNP1OUT_2P(int tid, int sampleNo, size_t& roffset) const  DataLazy::resolveNodeNP1OUT_2P(int tid, int sampleNo, size_t& roffset) const
1348  {  {
1349    if (m_readytype!='E')    if (m_readytype!='E')
# Line 1364  DataLazy::resolveNodeNP1OUT_2P(int tid, Line 1366  DataLazy::resolveNodeNP1OUT_2P(int tid,
1366    switch (m_op)    switch (m_op)
1367    {    {
1368      case SWAP:      case SWAP:
1369      for (loop=0;loop<numsteps;++loop)          for (loop=0;loop<numsteps;++loop)
1370      {          {
1371              DataMaths::swapaxes(*leftres,m_left->getShape(),subroffset, m_samples, getShape(),offset, m_axis_offset, m_transpose);              DataMaths::swapaxes(*leftres,m_left->getShape(),subroffset, m_samples, getShape(),offset, m_axis_offset, m_transpose);
1372          subroffset+=instep;              subroffset+=instep;
1373          offset+=outstep;              offset+=outstep;
1374      }          }
1375      break;          break;
1376      default:      default:
1377      throw DataException("Programmer error - resolveNodeNP1OUT2P can not resolve operator "+opToString(m_op)+".");          throw DataException("Programmer error - resolveNodeNP1OUT2P can not resolve operator "+opToString(m_op)+".");
1378    }    }
1379    return &m_samples;    return &m_samples;
1380  }  }
1381    
1382  const DataTypes::ValueType*  const DataTypes::RealVectorType*
1383  DataLazy::resolveNodeCondEval(int tid, int sampleNo, size_t& roffset) const  DataLazy::resolveNodeCondEval(int tid, int sampleNo, size_t& roffset) const
1384  {  {
1385    if (m_readytype!='E')    if (m_readytype!='E')
# Line 1394  DataLazy::resolveNodeCondEval(int tid, i Line 1396  DataLazy::resolveNodeCondEval(int tid, i
1396    const ValueType* srcres=0;    const ValueType* srcres=0;
1397    if ((*maskres)[subroffset]>0)    if ((*maskres)[subroffset]>0)
1398    {    {
1399      srcres=m_left->resolveNodeSample(tid, sampleNo, subroffset);          srcres=m_left->resolveNodeSample(tid, sampleNo, subroffset);
1400    }    }
1401    else    else
1402    {    {
1403      srcres=m_right->resolveNodeSample(tid, sampleNo, subroffset);          srcres=m_right->resolveNodeSample(tid, sampleNo, subroffset);
1404    }    }
1405    
1406    // Now we need to copy the result    // Now we need to copy the result
# Line 1406  DataLazy::resolveNodeCondEval(int tid, i Line 1408  DataLazy::resolveNodeCondEval(int tid, i
1408    roffset=m_samplesize*tid;    roffset=m_samplesize*tid;
1409    for (int i=0;i<m_samplesize;++i)    for (int i=0;i<m_samplesize;++i)
1410    {    {
1411      m_samples[roffset+i]=(*srcres)[subroffset+i];            m_samples[roffset+i]=(*srcres)[subroffset+i];  
1412    }    }
1413    
1414    return &m_samples;    return &m_samples;
# Line 1421  DataLazy::resolveNodeCondEval(int tid, i Line 1423  DataLazy::resolveNodeCondEval(int tid, i
1423  // There is an additional complication when scalar operations are considered.  // There is an additional complication when scalar operations are considered.
1424  // For example, 2+Vector.  // For example, 2+Vector.
1425  // In this case each double within the point is treated individually  // In this case each double within the point is treated individually
1426  const DataTypes::ValueType*  const DataTypes::RealVectorType*
1427  DataLazy::resolveNodeBinary(int tid, int sampleNo, size_t& roffset) const  DataLazy::resolveNodeBinary(int tid, int sampleNo, size_t& roffset) const
1428  {  {
1429  LAZYDEBUG(cout << "Resolve binary: " << toString() << endl;)  LAZYDEBUG(cout << "Resolve binary: " << toString() << endl;)
1430    
1431    size_t lroffset=0, rroffset=0;    // offsets in the left and right result vectors    size_t lroffset=0, rroffset=0;        // offsets in the left and right result vectors
1432      // first work out which of the children are expanded          // first work out which of the children are expanded
1433    bool leftExp=(m_left->m_readytype=='E');    bool leftExp=(m_left->m_readytype=='E');
1434    bool rightExp=(m_right->m_readytype=='E');    bool rightExp=(m_right->m_readytype=='E');
1435    if (!leftExp && !rightExp)    if (!leftExp && !rightExp)
1436    {    {
1437      throw DataException("Programmer Error - please use collapse if neither argument has type 'E'.");          throw DataException("Programmer Error - please use collapse if neither argument has type 'E'.");
1438    }    }
1439    bool leftScalar=(m_left->getRank()==0);    bool leftScalar=(m_left->getRank()==0);
1440    bool rightScalar=(m_right->getRank()==0);    bool rightScalar=(m_right->getRank()==0);
1441    if ((m_left->getRank()!=m_right->getRank()) && (!leftScalar && !rightScalar))    if ((m_left->getRank()!=m_right->getRank()) && (!leftScalar && !rightScalar))
1442    {    {
1443      throw DataException("resolveBinary - ranks of arguments must match unless one of them is scalar.");          throw DataException("resolveBinary - ranks of arguments must match unless one of them is scalar.");
1444    }    }
1445    size_t leftsize=m_left->getNoValues();    size_t leftsize=m_left->getNoValues();
1446    size_t rightsize=m_right->getNoValues();    size_t rightsize=m_right->getNoValues();
1447    size_t chunksize=1;           // how many doubles will be processed in one go    size_t chunksize=1;                   // how many doubles will be processed in one go
1448    int leftstep=0;       // how far should the left offset advance after each step    int leftstep=0;               // how far should the left offset advance after each step
1449    int rightstep=0;    int rightstep=0;
1450    int numsteps=0;       // total number of steps for the inner loop    int numsteps=0;               // total number of steps for the inner loop
1451    int oleftstep=0;  // the o variables refer to the outer loop    int oleftstep=0;      // the o variables refer to the outer loop
1452    int orightstep=0; // The outer loop is only required in cases where there is an extended scalar    int orightstep=0;     // The outer loop is only required in cases where there is an extended scalar
1453    int onumsteps=1;    int onumsteps=1;
1454        
1455    bool LES=(leftExp && leftScalar); // Left is an expanded scalar    bool LES=(leftExp && leftScalar);     // Left is an expanded scalar
1456    bool RES=(rightExp && rightScalar);    bool RES=(rightExp && rightScalar);
1457    bool LS=(!leftExp && leftScalar); // left is a single scalar    bool LS=(!leftExp && leftScalar);     // left is a single scalar
1458    bool RS=(!rightExp && rightScalar);    bool RS=(!rightExp && rightScalar);
1459    bool LN=(!leftExp && !leftScalar);    // left is a single non-scalar    bool LN=(!leftExp && !leftScalar);    // left is a single non-scalar
1460    bool RN=(!rightExp && !rightScalar);    bool RN=(!rightExp && !rightScalar);
1461    bool LEN=(leftExp && !leftScalar);    // left is an expanded non-scalar    bool LEN=(leftExp && !leftScalar);    // left is an expanded non-scalar
1462    bool REN=(rightExp && !rightScalar);    bool REN=(rightExp && !rightScalar);
1463    
1464    if ((LES && RES) || (LEN && REN)) // both are Expanded scalars or both are expanded non-scalars    if ((LES && RES) || (LEN && REN))     // both are Expanded scalars or both are expanded non-scalars
1465    {    {
1466      chunksize=m_left->getNumDPPSample()*leftsize;          chunksize=m_left->getNumDPPSample()*leftsize;
1467      leftstep=0;          leftstep=0;
1468      rightstep=0;          rightstep=0;
1469      numsteps=1;          numsteps=1;
1470    }    }
1471    else if (LES || RES)    else if (LES || RES)
1472    {    {
1473      chunksize=1;          chunksize=1;
1474      if (LES)        // left is an expanded scalar          if (LES)                // left is an expanded scalar
1475      {          {
1476          if (RS)                  if (RS)
1477          {                  {
1478             leftstep=1;                     leftstep=1;
1479             rightstep=0;                     rightstep=0;
1480             numsteps=m_left->getNumDPPSample();                     numsteps=m_left->getNumDPPSample();
1481          }                  }
1482          else        // RN or REN                  else            // RN or REN
1483          {                  {
1484             leftstep=0;                     leftstep=0;
1485             oleftstep=1;                     oleftstep=1;
1486             rightstep=1;                     rightstep=1;
1487             orightstep=(RN ? -(int)rightsize : 0);                     orightstep=(RN ? -(int)rightsize : 0);
1488             numsteps=rightsize;                     numsteps=rightsize;
1489             onumsteps=m_left->getNumDPPSample();                     onumsteps=m_left->getNumDPPSample();
1490          }                  }
1491      }          }
1492      else        // right is an expanded scalar          else            // right is an expanded scalar
1493      {          {
1494          if (LS)                  if (LS)
1495          {                  {
1496             rightstep=1;                     rightstep=1;
1497             leftstep=0;                     leftstep=0;
1498             numsteps=m_right->getNumDPPSample();                     numsteps=m_right->getNumDPPSample();
1499          }                  }
1500          else                  else
1501          {                  {
1502             rightstep=0;                     rightstep=0;
1503             orightstep=1;                     orightstep=1;
1504             leftstep=1;                     leftstep=1;
1505             oleftstep=(LN ? -(int)leftsize : 0);                     oleftstep=(LN ? -(int)leftsize : 0);
1506             numsteps=leftsize;                     numsteps=leftsize;
1507             onumsteps=m_right->getNumDPPSample();                     onumsteps=m_right->getNumDPPSample();
1508          }                  }
1509      }          }
1510    }    }
1511    else  // this leaves (LEN, RS), (LEN, RN) and their transposes    else  // this leaves (LEN, RS), (LEN, RN) and their transposes
1512    {    {
1513      if (LEN)    // and Right will be a single value          if (LEN)        // and Right will be a single value
1514      {          {
1515          chunksize=rightsize;                  chunksize=rightsize;
1516          leftstep=rightsize;                  leftstep=rightsize;
1517          rightstep=0;                  rightstep=0;
1518          numsteps=m_left->getNumDPPSample();                  numsteps=m_left->getNumDPPSample();
1519          if (RS)                  if (RS)
1520          {                  {
1521             numsteps*=leftsize;                     numsteps*=leftsize;
1522          }                  }
1523      }          }
1524      else    // REN          else    // REN
1525      {          {
1526          chunksize=leftsize;                  chunksize=leftsize;
1527          rightstep=leftsize;                  rightstep=leftsize;
1528          leftstep=0;                  leftstep=0;
1529          numsteps=m_right->getNumDPPSample();                  numsteps=m_right->getNumDPPSample();
1530          if (LS)                  if (LS)
1531          {                  {
1532             numsteps*=rightsize;                     numsteps*=rightsize;
1533          }                  }
1534      }          }
1535    }    }
1536    
1537    int resultStep=max(leftstep,rightstep);   // only one (at most) should be !=0    int resultStep=max(leftstep,rightstep);       // only one (at most) should be !=0
1538      // Get the values of sub-expressions          // Get the values of sub-expressions
1539    const ValueType* left=m_left->resolveNodeSample(tid,sampleNo,lroffset);      const ValueType* left=m_left->resolveNodeSample(tid,sampleNo,lroffset);      
1540    const ValueType* right=m_right->resolveNodeSample(tid,sampleNo,rroffset);    const ValueType* right=m_right->resolveNodeSample(tid,sampleNo,rroffset);
1541  LAZYDEBUG(cout << "Post sub calls in " << toString() << endl;)  LAZYDEBUG(cout << "Post sub calls in " << toString() << endl;)
1542  LAZYDEBUG(cout << "shapes=" << DataTypes::shapeToString(m_left->getShape()) << "," << DataTypes::shapeToString(m_right->getShape()) << endl;)  LAZYDEBUG(cout << "shapes=" << DataTypes::shapeToString(m_left->getShape()) << "," << DataTypes::shapeToString(m_right->getShape()) << endl;)
# Line 1549  LAZYDEBUG(cout << "Right res["<< rroffse Line 1551  LAZYDEBUG(cout << "Right res["<< rroffse
1551    
1552    
1553    roffset=m_samplesize*tid;    roffset=m_samplesize*tid;
1554    double* resultp=&(m_samples[roffset]);        // results are stored at the vector offset we received    double* resultp=&(m_samples[roffset]);                // results are stored at the vector offset we received
1555    switch(m_op)    switch(m_op)
1556    {    {
1557      case ADD:      case ADD:
1558          PROC_OP(NO_ARG,plus<double>());          PROC_OP(NO_ARG,plus<double>());
1559      break;          break;
1560      case SUB:      case SUB:
1561      PROC_OP(NO_ARG,minus<double>());          PROC_OP(NO_ARG,minus<double>());
1562      break;          break;
1563      case MUL:      case MUL:
1564      PROC_OP(NO_ARG,multiplies<double>());          PROC_OP(NO_ARG,multiplies<double>());
1565      break;          break;
1566      case DIV:      case DIV:
1567      PROC_OP(NO_ARG,divides<double>());          PROC_OP(NO_ARG,divides<double>());
1568      break;          break;
1569      case POW:      case POW:
1570         PROC_OP(double (double,double),::pow);         PROC_OP(double (double,double),::pow);
1571      break;          break;
1572      default:      default:
1573      throw DataException("Programmer error - resolveBinary can not resolve operator "+opToString(m_op)+".");          throw DataException("Programmer error - resolveBinary can not resolve operator "+opToString(m_op)+".");
1574    }    }
1575  LAZYDEBUG(cout << "Result res[" << roffset<< "]" << m_samples[roffset] << endl;)  LAZYDEBUG(cout << "Result res[" << roffset<< "]" << m_samples[roffset] << endl;)
1576    return &m_samples;    return &m_samples;
# Line 1578  LAZYDEBUG(cout << "Result res[" << roffs Line 1580  LAZYDEBUG(cout << "Result res[" << roffs
1580  // This method assumes that any subexpressions which evaluate to Constant or Tagged Data  // This method assumes that any subexpressions which evaluate to Constant or Tagged Data
1581  // have already been collapsed to IDENTITY. So we must have at least one expanded child.  // have already been collapsed to IDENTITY. So we must have at least one expanded child.
1582  // unlike the other resolve helpers, we must treat these datapoints separately.  // unlike the other resolve helpers, we must treat these datapoints separately.
1583  const DataTypes::ValueType*  const DataTypes::RealVectorType*
1584  DataLazy::resolveNodeTProd(int tid, int sampleNo, size_t& roffset) const  DataLazy::resolveNodeTProd(int tid, int sampleNo, size_t& roffset) const
1585  {  {
1586  LAZYDEBUG(cout << "Resolve TensorProduct: " << toString() << endl;)  LAZYDEBUG(cout << "Resolve TensorProduct: " << toString() << endl;)
1587    
1588    size_t lroffset=0, rroffset=0;    // offsets in the left and right result vectors    size_t lroffset=0, rroffset=0;        // offsets in the left and right result vectors
1589      // first work out which of the children are expanded          // first work out which of the children are expanded
1590    bool leftExp=(m_left->m_readytype=='E');    bool leftExp=(m_left->m_readytype=='E');
1591    bool rightExp=(m_right->m_readytype=='E');    bool rightExp=(m_right->m_readytype=='E');
1592    int steps=getNumDPPSample();    int steps=getNumDPPSample();
1593    int leftStep=(leftExp? m_left->getNoValues() : 0);        // do not have scalars as input to this method    int leftStep=(leftExp? m_left->getNoValues() : 0);            // do not have scalars as input to this method
1594    int rightStep=(rightExp?m_right->getNoValues() : 0);    int rightStep=(rightExp?m_right->getNoValues() : 0);
1595    
1596    int resultStep=getNoValues();    int resultStep=getNoValues();
# Line 1611  LAZYDEBUG(cout << "m_samplesize=" << m_s Line 1613  LAZYDEBUG(cout << "m_samplesize=" << m_s
1613  LAZYDEBUG(cout << "outputshape=" << DataTypes::shapeToString(getShape()) << endl;)  LAZYDEBUG(cout << "outputshape=" << DataTypes::shapeToString(getShape()) << endl;)
1614  LAZYDEBUG(cout << "DPPS=" << m_right->getNumDPPSample() <<"."<<endl;)  LAZYDEBUG(cout << "DPPS=" << m_right->getNumDPPSample() <<"."<<endl;)
1615    
1616    double* resultp=&(m_samples[offset]);     // results are stored at the vector offset we received    double* resultp=&(m_samples[offset]);         // results are stored at the vector offset we received
1617    switch(m_op)    switch(m_op)
1618    {    {
1619      case PROD:      case PROD:
1620      for (int i=0;i<steps;++i,resultp+=resultStep)          for (int i=0;i<steps;++i,resultp+=resultStep)
1621      {          {
1622            const double *ptr_0 = &((*left)[lroffset]);            const double *ptr_0 = &((*left)[lroffset]);
1623            const double *ptr_1 = &((*right)[rroffset]);            const double *ptr_1 = &((*right)[rroffset]);
1624    
1625  LAZYDEBUG(cout << DataTypes::pointToString(*left, m_left->getShape(),lroffset,"LEFT") << endl;)  LAZYDEBUG(cout << DataTypes::pointToString(*left, m_left->getShape(),lroffset,"LEFT") << endl;)
1626  LAZYDEBUG(cout << DataTypes::pointToString(*right,m_right->getShape(),rroffset, "RIGHT") << endl;)  LAZYDEBUG(cout << DataTypes::pointToString(*right,m_right->getShape(),rroffset, "RIGHT") << endl;)
1627    
1628            matrix_matrix_product(m_SL, m_SM, m_SR, ptr_0, ptr_1, resultp, m_transpose);            matrix_matrix_product(m_SL, m_SM, m_SR, ptr_0, ptr_1, resultp, m_transpose);
1629    
1630        lroffset+=leftStep;            lroffset+=leftStep;
1631        rroffset+=rightStep;            rroffset+=rightStep;
1632      }          }
1633      break;          break;
1634      default:      default:
1635      throw DataException("Programmer error - resolveTProduct can not resolve operator "+opToString(m_op)+".");          throw DataException("Programmer error - resolveTProduct can not resolve operator "+opToString(m_op)+".");
1636    }    }
1637    roffset=offset;    roffset=offset;
1638    return &m_samples;    return &m_samples;
1639  }  }
1640    
1641    
1642  const DataTypes::ValueType*  const DataTypes::RealVectorType*
1643  DataLazy::resolveSample(int sampleNo, size_t& roffset) const  DataLazy::resolveSample(int sampleNo, size_t& roffset) const
1644  {  {
1645  #ifdef _OPENMP  #ifdef _OPENMP
1646      int tid=omp_get_thread_num();          int tid=omp_get_thread_num();
1647  #else  #else
1648      int tid=0;          int tid=0;
1649  #endif  #endif
1650    
1651  #ifdef LAZY_STACK_PROF  #ifdef LAZY_STACK_PROF
1652      stackstart[tid]=&tid;          stackstart[tid]=&tid;
1653      stackend[tid]=&tid;          stackend[tid]=&tid;
1654      const DataTypes::ValueType* r=resolveNodeSample(tid, sampleNo, roffset);          const DataTypes::RealVectorType* r=resolveNodeSample(tid, sampleNo, roffset);
1655      size_t d=(size_t)stackstart[tid]-(size_t)stackend[tid];          size_t d=(size_t)stackstart[tid]-(size_t)stackend[tid];
1656      #pragma omp critical          #pragma omp critical
1657      if (d>maxstackuse)          if (d>maxstackuse)
1658      {          {
1659  cout << "Max resolve Stack use " << d << endl;  cout << "Max resolve Stack use " << d << endl;
1660          maxstackuse=d;                  maxstackuse=d;
1661      }          }
1662      return r;          return r;
1663  #else  #else
1664      return resolveNodeSample(tid, sampleNo, roffset);          return resolveNodeSample(tid, sampleNo, roffset);
1665  #endif  #endif
1666  }  }
1667    
# Line 1669  void Line 1671  void
1671  DataLazy::resolveToIdentity()  DataLazy::resolveToIdentity()
1672  {  {
1673     if (m_op==IDENTITY)     if (m_op==IDENTITY)
1674      return;          return;
1675     DataReady_ptr p=resolveNodeWorker();     DataReady_ptr p=resolveNodeWorker();
1676     makeIdentity(p);     makeIdentity(p);
1677  }  }
# Line 1706  DataLazy::resolveGroupWorker(std::vector Line 1708  DataLazy::resolveGroupWorker(std::vector
1708  {  {
1709    if (dats.empty())    if (dats.empty())
1710    {    {
1711      return;          return;
1712    }    }
1713    vector<DataLazy*> work;    vector<DataLazy*> work;
1714    FunctionSpace fs=dats[0]->getFunctionSpace();    FunctionSpace fs=dats[0]->getFunctionSpace();
1715    bool match=true;    bool match=true;
1716    for (int i=dats.size()-1;i>=0;--i)    for (int i=dats.size()-1;i>=0;--i)
1717    {    {
1718      if (dats[i]->m_readytype!='E')          if (dats[i]->m_readytype!='E')
1719      {          {
1720          dats[i]->collapse();                  dats[i]->collapse();
1721      }          }
1722      if (dats[i]->m_op!=IDENTITY)          if (dats[i]->m_op!=IDENTITY)
1723      {          {
1724          work.push_back(dats[i]);                  work.push_back(dats[i]);
1725          if (fs!=dats[i]->getFunctionSpace())                  if (fs!=dats[i]->getFunctionSpace())
1726          {                  {
1727              match=false;                          match=false;
1728          }                  }
1729      }          }
1730    }    }
1731    if (work.empty())    if (work.empty())
1732    {    {
1733      return;     // no work to do          return;         // no work to do
1734    }    }
1735    if (match)    // all functionspaces match.  Yes I realise this is overly strict    if (match)    // all functionspaces match.  Yes I realise this is overly strict
1736    {     // it is possible that dats[0] is one of the objects which we discarded and    {             // it is possible that dats[0] is one of the objects which we discarded and
1737          // all the other functionspaces match.                  // all the other functionspaces match.
1738      vector<DataExpanded*> dep;          vector<DataExpanded*> dep;
1739      vector<ValueType*> vecs;          vector<ValueType*> vecs;
1740      for (int i=0;i<work.size();++i)          for (int i=0;i<work.size();++i)
1741      {          {
1742          dep.push_back(new DataExpanded(fs,work[i]->getShape(), ValueType(work[i]->getNoValues())));                  dep.push_back(new DataExpanded(fs,work[i]->getShape(), ValueType(work[i]->getNoValues())));
1743          vecs.push_back(&(dep[i]->getVectorRW()));                  vecs.push_back(&(dep[i]->getVectorRW()));
1744      }          }
1745      int totalsamples=work[0]->getNumSamples();          int totalsamples=work[0]->getNumSamples();
1746      const ValueType* res=0; // Storage for answer          const ValueType* res=0; // Storage for answer
1747      int sample;          int sample;
1748      #pragma omp parallel private(sample, res)          #pragma omp parallel private(sample, res)
1749      {          {
1750          size_t roffset=0;              size_t roffset=0;
1751          #pragma omp for schedule(static)              #pragma omp for schedule(static)
1752          for (sample=0;sample<totalsamples;++sample)              for (sample=0;sample<totalsamples;++sample)
1753          {              {
1754          roffset=0;                  roffset=0;
1755          int j;                  int j;
1756          for (j=work.size()-1;j>=0;--j)                  for (j=work.size()-1;j>=0;--j)
1757          {                  {
1758  #ifdef _OPENMP  #ifdef _OPENMP
1759                  res=work[j]->resolveNodeSample(omp_get_thread_num(),sample,roffset);                      res=work[j]->resolveNodeSample(omp_get_thread_num(),sample,roffset);
1760  #else  #else
1761                  res=work[j]->resolveNodeSample(0,sample,roffset);                      res=work[j]->resolveNodeSample(0,sample,roffset);
1762  #endif  #endif
1763                  DataVector::size_type outoffset=dep[j]->getPointOffset(sample,0);                      RealVectorType::size_type outoffset=dep[j]->getPointOffset(sample,0);
1764                  memcpy(&((*vecs[j])[outoffset]),&((*res)[roffset]),work[j]->m_samplesize*sizeof(DataVector::ElementType));                      memcpy(&((*vecs[j])[outoffset]),&((*res)[roffset]),work[j]->m_samplesize*sizeof(RealVectorType::ElementType));
1765          }                  }
1766          }              }
1767      }          }
1768      // Now we need to load the new results as identity ops into the lazy nodes          // Now we need to load the new results as identity ops into the lazy nodes
1769      for (int i=work.size()-1;i>=0;--i)          for (int i=work.size()-1;i>=0;--i)
1770      {          {
1771          work[i]->makeIdentity(boost::dynamic_pointer_cast<DataReady>(dep[i]->getPtr()));              work[i]->makeIdentity(REFCOUNTNS::dynamic_pointer_cast<DataReady>(dep[i]->getPtr()));
1772      }          }
1773    }    }
1774    else  // functionspaces do not match    else  // functionspaces do not match
1775    {    {
1776      for (int i=0;i<work.size();++i)          for (int i=0;i<work.size();++i)
1777      {          {
1778          work[i]->resolveToIdentity();                  work[i]->resolveToIdentity();
1779      }          }
1780    }    }
1781  }  }
1782    
# Line 1784  DataLazy::resolveGroupWorker(std::vector Line 1786  DataLazy::resolveGroupWorker(std::vector
1786  DataReady_ptr  DataReady_ptr
1787  DataLazy::resolveNodeWorker()  DataLazy::resolveNodeWorker()
1788  {  {
1789    if (m_readytype!='E')     // if the whole sub-expression is Constant or Tagged, then evaluate it normally    if (m_readytype!='E')         // if the whole sub-expression is Constant or Tagged, then evaluate it normally
1790    {    {
1791      collapse();      collapse();
1792    }    }
1793    if (m_op==IDENTITY)       // So a lazy expression of Constant or Tagged data will be returned here.    if (m_op==IDENTITY)           // So a lazy expression of Constant or Tagged data will be returned here.
1794    {    {
1795      return m_id;      return m_id;
1796    }    }
1797      // from this point on we must have m_op!=IDENTITY and m_readytype=='E'          // from this point on we must have m_op!=IDENTITY and m_readytype=='E'
1798    DataExpanded* result=new DataExpanded(getFunctionSpace(),getShape(),  ValueType(getNoValues()));    DataExpanded* result=new DataExpanded(getFunctionSpace(),getShape(),  ValueType(getNoValues()));
1799    ValueType& resvec=result->getVectorRW();    ValueType& resvec=result->getVectorRW();
1800    DataReady_ptr resptr=DataReady_ptr(result);    DataReady_ptr resptr=DataReady_ptr(result);
1801    
1802    int sample;    int sample;
1803    int totalsamples=getNumSamples();    int totalsamples=getNumSamples();
1804    const ValueType* res=0;   // Storage for answer    const ValueType* res=0;       // Storage for answer
1805  LAZYDEBUG(cout << "Total number of samples=" <<totalsamples << endl;)  LAZYDEBUG(cout << "Total number of samples=" <<totalsamples << endl;)
1806    #pragma omp parallel private(sample,res)    #pragma omp parallel private(sample,res)
1807    {    {
1808      size_t roffset=0;          size_t roffset=0;
1809  #ifdef LAZY_STACK_PROF  #ifdef LAZY_STACK_PROF
1810      stackstart[omp_get_thread_num()]=&roffset;          stackstart[omp_get_thread_num()]=&roffset;
1811      stackend[omp_get_thread_num()]=&roffset;          stackend[omp_get_thread_num()]=&roffset;
1812  #endif  #endif
1813      #pragma omp for schedule(static)          #pragma omp for schedule(static)
1814      for (sample=0;sample<totalsamples;++sample)          for (sample=0;sample<totalsamples;++sample)
1815      {          {
1816          roffset=0;                  roffset=0;
1817  #ifdef _OPENMP  #ifdef _OPENMP
1818              res=resolveNodeSample(omp_get_thread_num(),sample,roffset);                  res=resolveNodeSample(omp_get_thread_num(),sample,roffset);
1819  #else  #else
1820              res=resolveNodeSample(0,sample,roffset);                  res=resolveNodeSample(0,sample,roffset);
1821  #endif  #endif
1822  LAZYDEBUG(cout << "Sample #" << sample << endl;)  LAZYDEBUG(cout << "Sample #" << sample << endl;)
1823  LAZYDEBUG(cout << "Final res[" << roffset<< "]=" << (*res)[roffset] << (*res)[roffset]<< endl; )  LAZYDEBUG(cout << "Final res[" << roffset<< "]=" << (*res)[roffset] << (*res)[roffset]<< endl; )
1824              DataVector::size_type outoffset=result->getPointOffset(sample,0);                  RealVectorType::size_type outoffset=result->getPointOffset(sample,0);
1825              memcpy(&(resvec[outoffset]),&((*res)[roffset]),m_samplesize*sizeof(DataVector::ElementType));                  memcpy(&(resvec[outoffset]),&((*res)[roffset]),m_samplesize*sizeof(RealVectorType::ElementType));
1826      }          }
1827    }    }
1828  #ifdef LAZY_STACK_PROF  #ifdef LAZY_STACK_PROF
1829    for (int i=0;i<getNumberOfThreads();++i)    for (int i=0;i<getNumberOfThreads();++i)
1830    {    {
1831      size_t r=((size_t)stackstart[i] - (size_t)stackend[i]);          size_t r=((size_t)stackstart[i] - (size_t)stackend[i]);
1832  //  cout << i << " " << stackstart[i] << " .. " << stackend[i] << " = " <<  r << endl;  //      cout << i << " " << stackstart[i] << " .. " << stackend[i] << " = " <<  r << endl;
1833      if (r>maxstackuse)          if (r>maxstackuse)
1834      {          {
1835          maxstackuse=r;                  maxstackuse=r;
1836      }          }
1837    }    }
1838    cout << "Max resolve Stack use=" << maxstackuse << endl;    cout << "Max resolve Stack use=" << maxstackuse << endl;
1839  #endif  #endif
# Line 1845  DataLazy::toString() const Line 1847  DataLazy::toString() const
1847    oss << "Lazy Data: [depth=" << m_height<< "] ";    oss << "Lazy Data: [depth=" << m_height<< "] ";
1848    switch (escriptParams.getLAZY_STR_FMT())    switch (escriptParams.getLAZY_STR_FMT())
1849    {    {
1850    case 1:   // tree format    case 1:       // tree format
1851      oss << endl;          oss << endl;
1852      intoTreeString(oss,"");          intoTreeString(oss,"");
1853      break;          break;
1854    case 2:   // just the depth    case 2:       // just the depth
1855      break;          break;
1856    default:    default:
1857      intoString(oss);          intoString(oss);
1858      break;          break;
1859    }    }
1860    return oss.str();    return oss.str();
1861  }  }
# Line 1866  DataLazy::intoString(ostringstream& oss) Line 1868  DataLazy::intoString(ostringstream& oss)
1868    switch (getOpgroup(m_op))    switch (getOpgroup(m_op))
1869    {    {
1870    case G_IDENTITY:    case G_IDENTITY:
1871      if (m_id->isExpanded())          if (m_id->isExpanded())
1872      {          {
1873         oss << "E";             oss << "E";
1874      }          }
1875      else if (m_id->isTagged())          else if (m_id->isTagged())
1876      {          {
1877        oss << "T";            oss << "T";
1878      }          }
1879      else if (m_id->isConstant())          else if (m_id->isConstant())
1880      {          {
1881        oss << "C";            oss << "C";
1882      }          }
1883      else          else
1884      {          {
1885        oss << "?";            oss << "?";
1886      }          }
1887      oss << '@' << m_id.get();          oss << '@' << m_id.get();
1888      break;          break;
1889    case G_BINARY:    case G_BINARY:
1890      oss << '(';          oss << '(';
1891      m_left->intoString(oss);          m_left->intoString(oss);
1892      oss << ' ' << opToString(m_op) << ' ';          oss << ' ' << opToString(m_op) << ' ';
1893      m_right->intoString(oss);          m_right->intoString(oss);
1894      oss << ')';          oss << ')';
1895      break;          break;
1896    case G_UNARY:    case G_UNARY:
1897    case G_UNARY_P:    case G_UNARY_P:
1898    case G_NP1OUT:    case G_NP1OUT:
1899    case G_NP1OUT_P:    case G_NP1OUT_P:
1900    case G_REDUCTION:    case G_REDUCTION:
1901      oss << opToString(m_op) << '(';          oss << opToString(m_op) << '(';
1902      m_left->intoString(oss);          m_left->intoString(oss);
1903      oss << ')';          oss << ')';
1904      break;          break;
1905    case G_TENSORPROD:    case G_TENSORPROD:
1906      oss << opToString(m_op) << '(';          oss << opToString(m_op) << '(';
1907      m_left->intoString(oss);          m_left->intoString(oss);
1908      oss << ", ";          oss << ", ";
1909      m_right->intoString(oss);          m_right->intoString(oss);
1910      oss << ')';          oss << ')';
1911      break;          break;
1912    case G_NP1OUT_2P:    case G_NP1OUT_2P:
1913      oss << opToString(m_op) << '(';          oss << opToString(m_op) << '(';
1914      m_left->intoString(oss);          m_left->intoString(oss);
1915      oss << ", " << m_axis_offset << ", " << m_transpose;          oss << ", " << m_axis_offset << ", " << m_transpose;
1916      oss << ')';          oss << ')';
1917      break;          break;
1918    case G_CONDEVAL:    case G_CONDEVAL:
1919      oss << opToString(m_op)<< '(' ;          oss << opToString(m_op)<< '(' ;
1920      m_mask->intoString(oss);          m_mask->intoString(oss);
1921      oss << " ? ";          oss << " ? ";
1922      m_left->intoString(oss);          m_left->intoString(oss);
1923      oss << " : ";          oss << " : ";
1924      m_right->intoString(oss);          m_right->intoString(oss);
1925      oss << ')';          oss << ')';
1926      break;          break;
1927    default:    default:
1928      oss << "UNKNOWN";          oss << "UNKNOWN";
1929    }    }
1930  }  }
1931    
# Line 1935  DataLazy::intoTreeString(ostringstream& Line 1937  DataLazy::intoTreeString(ostringstream&
1937    switch (getOpgroup(m_op))    switch (getOpgroup(m_op))
1938    {    {
1939    case G_IDENTITY:    case G_IDENTITY:
1940      if (m_id->isExpanded())          if (m_id->isExpanded())
1941      {          {
1942         oss << "E";             oss << "E";
1943      }          }
1944      else if (m_id->isTagged())          else if (m_id->isTagged())
1945      {          {
1946        oss << "T";            oss << "T";
1947      }          }
1948      else if (m_id->isConstant())          else if (m_id->isConstant())
1949      {          {
1950        oss << "C";            oss << "C";
1951      }          }
1952      else          else
1953      {          {
1954        oss << "?";            oss << "?";
1955      }          }
1956      oss << '@' << m_id.get() << endl;          oss << '@' << m_id.get() << endl;
1957      break;          break;
1958    case G_BINARY:    case G_BINARY:
1959      oss << opToString(m_op) << endl;          oss << opToString(m_op) << endl;
1960      indent+='.';          indent+='.';
1961      m_left->intoTreeString(oss, indent);          m_left->intoTreeString(oss, indent);
1962      m_right->intoTreeString(oss, indent);          m_right->intoTreeString(oss, indent);
1963      break;          break;
1964    case G_UNARY:    case G_UNARY:
1965    case G_UNARY_P:    case G_UNARY_P:
1966    case G_NP1OUT:    case G_NP1OUT:
1967    case G_NP1OUT_P:    case G_NP1OUT_P:
1968    case G_REDUCTION:    case G_REDUCTION:
1969      oss << opToString(m_op) << endl;          oss << opToString(m_op) << endl;
1970      indent+='.';          indent+='.';
1971      m_left->intoTreeString(oss, indent);          m_left->intoTreeString(oss, indent);
1972      break;          break;
1973    case G_TENSORPROD:    case G_TENSORPROD:
1974      oss << opToString(m_op) << endl;          oss << opToString(m_op) << endl;
1975      indent+='.';          indent+='.';
1976      m_left->intoTreeString(oss, indent);          m_left->intoTreeString(oss, indent);
1977      m_right->intoTreeString(oss, indent);          m_right->intoTreeString(oss, indent);
1978      break;          break;
1979    case G_NP1OUT_2P:    case G_NP1OUT_2P:
1980      oss << opToString(m_op) << ", " << m_axis_offset << ", " << m_transpose<< endl;          oss << opToString(m_op) << ", " << m_axis_offset << ", " << m_transpose<< endl;
1981      indent+='.';          indent+='.';
1982      m_left->intoTreeString(oss, indent);          m_left->intoTreeString(oss, indent);
1983      break;          break;
1984    default:    default:
1985      oss << "UNKNOWN";          oss << "UNKNOWN";
1986    }    }
1987  }  }
1988    
1989    
1990  DataAbstract*  DataAbstract*
1991  DataLazy::deepCopy()  DataLazy::deepCopy() const
1992  {  {
1993    switch (getOpgroup(m_op))    switch (getOpgroup(m_op))
1994    {    {
1995    case G_IDENTITY:  return new DataLazy(m_id->deepCopy()->getPtr());    case G_IDENTITY:  return new DataLazy(m_id->deepCopy()->getPtr());
1996    case G_UNARY:    case G_UNARY:
1997    case G_REDUCTION:      return new DataLazy(m_left->deepCopy()->getPtr(),m_op);    case G_REDUCTION:      return new DataLazy(m_left->deepCopy()->getPtr(),m_op);
1998    case G_UNARY_P:   return new DataLazy(m_left->deepCopy()->getPtr(), m_op, m_tol);    case G_UNARY_P:       return new DataLazy(m_left->deepCopy()->getPtr(), m_op, m_tol);
1999    case G_BINARY:    return new DataLazy(m_left->deepCopy()->getPtr(),m_right->deepCopy()->getPtr(),m_op);    case G_BINARY:        return new DataLazy(m_left->deepCopy()->getPtr(),m_right->deepCopy()->getPtr(),m_op);
2000    case G_NP1OUT: return new DataLazy(m_left->deepCopy()->getPtr(), m_right->deepCopy()->getPtr(),m_op);    case G_NP1OUT: return new DataLazy(m_left->deepCopy()->getPtr(), m_right->deepCopy()->getPtr(),m_op);
2001    case G_TENSORPROD: return new DataLazy(m_left->deepCopy()->getPtr(), m_right->deepCopy()->getPtr(), m_op, m_axis_offset, m_transpose);    case G_TENSORPROD: return new DataLazy(m_left->deepCopy()->getPtr(), m_right->deepCopy()->getPtr(), m_op, m_axis_offset, m_transpose);
2002    case G_NP1OUT_P:   return new DataLazy(m_left->deepCopy()->getPtr(),m_op,  m_axis_offset);    case G_NP1OUT_P:   return new DataLazy(m_left->deepCopy()->getPtr(),m_op,  m_axis_offset);
2003    case G_NP1OUT_2P:  return new DataLazy(m_left->deepCopy()->getPtr(), m_op, m_axis_offset, m_transpose);    case G_NP1OUT_2P:  return new DataLazy(m_left->deepCopy()->getPtr(), m_op, m_axis_offset, m_transpose);
2004    default:    default:
2005      throw DataException("Programmer error - do not know how to deepcopy operator "+opToString(m_op)+".");          throw DataException("Programmer error - do not know how to deepcopy operator "+opToString(m_op)+".");
2006    }    }
2007  }  }
2008    
# Line 2012  DataLazy::deepCopy() Line 2014  DataLazy::deepCopy()
2014  // or it could be some function of the lengths of the DataReady instances which  // or it could be some function of the lengths of the DataReady instances which
2015  // form part of the expression.  // form part of the expression.
2016  // Rather than have people making assumptions, I have disabled the method.  // Rather than have people making assumptions, I have disabled the method.
2017  DataTypes::ValueType::size_type  DataTypes::RealVectorType::size_type
2018  DataLazy::getLength() const  DataLazy::getLength() const
2019  {  {
2020    throw DataException("getLength() does not make sense for lazy data.");    throw DataException("getLength() does not make sense for lazy data.");
# Line 2027  DataLazy::getSlice(const DataTypes::Regi Line 2029  DataLazy::getSlice(const DataTypes::Regi
2029    
2030    
2031  // To do this we need to rely on our child nodes  // To do this we need to rely on our child nodes
2032  DataTypes::ValueType::size_type  DataTypes::RealVectorType::size_type
2033  DataLazy::getPointOffset(int sampleNo,  DataLazy::getPointOffset(int sampleNo,
2034                   int dataPointNo)                   int dataPointNo)
2035  {  {
2036    if (m_op==IDENTITY)    if (m_op==IDENTITY)
2037    {    {
2038      return m_id->getPointOffset(sampleNo,dataPointNo);          return m_id->getPointOffset(sampleNo,dataPointNo);
2039    }    }
2040    if (m_readytype!='E')    if (m_readytype!='E')
2041    {    {
2042      collapse();          collapse();
2043      return m_id->getPointOffset(sampleNo,dataPointNo);          return m_id->getPointOffset(sampleNo,dataPointNo);
2044    }    }
2045    // at this point we do not have an identity node and the expression will be Expanded    // at this point we do not have an identity node and the expression will be Expanded
2046    // so we only need to know which child to ask    // so we only need to know which child to ask
2047    if (m_left->m_readytype=='E')    if (m_left->m_readytype=='E')
2048    {    {
2049      return m_left->getPointOffset(sampleNo,dataPointNo);          return m_left->getPointOffset(sampleNo,dataPointNo);
2050    }    }
2051    else    else
2052    {    {
2053      return m_right->getPointOffset(sampleNo,dataPointNo);          return m_right->getPointOffset(sampleNo,dataPointNo);
2054    }    }
2055  }  }
2056    
2057  // To do this we need to rely on our child nodes  // To do this we need to rely on our child nodes
2058  DataTypes::ValueType::size_type  DataTypes::RealVectorType::size_type
2059  DataLazy::getPointOffset(int sampleNo,  DataLazy::getPointOffset(int sampleNo,
2060                   int dataPointNo) const                   int dataPointNo) const
2061  {  {
2062    if (m_op==IDENTITY)    if (m_op==IDENTITY)
2063    {    {
2064      return m_id->getPointOffset(sampleNo,dataPointNo);          return m_id->getPointOffset(sampleNo,dataPointNo);
2065    }    }
2066    if (m_readytype=='E')    if (m_readytype=='E')
2067    {    {
# Line 2067  DataLazy::getPointOffset(int sampleNo, Line 2069  DataLazy::getPointOffset(int sampleNo,
2069      // so we only need to know which child to ask      // so we only need to know which child to ask
2070      if (m_left->m_readytype=='E')      if (m_left->m_readytype=='E')
2071      {      {
2072      return m_left->getPointOffset(sampleNo,dataPointNo);          return m_left->getPointOffset(sampleNo,dataPointNo);
2073      }      }
2074      else      else
2075      {      {
2076      return m_right->getPointOffset(sampleNo,dataPointNo);          return m_right->getPointOffset(sampleNo,dataPointNo);
2077      }      }
2078    }    }
2079    if (m_readytype=='C')    if (m_readytype=='C')
2080    {    {
2081      return m_left->getPointOffset(sampleNo,dataPointNo); // which child doesn't matter          return m_left->getPointOffset(sampleNo,dataPointNo); // which child doesn't matter
2082    }    }
2083    throw DataException("Programmer error - getPointOffset on lazy data may require collapsing (but this object is marked const).");    throw DataException("Programmer error - getPointOffset on lazy data may require collapsing (but this object is marked const).");
2084  }  }
# Line 2086  DataLazy::getPointOffset(int sampleNo, Line 2088  DataLazy::getPointOffset(int sampleNo,
2088  void  void
2089  DataLazy::setToZero()  DataLazy::setToZero()
2090  {  {
2091  //   DataTypes::ValueType v(getNoValues(),0);  //   DataTypes::RealVectorType v(getNoValues(),0);
2092  //   m_id=DataReady_ptr(new DataConstant(getFunctionSpace(),getShape(),v));  //   m_id=DataReady_ptr(new DataConstant(getFunctionSpace(),getShape(),v));
2093  //   m_op=IDENTITY;  //   m_op=IDENTITY;
2094  //   m_right.reset();    //   m_right.reset();  
# Line 2094  DataLazy::setToZero() Line 2096  DataLazy::setToZero()
2096  //   m_readytype='C';  //   m_readytype='C';
2097  //   m_buffsRequired=1;  //   m_buffsRequired=1;
2098    
2099    privdebug=privdebug;  // to stop the compiler complaining about unused privdebug    (void)privdebug;  // to stop the compiler complaining about unused privdebug
2100    throw DataException("Programmer error - setToZero not supported for DataLazy (DataLazy objects should be read only).");    throw DataException("Programmer error - setToZero not supported for DataLazy (DataLazy objects should be read only).");
2101  }  }
2102    
2103  bool  bool
2104  DataLazy::actsExpanded() const  DataLazy::actsExpanded() const
2105  {  {
2106      return (m_readytype=='E');          return (m_readytype=='E');
2107  }  }
2108    
2109  }   // end namespace  } // end namespace
2110    

Legend:
Removed from v.4621  
changed lines
  Added in v.5997

  ViewVC Help
Powered by ViewVC 1.1.26