/[escript]/branches/diaplayground/ripley/src/Brick.cpp
ViewVC logotype

Contents of /branches/diaplayground/ripley/src/Brick.cpp

Parent Directory Parent Directory | Revision Log Revision Log


Revision 3704 - (show annotations)
Mon Dec 5 01:59:08 2011 UTC (7 years, 3 months ago) by caltinay
Original Path: branches/ripleygmg_from_3668/ripley/src/Brick.cpp
File size: 40894 byte(s)
Interpolation on faces.

1
2 /*******************************************************
3 *
4 * Copyright (c) 2003-2011 by University of Queensland
5 * Earth Systems Science Computational Center (ESSCC)
6 * http://www.uq.edu.au/esscc
7 *
8 * Primary Business: Queensland, Australia
9 * Licensed under the Open Software License version 3.0
10 * http://www.opensource.org/licenses/osl-3.0.php
11 *
12 *******************************************************/
13
14 #include <ripley/Brick.h>
15 extern "C" {
16 #include "paso/SystemMatrixPattern.h"
17 }
18
19 #if USE_SILO
20 #include <silo.h>
21 #ifdef ESYS_MPI
22 #include <pmpio.h>
23 #endif
24 #endif
25
26 #include <iomanip>
27
28 using namespace std;
29
30 namespace ripley {
31
32 Brick::Brick(int n0, int n1, int n2, double l0, double l1, double l2, int d0,
33 int d1, int d2) :
34 RipleyDomain(3),
35 m_gNE0(n0),
36 m_gNE1(n1),
37 m_gNE2(n2),
38 m_l0(l0),
39 m_l1(l1),
40 m_l2(l2),
41 m_NX(d0),
42 m_NY(d1),
43 m_NZ(d2)
44 {
45 // ensure number of subdivisions is valid and nodes can be distributed
46 // among number of ranks
47 if (m_NX*m_NY*m_NZ != m_mpiInfo->size)
48 throw RipleyException("Invalid number of spatial subdivisions");
49
50 if (n0%m_NX > 0 || n1%m_NY > 0 || n2%m_NZ > 0)
51 throw RipleyException("Number of elements must be separable into number of ranks in each dimension");
52
53 // local number of elements
54 m_NE0 = n0/m_NX;
55 m_NE1 = n1/m_NY;
56 m_NE2 = n2/m_NZ;
57 // local number of nodes (not necessarily owned)
58 m_N0 = m_NE0+1;
59 m_N1 = m_NE1+1;
60 m_N2 = m_NE2+1;
61 // bottom-left-front node is at (offset0,offset1,offset2) in global mesh
62 m_offset0 = m_NE0*(m_mpiInfo->rank%m_NX);
63 m_offset1 = m_NE1*(m_mpiInfo->rank%(m_NX*m_NY)/m_NX);
64 m_offset2 = m_NE2*(m_mpiInfo->rank/(m_NX*m_NY));
65 populateSampleIds();
66 }
67
68
69 Brick::~Brick()
70 {
71 }
72
73 string Brick::getDescription() const
74 {
75 return "ripley::Brick";
76 }
77
78 bool Brick::operator==(const AbstractDomain& other) const
79 {
80 if (dynamic_cast<const Brick*>(&other))
81 return this==&other;
82
83 return false;
84 }
85
86 void Brick::dump(const string& fileName) const
87 {
88 #if USE_SILO
89 string fn(fileName);
90 if (fileName.length() < 6 || fileName.compare(fileName.length()-5, 5, ".silo") != 0) {
91 fn+=".silo";
92 }
93
94 const int NUM_SILO_FILES = 1;
95 const char* blockDirFmt = "/block%04d";
96 int driver=DB_HDF5;
97 string siloPath;
98 DBfile* dbfile = NULL;
99
100 #ifdef ESYS_MPI
101 PMPIO_baton_t* baton = NULL;
102 #endif
103
104 if (m_mpiInfo->size > 1) {
105 #ifdef ESYS_MPI
106 baton = PMPIO_Init(NUM_SILO_FILES, PMPIO_WRITE, m_mpiInfo->comm,
107 0x1337, PMPIO_DefaultCreate, PMPIO_DefaultOpen,
108 PMPIO_DefaultClose, (void*)&driver);
109 // try the fallback driver in case of error
110 if (!baton && driver != DB_PDB) {
111 driver = DB_PDB;
112 baton = PMPIO_Init(NUM_SILO_FILES, PMPIO_WRITE, m_mpiInfo->comm,
113 0x1338, PMPIO_DefaultCreate, PMPIO_DefaultOpen,
114 PMPIO_DefaultClose, (void*)&driver);
115 }
116 if (baton) {
117 char str[64];
118 snprintf(str, 64, blockDirFmt, PMPIO_RankInGroup(baton, m_mpiInfo->rank));
119 siloPath = str;
120 dbfile = (DBfile*) PMPIO_WaitForBaton(baton, fn.c_str(), siloPath.c_str());
121 }
122 #endif
123 } else {
124 dbfile = DBCreate(fn.c_str(), DB_CLOBBER, DB_LOCAL,
125 getDescription().c_str(), driver);
126 // try the fallback driver in case of error
127 if (!dbfile && driver != DB_PDB) {
128 driver = DB_PDB;
129 dbfile = DBCreate(fn.c_str(), DB_CLOBBER, DB_LOCAL,
130 getDescription().c_str(), driver);
131 }
132 }
133
134 if (!dbfile)
135 throw RipleyException("dump: Could not create Silo file");
136
137 /*
138 if (driver==DB_HDF5) {
139 // gzip level 1 already provides good compression with minimal
140 // performance penalty. Some tests showed that gzip levels >3 performed
141 // rather badly on escript data both in terms of time and space
142 DBSetCompression("ERRMODE=FALLBACK METHOD=GZIP LEVEL=1");
143 }
144 */
145
146 boost::scoped_ptr<double> x(new double[m_N0]);
147 boost::scoped_ptr<double> y(new double[m_N1]);
148 boost::scoped_ptr<double> z(new double[m_N2]);
149 double* coords[3] = { x.get(), y.get(), z.get() };
150 pair<double,double> xdx = getFirstCoordAndSpacing(0);
151 pair<double,double> ydy = getFirstCoordAndSpacing(1);
152 pair<double,double> zdz = getFirstCoordAndSpacing(2);
153 #pragma omp parallel
154 {
155 #pragma omp for
156 for (dim_t i0 = 0; i0 < m_N0; i0++) {
157 coords[0][i0]=xdx.first+i0*xdx.second;
158 }
159 #pragma omp for
160 for (dim_t i1 = 0; i1 < m_N1; i1++) {
161 coords[1][i1]=ydy.first+i1*ydy.second;
162 }
163 #pragma omp for
164 for (dim_t i2 = 0; i2 < m_N2; i2++) {
165 coords[2][i2]=zdz.first+i2*zdz.second;
166 }
167 }
168 IndexVector dims = getNumNodesPerDim();
169 DBPutQuadmesh(dbfile, "mesh", NULL, coords, &dims[0], 3, DB_DOUBLE,
170 DB_COLLINEAR, NULL);
171
172 DBPutQuadvar1(dbfile, "nodeId", "mesh", (void*)&m_nodeId[0], &dims[0], 3,
173 NULL, 0, DB_INT, DB_NODECENT, NULL);
174
175 // write element ids
176 dims = getNumElementsPerDim();
177 DBPutQuadvar1(dbfile, "elementId", "mesh", (void*)&m_elementId[0],
178 &dims[0], 3, NULL, 0, DB_INT, DB_ZONECENT, NULL);
179
180 // rank 0 writes multimesh and multivar
181 if (m_mpiInfo->rank == 0) {
182 vector<string> tempstrings;
183 vector<char*> names;
184 for (dim_t i=0; i<m_mpiInfo->size; i++) {
185 stringstream path;
186 path << "/block" << setw(4) << setfill('0') << right << i << "/mesh";
187 tempstrings.push_back(path.str());
188 names.push_back((char*)tempstrings.back().c_str());
189 }
190 vector<int> types(m_mpiInfo->size, DB_QUAD_RECT);
191 DBSetDir(dbfile, "/");
192 DBPutMultimesh(dbfile, "multimesh", m_mpiInfo->size, &names[0],
193 &types[0], NULL);
194 tempstrings.clear();
195 names.clear();
196 for (dim_t i=0; i<m_mpiInfo->size; i++) {
197 stringstream path;
198 path << "/block" << setw(4) << setfill('0') << right << i << "/nodeId";
199 tempstrings.push_back(path.str());
200 names.push_back((char*)tempstrings.back().c_str());
201 }
202 types.assign(m_mpiInfo->size, DB_QUADVAR);
203 DBPutMultivar(dbfile, "nodeId", m_mpiInfo->size, &names[0],
204 &types[0], NULL);
205 tempstrings.clear();
206 names.clear();
207 for (dim_t i=0; i<m_mpiInfo->size; i++) {
208 stringstream path;
209 path << "/block" << setw(4) << setfill('0') << right << i << "/elementId";
210 tempstrings.push_back(path.str());
211 names.push_back((char*)tempstrings.back().c_str());
212 }
213 DBPutMultivar(dbfile, "elementId", m_mpiInfo->size, &names[0],
214 &types[0], NULL);
215 }
216
217 if (m_mpiInfo->size > 1) {
218 #ifdef ESYS_MPI
219 PMPIO_HandOffBaton(baton, dbfile);
220 PMPIO_Finish(baton);
221 #endif
222 } else {
223 DBClose(dbfile);
224 }
225
226 #else // USE_SILO
227 throw RipleyException("dump(): no Silo support");
228 #endif
229 }
230
231 const int* Brick::borrowSampleReferenceIDs(int fsType) const
232 {
233 switch (fsType) {
234 case Nodes:
235 return &m_nodeId[0];
236 case Elements:
237 return &m_elementId[0];
238 case FaceElements:
239 return &m_faceId[0];
240 default:
241 break;
242 }
243
244 stringstream msg;
245 msg << "borrowSampleReferenceIDs() not implemented for function space type "
246 << fsType;
247 throw RipleyException(msg.str());
248 }
249
250 bool Brick::ownSample(int fsCode, index_t id) const
251 {
252 #ifdef ESYS_MPI
253 if (fsCode == Nodes) {
254 const index_t myFirst=m_nodeDistribution[m_mpiInfo->rank];
255 const index_t myLast=m_nodeDistribution[m_mpiInfo->rank+1]-1;
256 return (m_nodeId[id]>=myFirst && m_nodeId[id]<=myLast);
257 } else
258 throw RipleyException("ownSample() only implemented for Nodes");
259 #else
260 return true;
261 #endif
262 }
263
264 void Brick::setToGradient(escript::Data& out, const escript::Data& cIn) const
265 {
266 escript::Data& in = *const_cast<escript::Data*>(&cIn);
267 const dim_t numComp = in.getDataPointSize();
268 const double h0 = m_l0/m_gNE0;
269 const double h1 = m_l1/m_gNE1;
270 const double h2 = m_l1/m_gNE2;
271 if (out.getFunctionSpace().getTypeCode() == Elements) {
272 /* GENERATOR SNIP_GRAD_ELEMENTS TOP */
273 const double tmp0_22 = -0.044658198738520451079/h1;
274 const double tmp0_16 = 0.16666666666666666667/h0;
275 const double tmp0_33 = -0.62200846792814621559/h1;
276 const double tmp0_0 = -0.62200846792814621559/h0;
277 const double tmp0_21 = -0.16666666666666666667/h1;
278 const double tmp0_17 = 0.62200846792814621559/h0;
279 const double tmp0_52 = -0.044658198738520451079/h2;
280 const double tmp0_1 = -0.16666666666666666667/h0;
281 const double tmp0_20 = -0.62200846792814621559/h1;
282 const double tmp0_14 = -0.044658198738520451079/h0;
283 const double tmp0_53 = -0.62200846792814621559/h2;
284 const double tmp0_49 = 0.16666666666666666667/h2;
285 const double tmp0_2 = 0.16666666666666666667/h0;
286 const double tmp0_27 = -0.044658198738520451079/h1;
287 const double tmp0_15 = -0.16666666666666666667/h0;
288 const double tmp0_50 = -0.16666666666666666667/h2;
289 const double tmp0_48 = 0.62200846792814621559/h2;
290 const double tmp0_3 = 0.044658198738520451079/h0;
291 const double tmp0_26 = -0.16666666666666666667/h1;
292 const double tmp0_12 = -0.62200846792814621559/h0;
293 const double tmp0_51 = 0.044658198738520451079/h2;
294 const double tmp0_25 = 0.62200846792814621559/h1;
295 const double tmp0_13 = 0.16666666666666666667/h0;
296 const double tmp0_56 = 0.16666666666666666667/h2;
297 const double tmp0_24 = 0.16666666666666666667/h1;
298 const double tmp0_10 = 0.62200846792814621559/h0;
299 const double tmp0_57 = 0.62200846792814621559/h2;
300 const double tmp0_11 = -0.16666666666666666667/h0;
301 const double tmp0_54 = -0.044658198738520451079/h2;
302 const double tmp0_38 = 0.16666666666666666667/h1;
303 const double tmp0_34 = -0.044658198738520451079/h1;
304 const double tmp0_42 = 0.16666666666666666667/h2;
305 const double tmp0_35 = -0.16666666666666666667/h1;
306 const double tmp0_36 = -0.62200846792814621559/h1;
307 const double tmp0_41 = 0.62200846792814621559/h2;
308 const double tmp0_8 = 0.044658198738520451079/h0;
309 const double tmp0_37 = 0.62200846792814621559/h1;
310 const double tmp0_29 = 0.16666666666666666667/h1;
311 const double tmp0_40 = -0.62200846792814621559/h2;
312 const double tmp0_9 = 0.16666666666666666667/h0;
313 const double tmp0_30 = 0.62200846792814621559/h1;
314 const double tmp0_28 = -0.16666666666666666667/h1;
315 const double tmp0_43 = 0.044658198738520451079/h2;
316 const double tmp0_32 = 0.16666666666666666667/h1;
317 const double tmp0_31 = 0.044658198738520451079/h1;
318 const double tmp0_39 = 0.044658198738520451079/h1;
319 const double tmp0_58 = -0.62200846792814621559/h2;
320 const double tmp0_55 = 0.044658198738520451079/h2;
321 const double tmp0_18 = -0.62200846792814621559/h0;
322 const double tmp0_45 = -0.16666666666666666667/h2;
323 const double tmp0_59 = -0.16666666666666666667/h2;
324 const double tmp0_4 = -0.044658198738520451079/h0;
325 const double tmp0_19 = 0.044658198738520451079/h0;
326 const double tmp0_44 = -0.044658198738520451079/h2;
327 const double tmp0_5 = 0.62200846792814621559/h0;
328 const double tmp0_47 = 0.16666666666666666667/h2;
329 const double tmp0_6 = -0.16666666666666666667/h0;
330 const double tmp0_23 = 0.044658198738520451079/h1;
331 const double tmp0_46 = -0.16666666666666666667/h2;
332 const double tmp0_7 = -0.044658198738520451079/h0;
333 #pragma omp parallel for
334 for (index_t k2 =0; k2 < m_NE2; ++k2) {
335 for (index_t k1 =0; k1 < m_NE1; ++k1) {
336 for (index_t k0 =0; k0 < m_NE0; ++k0) {
337 const register double* f_000 = in.getSampleDataRO(INDEX3(k0,k1,k2, m_N0,m_N1));
338 const register double* f_001 = in.getSampleDataRO(INDEX3(k0,k1,k2+1, m_N0,m_N1));
339 const register double* f_101 = in.getSampleDataRO(INDEX3(k0+1,k1,k2+1, m_N0,m_N1));
340 const register double* f_111 = in.getSampleDataRO(INDEX3(k0+1,k1+1,k2+1, m_N0,m_N1));
341 const register double* f_110 = in.getSampleDataRO(INDEX3(k0+1,k1+1,k2, m_N0,m_N1));
342 const register double* f_011 = in.getSampleDataRO(INDEX3(k0,k1+1,k2+1, m_N0,m_N1));
343 const register double* f_010 = in.getSampleDataRO(INDEX3(k0,k1+1,k2, m_N0,m_N1));
344 const register double* f_100 = in.getSampleDataRO(INDEX3(k0+1,k1,k2, m_N0,m_N1));
345 double* o = out.getSampleDataRW(INDEX3(k0,k1,k2,m_NE0,m_NE1));
346 for (index_t i=0; i < numComp; ++i) {
347 o[INDEX3(i,0,0,numComp,3)] = f_000[i]*tmp0_0 + f_011[i]*tmp0_4 + f_100[i]*tmp0_5 + f_111[i]*tmp0_3 + tmp0_1*(f_001[i] + f_010[i]) + tmp0_2*(f_101[i] + f_110[i]);
348 o[INDEX3(i,1,0,numComp,3)] = f_000[i]*tmp0_20 + f_010[i]*tmp0_25 + f_101[i]*tmp0_22 + f_111[i]*tmp0_23 + tmp0_21*(f_001[i] + f_100[i]) + tmp0_24*(f_011[i] + f_110[i]);
349 o[INDEX3(i,2,0,numComp,3)] = f_000[i]*tmp0_40 + f_001[i]*tmp0_41 + f_110[i]*tmp0_44 + f_111[i]*tmp0_43 + tmp0_42*(f_011[i] + f_101[i]) + tmp0_45*(f_010[i] + f_100[i]);
350 o[INDEX3(i,0,1,numComp,3)] = f_000[i]*tmp0_0 + f_011[i]*tmp0_4 + f_100[i]*tmp0_5 + f_111[i]*tmp0_3 + tmp0_1*(f_001[i] + f_010[i]) + tmp0_2*(f_101[i] + f_110[i]);
351 o[INDEX3(i,1,1,numComp,3)] = f_000[i]*tmp0_26 + f_001[i]*tmp0_27 + f_010[i]*tmp0_32 + f_011[i]*tmp0_31 + f_100[i]*tmp0_33 + f_101[i]*tmp0_28 + f_110[i]*tmp0_30 + f_111[i]*tmp0_29;
352 o[INDEX3(i,2,1,numComp,3)] = f_000[i]*tmp0_46 + f_001[i]*tmp0_47 + f_010[i]*tmp0_52 + f_011[i]*tmp0_51 + f_100[i]*tmp0_53 + f_101[i]*tmp0_48 + f_110[i]*tmp0_50 + f_111[i]*tmp0_49;
353 o[INDEX3(i,0,2,numComp,3)] = f_000[i]*tmp0_6 + f_001[i]*tmp0_7 + f_010[i]*tmp0_12 + f_011[i]*tmp0_11 + f_100[i]*tmp0_13 + f_101[i]*tmp0_8 + f_110[i]*tmp0_10 + f_111[i]*tmp0_9;
354 o[INDEX3(i,1,2,numComp,3)] = f_000[i]*tmp0_20 + f_010[i]*tmp0_25 + f_101[i]*tmp0_22 + f_111[i]*tmp0_23 + tmp0_21*(f_001[i] + f_100[i]) + tmp0_24*(f_011[i] + f_110[i]);
355 o[INDEX3(i,2,2,numComp,3)] = f_000[i]*tmp0_46 + f_001[i]*tmp0_47 + f_010[i]*tmp0_53 + f_011[i]*tmp0_48 + f_100[i]*tmp0_52 + f_101[i]*tmp0_51 + f_110[i]*tmp0_50 + f_111[i]*tmp0_49;
356 o[INDEX3(i,0,3,numComp,3)] = f_000[i]*tmp0_6 + f_001[i]*tmp0_7 + f_010[i]*tmp0_12 + f_011[i]*tmp0_11 + f_100[i]*tmp0_13 + f_101[i]*tmp0_8 + f_110[i]*tmp0_10 + f_111[i]*tmp0_9;
357 o[INDEX3(i,1,3,numComp,3)] = f_000[i]*tmp0_26 + f_001[i]*tmp0_27 + f_010[i]*tmp0_32 + f_011[i]*tmp0_31 + f_100[i]*tmp0_33 + f_101[i]*tmp0_28 + f_110[i]*tmp0_30 + f_111[i]*tmp0_29;
358 o[INDEX3(i,2,3,numComp,3)] = f_000[i]*tmp0_54 + f_001[i]*tmp0_55 + f_110[i]*tmp0_58 + f_111[i]*tmp0_57 + tmp0_56*(f_011[i] + f_101[i]) + tmp0_59*(f_010[i] + f_100[i]);
359 o[INDEX3(i,0,4,numComp,3)] = f_000[i]*tmp0_6 + f_001[i]*tmp0_12 + f_010[i]*tmp0_7 + f_011[i]*tmp0_11 + f_100[i]*tmp0_13 + f_101[i]*tmp0_10 + f_110[i]*tmp0_8 + f_111[i]*tmp0_9;
360 o[INDEX3(i,1,4,numComp,3)] = f_000[i]*tmp0_26 + f_001[i]*tmp0_33 + f_010[i]*tmp0_32 + f_011[i]*tmp0_30 + f_100[i]*tmp0_27 + f_101[i]*tmp0_28 + f_110[i]*tmp0_31 + f_111[i]*tmp0_29;
361 o[INDEX3(i,2,4,numComp,3)] = f_000[i]*tmp0_40 + f_001[i]*tmp0_41 + f_110[i]*tmp0_44 + f_111[i]*tmp0_43 + tmp0_42*(f_011[i] + f_101[i]) + tmp0_45*(f_010[i] + f_100[i]);
362 o[INDEX3(i,0,5,numComp,3)] = f_000[i]*tmp0_6 + f_001[i]*tmp0_12 + f_010[i]*tmp0_7 + f_011[i]*tmp0_11 + f_100[i]*tmp0_13 + f_101[i]*tmp0_10 + f_110[i]*tmp0_8 + f_111[i]*tmp0_9;
363 o[INDEX3(i,1,5,numComp,3)] = f_000[i]*tmp0_34 + f_010[i]*tmp0_39 + f_101[i]*tmp0_36 + f_111[i]*tmp0_37 + tmp0_35*(f_001[i] + f_100[i]) + tmp0_38*(f_011[i] + f_110[i]);
364 o[INDEX3(i,2,5,numComp,3)] = f_000[i]*tmp0_46 + f_001[i]*tmp0_47 + f_010[i]*tmp0_52 + f_011[i]*tmp0_51 + f_100[i]*tmp0_53 + f_101[i]*tmp0_48 + f_110[i]*tmp0_50 + f_111[i]*tmp0_49;
365 o[INDEX3(i,0,6,numComp,3)] = f_000[i]*tmp0_14 + f_011[i]*tmp0_18 + f_100[i]*tmp0_19 + f_111[i]*tmp0_17 + tmp0_15*(f_001[i] + f_010[i]) + tmp0_16*(f_101[i] + f_110[i]);
366 o[INDEX3(i,1,6,numComp,3)] = f_000[i]*tmp0_26 + f_001[i]*tmp0_33 + f_010[i]*tmp0_32 + f_011[i]*tmp0_30 + f_100[i]*tmp0_27 + f_101[i]*tmp0_28 + f_110[i]*tmp0_31 + f_111[i]*tmp0_29;
367 o[INDEX3(i,2,6,numComp,3)] = f_000[i]*tmp0_46 + f_001[i]*tmp0_47 + f_010[i]*tmp0_53 + f_011[i]*tmp0_48 + f_100[i]*tmp0_52 + f_101[i]*tmp0_51 + f_110[i]*tmp0_50 + f_111[i]*tmp0_49;
368 o[INDEX3(i,0,7,numComp,3)] = f_000[i]*tmp0_14 + f_011[i]*tmp0_18 + f_100[i]*tmp0_19 + f_111[i]*tmp0_17 + tmp0_15*(f_001[i] + f_010[i]) + tmp0_16*(f_101[i] + f_110[i]);
369 o[INDEX3(i,1,7,numComp,3)] = f_000[i]*tmp0_34 + f_010[i]*tmp0_39 + f_101[i]*tmp0_36 + f_111[i]*tmp0_37 + tmp0_35*(f_001[i] + f_100[i]) + tmp0_38*(f_011[i] + f_110[i]);
370 o[INDEX3(i,2,7,numComp,3)] = f_000[i]*tmp0_54 + f_001[i]*tmp0_55 + f_110[i]*tmp0_58 + f_111[i]*tmp0_57 + tmp0_56*(f_011[i] + f_101[i]) + tmp0_59*(f_010[i] + f_100[i]);
371 } /* end of component loop i */
372 } /* end of k0 loop */
373 } /* end of k1 loop */
374 } /* end of k2 loop */
375 /* GENERATOR SNIP_GRAD_ELEMENTS BOTTOM */
376 } else {
377 throw RipleyException("setToGradient() not implemented");
378 }
379 }
380
381 Paso_SystemMatrixPattern* Brick::getPattern(bool reducedRowOrder,
382 bool reducedColOrder) const
383 {
384 if (reducedRowOrder || reducedColOrder)
385 throw RipleyException("getPattern() not implemented for reduced order");
386
387 throw RipleyException("getPattern() not implemented");
388 }
389
390 void Brick::Print_Mesh_Info(const bool full) const
391 {
392 RipleyDomain::Print_Mesh_Info(full);
393 if (full) {
394 cout << " Id Coordinates" << endl;
395 cout.precision(15);
396 cout.setf(ios::scientific, ios::floatfield);
397 pair<double,double> xdx = getFirstCoordAndSpacing(0);
398 pair<double,double> ydy = getFirstCoordAndSpacing(1);
399 pair<double,double> zdz = getFirstCoordAndSpacing(2);
400 for (index_t i=0; i < getNumNodes(); i++) {
401 cout << " " << setw(5) << m_nodeId[i]
402 << " " << xdx.first+(i%m_N0)*xdx.second
403 << " " << ydy.first+(i%(m_N0*m_N1)/m_N0)*ydy.second
404 << " " << zdz.first+(i/(m_N0*m_N1))*zdz.second << endl;
405 }
406 }
407 }
408
409 IndexVector Brick::getNumNodesPerDim() const
410 {
411 IndexVector ret;
412 ret.push_back(m_N0);
413 ret.push_back(m_N1);
414 ret.push_back(m_N2);
415 return ret;
416 }
417
418 IndexVector Brick::getNumElementsPerDim() const
419 {
420 IndexVector ret;
421 ret.push_back(m_NE0);
422 ret.push_back(m_NE1);
423 ret.push_back(m_NE2);
424 return ret;
425 }
426
427 IndexVector Brick::getNumFacesPerBoundary() const
428 {
429 IndexVector ret(6, 0);
430 //left
431 if (m_offset0==0)
432 ret[0]=m_NE1*m_NE2;
433 //right
434 if (m_mpiInfo->rank%m_NX==m_NX-1)
435 ret[1]=m_NE1*m_NE2;
436 //bottom
437 if (m_offset1==0)
438 ret[2]=m_NE0*m_NE2;
439 //top
440 if (m_mpiInfo->rank%(m_NX*m_NY)/m_NX==m_NY-1)
441 ret[3]=m_NE0*m_NE2;
442 //front
443 if (m_offset2==0)
444 ret[4]=m_NE0*m_NE1;
445 //back
446 if (m_mpiInfo->rank/(m_NX*m_NY)==m_NZ-1)
447 ret[5]=m_NE0*m_NE1;
448 return ret;
449 }
450
451 pair<double,double> Brick::getFirstCoordAndSpacing(dim_t dim) const
452 {
453 if (dim==0)
454 return pair<double,double>((m_l0*m_offset0)/m_gNE0, m_l0/m_gNE0);
455 else if (dim==1)
456 return pair<double,double>((m_l1*m_offset1)/m_gNE1, m_l1/m_gNE1);
457 else if (dim==2)
458 return pair<double,double>((m_l2*m_offset2)/m_gNE2, m_l2/m_gNE2);
459
460 throw RipleyException("getFirstCoordAndSpacing(): invalid argument");
461 }
462
463
464 //protected
465 dim_t Brick::getNumFaceElements() const
466 {
467 dim_t n=0;
468 //left
469 if (m_offset0==0)
470 n+=m_NE1*m_NE2;
471 //right
472 if (m_mpiInfo->rank%m_NX==m_NX-1)
473 n+=m_NE1*m_NE2;
474 //bottom
475 if (m_offset1==0)
476 n+=m_NE0*m_NE2;
477 //top
478 if (m_mpiInfo->rank%(m_NX*m_NY)/m_NX==m_NY-1)
479 n+=m_NE0*m_NE2;
480 //front
481 if (m_offset2==0)
482 n+=m_NE0*m_NE1;
483 //back
484 if (m_mpiInfo->rank/(m_NX*m_NY)==m_NZ-1)
485 n+=m_NE0*m_NE1;
486
487 return n;
488 }
489
490 //protected
491 void Brick::assembleCoordinates(escript::Data& arg) const
492 {
493 escriptDataC x = arg.getDataC();
494 int numDim = m_numDim;
495 if (!isDataPointShapeEqual(&x, 1, &numDim))
496 throw RipleyException("setToX: Invalid Data object shape");
497 if (!numSamplesEqual(&x, 1, getNumNodes()))
498 throw RipleyException("setToX: Illegal number of samples in Data object");
499
500 pair<double,double> xdx = getFirstCoordAndSpacing(0);
501 pair<double,double> ydy = getFirstCoordAndSpacing(1);
502 pair<double,double> zdz = getFirstCoordAndSpacing(2);
503 arg.requireWrite();
504 #pragma omp parallel for
505 for (dim_t i2 = 0; i2 < m_N2; i2++) {
506 for (dim_t i1 = 0; i1 < m_N1; i1++) {
507 for (dim_t i0 = 0; i0 < m_N0; i0++) {
508 double* point = arg.getSampleDataRW(i0+m_N0*i1+m_N0*m_N1*i2);
509 point[0] = xdx.first+i0*xdx.second;
510 point[1] = ydy.first+i1*ydy.second;
511 point[2] = zdz.first+i2*zdz.second;
512 }
513 }
514 }
515 }
516
517 //private
518 void Brick::populateSampleIds()
519 {
520 // identifiers are ordered from left to right, bottom to top, front to back
521 // on each rank, except for the shared nodes which are owned by the rank
522 // below / to the left / to the front of the current rank
523
524 // build node distribution vector first.
525 // m_nodeDistribution[i] is the first node id on rank i, that is
526 // rank i owns m_nodeDistribution[i+1]-nodeDistribution[i] nodes
527 m_nodeDistribution.assign(m_mpiInfo->size+1, 0);
528 m_nodeDistribution[1]=getNumNodes();
529 for (dim_t k=1; k<m_mpiInfo->size-1; k++) {
530 const index_t x = k%m_NX;
531 const index_t y = k%(m_NX*m_NY)/m_NX;
532 const index_t z = k/(m_NX*m_NY);
533 index_t numNodes=getNumNodes();
534 if (x>0)
535 numNodes-=m_N1*m_N2;
536 if (y>0)
537 numNodes-=m_N0*m_N2;
538 if (z>0)
539 numNodes-=m_N0*m_N1;
540 // if an edge was subtracted twice add it back
541 if (x>0 && y>0)
542 numNodes+=m_N2;
543 if (x>0 && z>0)
544 numNodes+=m_N1;
545 if (y>0 && z>0)
546 numNodes+=m_N0;
547 // the corner node was removed 3x and added back 3x, so subtract it
548 if (x>0 && y>0 && z>0)
549 numNodes--;
550 m_nodeDistribution[k+1]=m_nodeDistribution[k]+numNodes;
551 }
552 m_nodeDistribution[m_mpiInfo->size]=getNumDataPointsGlobal();
553
554 m_nodeId.resize(getNumNodes());
555
556 // the bottom, left and front planes are not owned by this rank so the
557 // identifiers need to be computed accordingly
558 const index_t left = (m_offset0==0 ? 0 : 1);
559 const index_t bottom = (m_offset1==0 ? 0 : 1);
560 const index_t front = (m_offset2==0 ? 0 : 1);
561
562 // case 1: all nodes on left plane are owned by rank on the left
563 if (left>0) {
564 const int neighbour=m_mpiInfo->rank-1;
565 const index_t leftN0=(neighbour%m_NX == 0 ? m_N0 : m_N0-1);
566 const index_t leftN1=(neighbour%(m_NX*m_NY)/m_NX==0 ? m_N1 : m_N1-1);
567 #pragma omp parallel for
568 for (dim_t i2=front; i2<m_N2; i2++) {
569 for (dim_t i1=bottom; i1<m_N1; i1++) {
570 m_nodeId[i1*m_N0+i2*m_N0*m_N1]=m_nodeDistribution[neighbour]
571 + (i1-bottom+1)*leftN0
572 + (i2-front)*leftN0*leftN1 - 1;
573 }
574 }
575 }
576 // case 2: all nodes on bottom plane are owned by rank below
577 if (bottom>0) {
578 const int neighbour=m_mpiInfo->rank-m_NX;
579 const index_t bottomN0=(neighbour%m_NX == 0 ? m_N0 : m_N0-1);
580 const index_t bottomN1=(neighbour%(m_NX*m_NY)/m_NX==0 ? m_N1 : m_N1-1);
581 #pragma omp parallel for
582 for (dim_t i2=front; i2<m_N2; i2++) {
583 for (dim_t i0=left; i0<m_N0; i0++) {
584 m_nodeId[i0+i2*m_N0*m_N1]=m_nodeDistribution[neighbour]
585 + bottomN0*(bottomN1-1)
586 + (i2-front)*bottomN0*bottomN1 + i0-left;
587 }
588 }
589 }
590 // case 3: all nodes on front plane are owned by rank in front
591 if (front>0) {
592 const int neighbour=m_mpiInfo->rank-m_NX*m_NY;
593 const index_t N0=(neighbour%m_NX == 0 ? m_N0 : m_N0-1);
594 const index_t N1=(neighbour%(m_NX*m_NY)/m_NX==0 ? m_N1 : m_N1-1);
595 const index_t N2=(neighbour/(m_NX*m_NY)==0 ? m_N2 : m_N2-1);
596 #pragma omp parallel for
597 for (dim_t i1=bottom; i1<m_N1; i1++) {
598 for (dim_t i0=left; i0<m_N0; i0++) {
599 m_nodeId[i0+i1*m_N0]=m_nodeDistribution[neighbour]
600 + N0*N1*(N2-1)+(i1-bottom)*N0 + i0-left;
601 }
602 }
603 }
604 // case 4: nodes on front bottom edge are owned by the corresponding rank
605 if (front>0 && bottom>0) {
606 const int neighbour=m_mpiInfo->rank-m_NX*(m_NY+1);
607 const index_t N0=(neighbour%m_NX == 0 ? m_N0 : m_N0-1);
608 const index_t N1=(neighbour%(m_NX*m_NY)/m_NX==0 ? m_N1 : m_N1-1);
609 const index_t N2=(neighbour/(m_NX*m_NY)==0 ? m_N2 : m_N2-1);
610 #pragma omp parallel for
611 for (dim_t i0=left; i0<m_N0; i0++) {
612 m_nodeId[i0]=m_nodeDistribution[neighbour]
613 + N0*N1*(N2-1)+(N1-1)*N0 + i0-left;
614 }
615 }
616 // case 5: nodes on left bottom edge are owned by the corresponding rank
617 if (left>0 && bottom>0) {
618 const int neighbour=m_mpiInfo->rank-m_NX-1;
619 const index_t N0=(neighbour%m_NX == 0 ? m_N0 : m_N0-1);
620 const index_t N1=(neighbour%(m_NX*m_NY)/m_NX==0 ? m_N1 : m_N1-1);
621 #pragma omp parallel for
622 for (dim_t i2=front; i2<m_N2; i2++) {
623 m_nodeId[i2*m_N0*m_N1]=m_nodeDistribution[neighbour]
624 + (1+i2-front)*N0*N1-1;
625 }
626 }
627 // case 6: nodes on left front edge are owned by the corresponding rank
628 if (left>0 && front>0) {
629 const int neighbour=m_mpiInfo->rank-m_NX*m_NY-1;
630 const index_t N0=(neighbour%m_NX == 0 ? m_N0 : m_N0-1);
631 const index_t N1=(neighbour%(m_NX*m_NY)/m_NX==0 ? m_N1 : m_N1-1);
632 const index_t N2=(neighbour/(m_NX*m_NY)==0 ? m_N2 : m_N2-1);
633 #pragma omp parallel for
634 for (dim_t i1=bottom; i1<m_N1; i1++) {
635 m_nodeId[i1*m_N0]=m_nodeDistribution[neighbour]
636 + N0*N1*(N2-1)+N0-1+(i1-bottom)*N0;
637 }
638 }
639 // case 7: bottom-left-front corner node owned by corresponding rank
640 if (left>0 && bottom>0 && front>0) {
641 const int neighbour=m_mpiInfo->rank-m_NX*(m_NY+1)-1;
642 const index_t N0=(neighbour%m_NX == 0 ? m_N0 : m_N0-1);
643 const index_t N1=(neighbour%(m_NX*m_NY)/m_NX==0 ? m_N1 : m_N1-1);
644 const index_t N2=(neighbour/(m_NX*m_NY) == 0 ? m_N2 : m_N2-1);
645 m_nodeId[0]=m_nodeDistribution[neighbour]+N0*N1*N2-1;
646 }
647
648 // the rest of the id's are contiguous
649 const index_t firstId=m_nodeDistribution[m_mpiInfo->rank];
650 #pragma omp parallel for
651 for (dim_t i2=front; i2<m_N2; i2++) {
652 for (dim_t i1=bottom; i1<m_N1; i1++) {
653 for (dim_t i0=left; i0<m_N0; i0++) {
654 m_nodeId[i0+i1*m_N0+i2*m_N0*m_N1] = firstId+i0-left
655 +(i1-bottom)*(m_N0-left)
656 +(i2-front)*(m_N0-left)*(m_N1-bottom);
657 }
658 }
659 }
660
661 // elements
662 m_elementId.resize(getNumElements());
663 #pragma omp parallel for
664 for (dim_t k=0; k<getNumElements(); k++) {
665 m_elementId[k]=k;
666 }
667
668 // face elements
669 m_faceId.resize(getNumFaceElements());
670 #pragma omp parallel for
671 for (dim_t k=0; k<getNumFaceElements(); k++) {
672 m_faceId[k]=k;
673 }
674
675 // generate face offset vector
676 const IndexVector facesPerEdge = getNumFacesPerBoundary();
677 m_faceOffset.assign(facesPerEdge.size(), -1);
678 index_t offset=0;
679 for (size_t i=0; i<facesPerEdge.size(); i++) {
680 if (facesPerEdge[i]>0) {
681 m_faceOffset[i]=offset;
682 offset+=facesPerEdge[i];
683 }
684 }
685 }
686
687 //protected
688 void Brick::interpolateNodesOnElements(escript::Data& out, escript::Data& in) const
689 {
690 const dim_t numComp = in.getDataPointSize();
691 /* GENERATOR SNIP_INTERPOLATE_ELEMENTS TOP */
692 const double tmp0_3 = 0.0094373878376559314545;
693 const double tmp0_2 = 0.035220810900864519624;
694 const double tmp0_1 = 0.13144585576580214704;
695 const double tmp0_0 = 0.49056261216234406855;
696 #pragma omp parallel for
697 for (index_t k2=0; k2 < m_NE2; ++k2) {
698 for (index_t k1=0; k1 < m_NE1; ++k1) {
699 for (index_t k0=0; k0 < m_NE0; ++k0) {
700 const register double* f_000 = in.getSampleDataRO(INDEX3(k0,k1,k2, m_N0,m_N1));
701 const register double* f_001 = in.getSampleDataRO(INDEX3(k0,k1,k2+1, m_N0,m_N1));
702 const register double* f_101 = in.getSampleDataRO(INDEX3(k0+1,k1,k2+1, m_N0,m_N1));
703 const register double* f_011 = in.getSampleDataRO(INDEX3(k0,k1+1,k2+1, m_N0,m_N1));
704 const register double* f_110 = in.getSampleDataRO(INDEX3(k0+1,k1+1,k2, m_N0,m_N1));
705 const register double* f_010 = in.getSampleDataRO(INDEX3(k0,k1+1,k2, m_N0,m_N1));
706 const register double* f_100 = in.getSampleDataRO(INDEX3(k0+1,k1,k2, m_N0,m_N1));
707 const register double* f_111 = in.getSampleDataRO(INDEX3(k0+1,k1+1,k2+1, m_N0,m_N1));
708 double* o = out.getSampleDataRW(INDEX3(k0,k1,k2,m_NE0,m_NE1));
709 for (index_t i=0; i < numComp; ++i) {
710 o[INDEX2(i,numComp,0)] = f_000[i]*tmp0_0 + f_111[i]*tmp0_3 + tmp0_1*(f_001[i] + f_010[i] + f_100[i]) + tmp0_2*(f_011[i] + f_101[i] + f_110[i]);
711 o[INDEX2(i,numComp,1)] = f_011[i]*tmp0_3 + f_100[i]*tmp0_0 + tmp0_1*(f_000[i] + f_101[i] + f_110[i]) + tmp0_2*(f_001[i] + f_010[i] + f_111[i]);
712 o[INDEX2(i,numComp,2)] = f_010[i]*tmp0_0 + f_101[i]*tmp0_3 + tmp0_1*(f_000[i] + f_011[i] + f_110[i]) + tmp0_2*(f_001[i] + f_100[i] + f_111[i]);
713 o[INDEX2(i,numComp,3)] = f_001[i]*tmp0_3 + f_110[i]*tmp0_0 + tmp0_1*(f_010[i] + f_100[i] + f_111[i]) + tmp0_2*(f_000[i] + f_011[i] + f_101[i]);
714 o[INDEX2(i,numComp,4)] = f_001[i]*tmp0_0 + f_110[i]*tmp0_3 + tmp0_1*(f_000[i] + f_011[i] + f_101[i]) + tmp0_2*(f_010[i] + f_100[i] + f_111[i]);
715 o[INDEX2(i,numComp,5)] = f_010[i]*tmp0_3 + f_101[i]*tmp0_0 + tmp0_1*(f_001[i] + f_100[i] + f_111[i]) + tmp0_2*(f_000[i] + f_011[i] + f_110[i]);
716 o[INDEX2(i,numComp,6)] = f_011[i]*tmp0_0 + f_100[i]*tmp0_3 + tmp0_1*(f_001[i] + f_010[i] + f_111[i]) + tmp0_2*(f_000[i] + f_101[i] + f_110[i]);
717 o[INDEX2(i,numComp,7)] = f_000[i]*tmp0_3 + f_111[i]*tmp0_0 + tmp0_1*(f_011[i] + f_101[i] + f_110[i]) + tmp0_2*(f_001[i] + f_010[i] + f_100[i]);
718 } /* end of component loop i */
719 } /* end of k0 loop */
720 } /* end of k1 loop */
721 } /* end of k2 loop */
722 /* GENERATOR SNIP_INTERPOLATE_ELEMENTS BOTTOM */
723 }
724
725 //protected
726 void Brick::interpolateNodesOnFaces(escript::Data& out, escript::Data& in) const
727 {
728 const dim_t numComp = in.getDataPointSize();
729 /* GENERATOR SNIP_INTERPOLATE_FACES TOP */
730 if (m_faceOffset[0] > -1) {
731 const index_t k0 = 0;
732 const double tmp0_2 = 0.044658198738520451079;
733 const double tmp0_1 = 0.16666666666666666667;
734 const double tmp0_0 = 0.62200846792814621559;
735 #pragma omp parallel for
736 for (index_t k2=0; k2 < m_NE2; ++k2) {
737 for (index_t k1=0; k1 < m_NE1; ++k1) {
738 const register double* f_000 = in.getSampleDataRO(INDEX3(0,k1,k2, m_N0,m_N1));
739 const register double* f_001 = in.getSampleDataRO(INDEX3(0,k1,k2+1, m_N0,m_N1));
740 const register double* f_011 = in.getSampleDataRO(INDEX3(0,k1+1,k2+1, m_N0,m_N1));
741 const register double* f_010 = in.getSampleDataRO(INDEX3(0,k1+1,k2, m_N0,m_N1));
742 double* o = out.getSampleDataRW(m_faceOffset[0]+INDEX3(k0,k1,k2,m_NE0,m_NE1));
743 for (index_t i=0; i < numComp; ++i) {
744 o[INDEX2(i,numComp,0)] = f_000[i]*tmp0_0 + f_011[i]*tmp0_2 + tmp0_1*(f_001[i] + f_010[i]);
745 o[INDEX2(i,numComp,1)] = f_001[i]*tmp0_2 + f_010[i]*tmp0_0 + tmp0_1*(f_000[i] + f_011[i]);
746 o[INDEX2(i,numComp,2)] = f_001[i]*tmp0_0 + f_010[i]*tmp0_2 + tmp0_1*(f_000[i] + f_011[i]);
747 o[INDEX2(i,numComp,3)] = f_000[i]*tmp0_2 + f_011[i]*tmp0_0 + tmp0_1*(f_001[i] + f_010[i]);
748 } /* end of component loop i */
749 } /* end of k1 loop */
750 } /* end of k2 loop */
751 } /* end of face 0 */
752 if (m_faceOffset[1] > -1) {
753 const index_t k0 = 0;
754 const double tmp0_2 = 0.044658198738520451079;
755 const double tmp0_1 = 0.62200846792814621559;
756 const double tmp0_0 = 0.16666666666666666667;
757 #pragma omp parallel for
758 for (index_t k2=0; k2 < m_NE2; ++k2) {
759 for (index_t k1=0; k1 < m_NE1; ++k1) {
760 const register double* f_101 = in.getSampleDataRO(INDEX3(m_N0-1,k1,k2+1, m_N0,m_N1));
761 const register double* f_100 = in.getSampleDataRO(INDEX3(m_N0-1,k1,k2, m_N0,m_N1));
762 const register double* f_110 = in.getSampleDataRO(INDEX3(m_N0-1,k1+1,k2, m_N0,m_N1));
763 const register double* f_111 = in.getSampleDataRO(INDEX3(m_N0-1,k1+1,k2+1, m_N0,m_N1));
764 double* o = out.getSampleDataRW(m_faceOffset[1]+INDEX3(k0,k1,k2,m_NE0,m_NE1));
765 for (index_t i=0; i < numComp; ++i) {
766 o[INDEX2(i,numComp,0)] = f_100[i]*tmp0_1 + f_111[i]*tmp0_2 + tmp0_0*(f_101[i] + f_110[i]);
767 o[INDEX2(i,numComp,1)] = f_101[i]*tmp0_2 + f_110[i]*tmp0_1 + tmp0_0*(f_100[i] + f_111[i]);
768 o[INDEX2(i,numComp,2)] = f_101[i]*tmp0_1 + f_110[i]*tmp0_2 + tmp0_0*(f_100[i] + f_111[i]);
769 o[INDEX2(i,numComp,3)] = f_100[i]*tmp0_2 + f_111[i]*tmp0_1 + tmp0_0*(f_101[i] + f_110[i]);
770 } /* end of component loop i */
771 } /* end of k1 loop */
772 } /* end of k2 loop */
773 } /* end of face 1 */
774 if (m_faceOffset[2] > -1) {
775 const index_t k1 = 0;
776 const double tmp0_2 = 0.044658198738520451079;
777 const double tmp0_1 = 0.16666666666666666667;
778 const double tmp0_0 = 0.62200846792814621559;
779 #pragma omp parallel for
780 for (index_t k2=0; k2 < m_NE2; ++k2) {
781 for (index_t k0=0; k0 < m_NE0; ++k0) {
782 const register double* f_000 = in.getSampleDataRO(INDEX3(k0,0,k2, m_N0,m_N1));
783 const register double* f_001 = in.getSampleDataRO(INDEX3(k0,0,k2+1, m_N0,m_N1));
784 const register double* f_101 = in.getSampleDataRO(INDEX3(k0+1,0,k2+1, m_N0,m_N1));
785 const register double* f_100 = in.getSampleDataRO(INDEX3(k0+1,0,k2, m_N0,m_N1));
786 double* o = out.getSampleDataRW(m_faceOffset[2]+INDEX3(k0,k1,k2,m_NE0,m_NE1));
787 for (index_t i=0; i < numComp; ++i) {
788 o[INDEX2(i,numComp,0)] = f_000[i]*tmp0_0 + f_101[i]*tmp0_2 + tmp0_1*(f_001[i] + f_100[i]);
789 o[INDEX2(i,numComp,1)] = f_001[i]*tmp0_2 + f_100[i]*tmp0_0 + tmp0_1*(f_000[i] + f_101[i]);
790 o[INDEX2(i,numComp,2)] = f_001[i]*tmp0_0 + f_100[i]*tmp0_2 + tmp0_1*(f_000[i] + f_101[i]);
791 o[INDEX2(i,numComp,3)] = f_000[i]*tmp0_2 + f_101[i]*tmp0_0 + tmp0_1*(f_001[i] + f_100[i]);
792 } /* end of component loop i */
793 } /* end of k0 loop */
794 } /* end of k2 loop */
795 } /* end of face 2 */
796 if (m_faceOffset[3] > -1) {
797 const index_t k1 = 0;
798 const double tmp0_2 = 0.044658198738520451079;
799 const double tmp0_1 = 0.62200846792814621559;
800 const double tmp0_0 = 0.16666666666666666667;
801 #pragma omp parallel for
802 for (index_t k2=0; k2 < m_NE2; ++k2) {
803 for (index_t k0=0; k0 < m_NE0; ++k0) {
804 const register double* f_110 = in.getSampleDataRO(INDEX3(k0+1,m_N1-1,k2, m_N0,m_N1));
805 const register double* f_011 = in.getSampleDataRO(INDEX3(k0,m_N1-1,k2+1, m_N0,m_N1));
806 const register double* f_010 = in.getSampleDataRO(INDEX3(k0,m_N1-1,k2, m_N0,m_N1));
807 const register double* f_111 = in.getSampleDataRO(INDEX3(k0+1,m_N1-1,k2+1, m_N0,m_N1));
808 double* o = out.getSampleDataRW(m_faceOffset[3]+INDEX3(k0,k1,k2,m_NE0,m_NE1));
809 for (index_t i=0; i < numComp; ++i) {
810 o[INDEX2(i,numComp,0)] = f_010[i]*tmp0_1 + f_111[i]*tmp0_2 + tmp0_0*(f_011[i] + f_110[i]);
811 o[INDEX2(i,numComp,1)] = f_011[i]*tmp0_2 + f_110[i]*tmp0_1 + tmp0_0*(f_010[i] + f_111[i]);
812 o[INDEX2(i,numComp,2)] = f_011[i]*tmp0_1 + f_110[i]*tmp0_2 + tmp0_0*(f_010[i] + f_111[i]);
813 o[INDEX2(i,numComp,3)] = f_010[i]*tmp0_2 + f_111[i]*tmp0_1 + tmp0_0*(f_011[i] + f_110[i]);
814 } /* end of component loop i */
815 } /* end of k0 loop */
816 } /* end of k2 loop */
817 } /* end of face 3 */
818 if (m_faceOffset[4] > -1) {
819 const index_t k2 = 0;
820 const double tmp0_2 = 0.044658198738520451079;
821 const double tmp0_1 = 0.16666666666666666667;
822 const double tmp0_0 = 0.62200846792814621559;
823 #pragma omp parallel for
824 for (index_t k1=0; k1 < m_NE1; ++k1) {
825 for (index_t k0=0; k0 < m_NE0; ++k0) {
826 const register double* f_000 = in.getSampleDataRO(INDEX3(k0,k1,0, m_N0,m_N1));
827 const register double* f_100 = in.getSampleDataRO(INDEX3(k0+1,k1,0, m_N0,m_N1));
828 const register double* f_110 = in.getSampleDataRO(INDEX3(k0+1,k1+1,0, m_N0,m_N1));
829 const register double* f_010 = in.getSampleDataRO(INDEX3(k0,k1+1,0, m_N0,m_N1));
830 double* o = out.getSampleDataRW(m_faceOffset[4]+INDEX3(k0,k1,k2,m_NE0,m_NE1));
831 for (index_t i=0; i < numComp; ++i) {
832 o[INDEX2(i,numComp,0)] = f_000[i]*tmp0_0 + f_110[i]*tmp0_2 + tmp0_1*(f_010[i] + f_100[i]);
833 o[INDEX2(i,numComp,1)] = f_010[i]*tmp0_2 + f_100[i]*tmp0_0 + tmp0_1*(f_000[i] + f_110[i]);
834 o[INDEX2(i,numComp,2)] = f_010[i]*tmp0_0 + f_100[i]*tmp0_2 + tmp0_1*(f_000[i] + f_110[i]);
835 o[INDEX2(i,numComp,3)] = f_000[i]*tmp0_2 + f_110[i]*tmp0_0 + tmp0_1*(f_010[i] + f_100[i]);
836 } /* end of component loop i */
837 } /* end of k0 loop */
838 } /* end of k1 loop */
839 } /* end of face 4 */
840 if (m_faceOffset[5] > -1) {
841 const index_t k2 = 0;
842 const double tmp0_2 = 0.044658198738520451079;
843 const double tmp0_1 = 0.16666666666666666667;
844 const double tmp0_0 = 0.62200846792814621559;
845 #pragma omp parallel for
846 for (index_t k1=0; k1 < m_NE1; ++k1) {
847 for (index_t k0=0; k0 < m_NE0; ++k0) {
848 const register double* f_001 = in.getSampleDataRO(INDEX3(k0,k1,m_N2-1, m_N0,m_N1));
849 const register double* f_101 = in.getSampleDataRO(INDEX3(k0+1,k1,m_N2-1, m_N0,m_N1));
850 const register double* f_011 = in.getSampleDataRO(INDEX3(k0,k1+1,m_N2-1, m_N0,m_N1));
851 const register double* f_111 = in.getSampleDataRO(INDEX3(k0+1,k1+1,m_N2-1, m_N0,m_N1));
852 double* o = out.getSampleDataRW(m_faceOffset[5]+INDEX3(k0,k1,k2,m_NE0,m_NE1));
853 for (index_t i=0; i < numComp; ++i) {
854 o[INDEX2(i,numComp,0)] = f_001[i]*tmp0_0 + f_111[i]*tmp0_2 + tmp0_1*(f_011[i] + f_101[i]);
855 o[INDEX2(i,numComp,1)] = f_011[i]*tmp0_2 + f_101[i]*tmp0_0 + tmp0_1*(f_001[i] + f_111[i]);
856 o[INDEX2(i,numComp,2)] = f_011[i]*tmp0_0 + f_101[i]*tmp0_2 + tmp0_1*(f_001[i] + f_111[i]);
857 o[INDEX2(i,numComp,3)] = f_001[i]*tmp0_2 + f_111[i]*tmp0_0 + tmp0_1*(f_011[i] + f_101[i]);
858 } /* end of component loop i */
859 } /* end of k0 loop */
860 } /* end of k1 loop */
861 } /* end of face 5 */
862 /* GENERATOR SNIP_INTERPOLATE_FACES BOTTOM */
863 }
864
865 } // end of namespace ripley
866

  ViewVC Help
Powered by ViewVC 1.1.26