1 |
// $Id$ |
|
2 |
/* |
/* $Id$ */ |
3 |
************************************************************ |
|
4 |
* Copyright 2006 by ACcESS MNRF * |
/******************************************************* |
5 |
* * |
* |
6 |
* http://www.access.edu.au * |
* Copyright 2003-2007 by ACceSS MNRF |
7 |
* Primary Business: Queensland, Australia * |
* Copyright 2007 by University of Queensland |
8 |
* Licensed under the Open Software License version 3.0 * |
* |
9 |
* http://www.opensource.org/licenses/osl-3.0.php * |
* http://esscc.uq.edu.au |
10 |
* * |
* Primary Business: Queensland, Australia |
11 |
************************************************************ |
* Licensed under the Open Software License version 3.0 |
12 |
*/ |
* http://www.opensource.org/licenses/osl-3.0.php |
13 |
|
* |
14 |
|
*******************************************************/ |
15 |
|
|
16 |
/** \file Data.h */ |
/** \file Data.h */ |
17 |
|
|
28 |
|
|
29 |
extern "C" { |
extern "C" { |
30 |
#include "DataC.h" |
#include "DataC.h" |
31 |
#include "paso/Paso.h" |
/* #include "paso/Paso.h" doesn't belong in this file...causes trouble for BruceFactory.cpp */ |
32 |
} |
} |
33 |
|
|
34 |
#ifndef PASO_MPI |
#include "esysmpi.h" |
|
#define MPI_Comm long |
|
|
#endif |
|
|
|
|
35 |
#include <string> |
#include <string> |
36 |
#include <algorithm> |
#include <algorithm> |
37 |
|
|
50 |
|
|
51 |
/** |
/** |
52 |
\brief |
\brief |
53 |
Data creates the appropriate Data object for the given construction |
Data creates the appropriate Data object for the given construction |
54 |
arguments. |
arguments. |
55 |
|
|
56 |
Description: |
Description: |
57 |
Data is essentially a factory class which creates the appropriate Data |
Data is essentially a factory class which creates the appropriate Data |
213 |
Constructor which creates a DataConstant of "shape" with constant value. |
Constructor which creates a DataConstant of "shape" with constant value. |
214 |
*/ |
*/ |
215 |
ESCRIPT_DLL_API |
ESCRIPT_DLL_API |
216 |
Data(double value, |
Data(double value, |
217 |
const boost::python::tuple& shape=boost::python::make_tuple(), |
const boost::python::tuple& shape=boost::python::make_tuple(), |
218 |
const FunctionSpace& what=FunctionSpace(), |
const FunctionSpace& what=FunctionSpace(), |
219 |
bool expanded=false); |
bool expanded=false); |
220 |
/** |
/** |
238 |
|
|
239 |
/** |
/** |
240 |
\brief |
\brief |
241 |
switches on update protection |
switches on update protection |
242 |
|
|
243 |
*/ |
*/ |
244 |
ESCRIPT_DLL_API |
ESCRIPT_DLL_API |
256 |
|
|
257 |
/** |
/** |
258 |
\brief |
\brief |
259 |
Return the values of a data point on this process |
Return the values of a data point on this process |
260 |
*/ |
*/ |
261 |
ESCRIPT_DLL_API |
ESCRIPT_DLL_API |
262 |
const boost::python::numeric::array |
const boost::python::numeric::array |
486 |
} |
} |
487 |
/** |
/** |
488 |
\brief |
\brief |
489 |
dumps the object into a netCDF file |
dumps the object into a netCDF file |
490 |
*/ |
*/ |
491 |
ESCRIPT_DLL_API |
ESCRIPT_DLL_API |
|
inline |
|
492 |
void |
void |
493 |
dump(const std::string fileName) const |
dump(const std::string fileName) const; |
|
{ |
|
|
return m_data->dump(fileName); |
|
|
} |
|
|
|
|
494 |
/** |
/** |
495 |
\brief |
\brief |
496 |
Return the sample data for the given sample no. This is not the |
Return the sample data for the given sample no. This is not the |
533 |
getDataPoint(int sampleNo, |
getDataPoint(int sampleNo, |
534 |
int dataPointNo) |
int dataPointNo) |
535 |
{ |
{ |
536 |
return m_data->getDataPoint(sampleNo,dataPointNo); |
return m_data->getDataPoint(sampleNo,dataPointNo); |
537 |
} |
} |
538 |
|
|
539 |
/** |
/** |
628 |
|
|
629 |
/** |
/** |
630 |
\brief |
\brief |
631 |
|
set all values to zero |
632 |
|
* |
633 |
|
*/ |
634 |
|
ESCRIPT_DLL_API |
635 |
|
void |
636 |
|
setToZero(); |
637 |
|
|
638 |
|
/** |
639 |
|
\brief |
640 |
Interpolates this onto the given functionspace and returns |
Interpolates this onto the given functionspace and returns |
641 |
the result as a Data object. |
the result as a Data object. |
642 |
* |
* |
644 |
ESCRIPT_DLL_API |
ESCRIPT_DLL_API |
645 |
Data |
Data |
646 |
interpolate(const FunctionSpace& functionspace) const; |
interpolate(const FunctionSpace& functionspace) const; |
|
|
|
647 |
/** |
/** |
648 |
\brief |
\brief |
649 |
Calculates the gradient of the data at the data points of functionspace. |
Calculates the gradient of the data at the data points of functionspace. |
740 |
|
|
741 |
/** |
/** |
742 |
\brief |
\brief |
|
Return the minimum absolute value of this Data object. |
|
|
* |
|
|
*/ |
|
|
ESCRIPT_DLL_API |
|
|
double |
|
|
Linf() const; |
|
|
|
|
|
/** |
|
|
\brief |
|
743 |
Return the maximum value of this Data object. |
Return the maximum value of this Data object. |
744 |
* |
* |
745 |
*/ |
*/ |
854 |
/** |
/** |
855 |
\brief |
\brief |
856 |
Return the eigenvalues and corresponding eigenvcetors of the symmetric part at each data point of this Data object. |
Return the eigenvalues and corresponding eigenvcetors of the symmetric part at each data point of this Data object. |
857 |
the eigenvalues are ordered in increasing size where eigenvalues with relative difference less than |
the eigenvalues are ordered in increasing size where eigenvalues with relative difference less than |
858 |
tol are treated as equal. The eigenvectors are orthogonal, normalized and the sclaed such that the |
tol are treated as equal. The eigenvectors are orthogonal, normalized and the sclaed such that the |
859 |
first non-zero entry is positive. |
first non-zero entry is positive. |
860 |
Currently this function is restricted to rank 2, square shape, and dimension 3 |
Currently this function is restricted to rank 2, square shape, and dimension 3 |
861 |
* |
* |
1059 |
/** |
/** |
1060 |
\brief |
\brief |
1061 |
Return the given power of each data point of this boost python object. |
Return the given power of each data point of this boost python object. |
1062 |
|
|
1063 |
\param right Input - the power to raise the object to. |
\param right Input - the power to raise the object to. |
1064 |
* |
* |
1065 |
*/ |
*/ |
1070 |
/** |
/** |
1071 |
\brief |
\brief |
1072 |
Return the given power of each data point of this boost python object. |
Return the given power of each data point of this boost python object. |
1073 |
|
|
1074 |
\param left Input - the bases |
\param left Input - the bases |
1075 |
* |
* |
1076 |
*/ |
*/ |
1106 |
ESCRIPT_DLL_API |
ESCRIPT_DLL_API |
1107 |
Data& operator+=(const boost::python::object& right); |
Data& operator+=(const boost::python::object& right); |
1108 |
|
|
1109 |
|
ESCRIPT_DLL_API |
1110 |
|
Data& operator=(const Data& other); |
1111 |
|
|
1112 |
/** |
/** |
1113 |
\brief |
\brief |
1114 |
Overloaded operator -= |
Overloaded operator -= |
1252 |
|
|
1253 |
/** |
/** |
1254 |
\brief |
\brief |
1255 |
print the data values to stdout. Used for debugging |
print the data values to stdout. Used for debugging |
1256 |
*/ |
*/ |
1257 |
ESCRIPT_DLL_API |
ESCRIPT_DLL_API |
1258 |
void |
void |
1259 |
print(void); |
print(void); |
1260 |
|
|
1261 |
/** |
/** |
1262 |
\brief |
\brief |
1263 |
return the MPI rank number of the local data |
return the MPI rank number of the local data |
1264 |
MPI_COMM_WORLD is assumed and the result of MPI_Comm_size() |
MPI_COMM_WORLD is assumed and the result of MPI_Comm_size() |
1265 |
is returned |
is returned |
1266 |
*/ |
*/ |
1267 |
ESCRIPT_DLL_API |
ESCRIPT_DLL_API |
1268 |
int |
int |
1269 |
get_MPIRank(void) const; |
get_MPIRank(void) const; |
1270 |
|
|
1271 |
/** |
/** |
1272 |
\brief |
\brief |
1273 |
return the MPI rank number of the local data |
return the MPI rank number of the local data |
1274 |
MPI_COMM_WORLD is assumed and the result of MPI_Comm_rank() |
MPI_COMM_WORLD is assumed and the result of MPI_Comm_rank() |
1275 |
is returned |
is returned |
1276 |
*/ |
*/ |
1277 |
ESCRIPT_DLL_API |
ESCRIPT_DLL_API |
1278 |
int |
int |
1279 |
get_MPISize(void) const; |
get_MPISize(void) const; |
1280 |
|
|
1281 |
/** |
/** |
1282 |
\brief |
\brief |
1283 |
return the MPI rank number of the local data |
return the MPI rank number of the local data |
1284 |
MPI_COMM_WORLD is assumed and returned. |
MPI_COMM_WORLD is assumed and returned. |
1285 |
*/ |
*/ |
1286 |
ESCRIPT_DLL_API |
ESCRIPT_DLL_API |
1287 |
MPI_Comm |
MPI_Comm |
1288 |
get_MPIComm(void) const; |
get_MPIComm(void) const; |
1289 |
|
|
1290 |
/** |
/** |
1291 |
\brief |
\brief |
1292 |
return the object produced by the factory, which is a DataConstant or DataExpanded |
return the object produced by the factory, which is a DataConstant or DataExpanded |
1293 |
*/ |
*/ |
1294 |
ESCRIPT_DLL_API |
ESCRIPT_DLL_API |
1295 |
DataAbstract* |
DataAbstract* |
1296 |
borrowData(void) const; |
borrowData(void) const; |
1297 |
|
|
1298 |
protected: |
protected: |
1299 |
|
|
1411 |
/** |
/** |
1412 |
Binary Data object operators. |
Binary Data object operators. |
1413 |
*/ |
*/ |
1414 |
inline double rpow(double x,double y) |
inline double rpow(double x,double y) |
1415 |
{ |
{ |
1416 |
return pow(y,x); |
return pow(y,x); |
1417 |
} |
} |
1508 |
*/ |
*/ |
1509 |
ESCRIPT_DLL_API Data operator/(const boost::python::object& left, const Data& right); |
ESCRIPT_DLL_API Data operator/(const boost::python::object& left, const Data& right); |
1510 |
|
|
1511 |
|
|
1512 |
|
|
1513 |
/** |
/** |
1514 |
\brief |
\brief |
1515 |
Output operator |
Output operator |
1531 |
int axis_offset=0, |
int axis_offset=0, |
1532 |
int transpose=0); |
int transpose=0); |
1533 |
|
|
1534 |
|
|
1535 |
|
/** |
1536 |
|
\brief |
1537 |
|
Compute a tensor operation with two Data objects |
1538 |
|
\param arg0 - Input - Data object |
1539 |
|
\param arg1 - Input - Data object |
1540 |
|
\param operation - Input - Binary op functor |
1541 |
|
*/ |
1542 |
|
template <typename BinaryFunction> |
1543 |
|
ESCRIPT_DLL_API |
1544 |
|
Data |
1545 |
|
C_TensorBinaryOperation(Data const &arg0, |
1546 |
|
Data const &arg1, |
1547 |
|
BinaryFunction operation); |
1548 |
|
|
1549 |
/** |
/** |
1550 |
\brief |
\brief |
1551 |
Return true if operands are equivalent, else return false. |
Return true if operands are equivalent, else return false. |
1552 |
NB: this operator does very little at this point, and isn't to |
NB: this operator does very little at this point, and isn't to |
1553 |
be relied on. Requires further implementation. |
be relied on. Requires further implementation. |
1554 |
*/ |
*/ |
1555 |
//ESCRIPT_DLL_API bool operator==(const Data& left, const Data& right); |
// ESCRIPT_DLL_API bool operator==(const Data& left, const Data& right); |
1556 |
|
|
1557 |
/** |
/** |
1558 |
\brief |
\brief |
1576 |
if (getFunctionSpace()!=right.getFunctionSpace()) { |
if (getFunctionSpace()!=right.getFunctionSpace()) { |
1577 |
if (right.probeInterpolation(getFunctionSpace())) { |
if (right.probeInterpolation(getFunctionSpace())) { |
1578 |
// |
// |
1579 |
// an interpolation is required so create a new Data |
// an interpolation is required so create a new Data |
1580 |
tempRight=Data(right,this->getFunctionSpace()); |
tempRight=Data(right,this->getFunctionSpace()); |
1581 |
} else if (probeInterpolation(right.getFunctionSpace())) { |
} else if (probeInterpolation(right.getFunctionSpace())) { |
1582 |
// |
// |
1700 |
\brief |
\brief |
1701 |
Perform the given data point reduction algorithm on data and return the result. |
Perform the given data point reduction algorithm on data and return the result. |
1702 |
Given operation combines each element within each data point into a scalar, |
Given operation combines each element within each data point into a scalar, |
1703 |
thus argument object is a rank n Data object, and returned object is a |
thus argument object is a rank n Data object, and returned object is a |
1704 |
rank 0 Data object. |
rank 0 Data object. |
1705 |
Calls escript::dp_algorithm. |
Calls escript::dp_algorithm. |
1706 |
*/ |
*/ |
1749 |
return falseRetVal; |
return falseRetVal; |
1750 |
} |
} |
1751 |
|
|
1752 |
|
template <typename BinaryFunction> |
1753 |
|
Data |
1754 |
|
C_TensorBinaryOperation(Data const &arg_0, |
1755 |
|
Data const &arg_1, |
1756 |
|
BinaryFunction operation) |
1757 |
|
{ |
1758 |
|
// Interpolate if necessary and find an appropriate function space |
1759 |
|
Data arg_0_Z, arg_1_Z; |
1760 |
|
if (arg_0.getFunctionSpace()!=arg_1.getFunctionSpace()) { |
1761 |
|
if (arg_0.probeInterpolation(arg_1.getFunctionSpace())) { |
1762 |
|
arg_0_Z = arg_0.interpolate(arg_1.getFunctionSpace()); |
1763 |
|
arg_1_Z = Data(arg_1); |
1764 |
|
} |
1765 |
|
else if (arg_1.probeInterpolation(arg_0.getFunctionSpace())) { |
1766 |
|
arg_1_Z=arg_1.interpolate(arg_0.getFunctionSpace()); |
1767 |
|
arg_0_Z =Data(arg_0); |
1768 |
|
} |
1769 |
|
else { |
1770 |
|
throw DataException("Error - C_TensorBinaryOperation: arguments have incompatible function spaces."); |
1771 |
|
} |
1772 |
|
} else { |
1773 |
|
arg_0_Z = Data(arg_0); |
1774 |
|
arg_1_Z = Data(arg_1); |
1775 |
|
} |
1776 |
|
// Get rank and shape of inputs |
1777 |
|
int rank0 = arg_0_Z.getDataPointRank(); |
1778 |
|
int rank1 = arg_1_Z.getDataPointRank(); |
1779 |
|
DataArrayView::ShapeType shape0 = arg_0_Z.getDataPointShape(); |
1780 |
|
DataArrayView::ShapeType shape1 = arg_1_Z.getDataPointShape(); |
1781 |
|
int size0 = arg_0_Z.getDataPointSize(); |
1782 |
|
int size1 = arg_1_Z.getDataPointSize(); |
1783 |
|
|
1784 |
|
// Declare output Data object |
1785 |
|
Data res; |
1786 |
|
|
1787 |
|
if (shape0 == shape1) { |
1788 |
|
|
1789 |
|
if (arg_0_Z.isConstant() && arg_1_Z.isConstant()) { |
1790 |
|
res = Data(0.0, shape0, arg_1_Z.getFunctionSpace()); // DataConstant output |
1791 |
|
double *ptr_0 = &((arg_0_Z.getPointDataView().getData())[0]); |
1792 |
|
double *ptr_1 = &((arg_1_Z.getPointDataView().getData())[0]); |
1793 |
|
double *ptr_2 = &((res.getPointDataView().getData())[0]); |
1794 |
|
tensor_binary_operation(size0, ptr_0, ptr_1, ptr_2, operation); |
1795 |
|
} |
1796 |
|
else if (arg_0_Z.isConstant() && arg_1_Z.isTagged()) { |
1797 |
|
|
1798 |
|
// Prepare the DataConstant input |
1799 |
|
DataConstant* tmp_0=dynamic_cast<DataConstant*>(arg_0_Z.borrowData()); |
1800 |
|
|
1801 |
|
// Borrow DataTagged input from Data object |
1802 |
|
DataTagged* tmp_1=dynamic_cast<DataTagged*>(arg_1_Z.borrowData()); |
1803 |
|
|
1804 |
|
// Prepare a DataTagged output 2 |
1805 |
|
res = Data(0.0, shape0, arg_1_Z.getFunctionSpace()); // DataTagged output |
1806 |
|
res.tag(); |
1807 |
|
DataTagged* tmp_2=dynamic_cast<DataTagged*>(res.borrowData()); |
1808 |
|
|
1809 |
|
// Prepare offset into DataConstant |
1810 |
|
int offset_0 = tmp_0->getPointOffset(0,0); |
1811 |
|
double *ptr_0 = &((arg_0_Z.getPointDataView().getData())[offset_0]); |
1812 |
|
// Get the views |
1813 |
|
DataArrayView view_1 = tmp_1->getDefaultValue(); |
1814 |
|
DataArrayView view_2 = tmp_2->getDefaultValue(); |
1815 |
|
// Get the pointers to the actual data |
1816 |
|
double *ptr_1 = &((view_1.getData())[0]); |
1817 |
|
double *ptr_2 = &((view_2.getData())[0]); |
1818 |
|
// Compute a result for the default |
1819 |
|
tensor_binary_operation(size0, ptr_0, ptr_1, ptr_2, operation); |
1820 |
|
// Compute a result for each tag |
1821 |
|
const DataTagged::DataMapType& lookup_1=tmp_1->getTagLookup(); |
1822 |
|
DataTagged::DataMapType::const_iterator i; // i->first is a tag, i->second is an offset into memory |
1823 |
|
for (i=lookup_1.begin();i!=lookup_1.end();i++) { |
1824 |
|
tmp_2->addTaggedValue(i->first,tmp_2->getDefaultValue()); |
1825 |
|
DataArrayView view_1 = tmp_1->getDataPointByTag(i->first); |
1826 |
|
DataArrayView view_2 = tmp_2->getDataPointByTag(i->first); |
1827 |
|
double *ptr_1 = &view_1.getData(0); |
1828 |
|
double *ptr_2 = &view_2.getData(0); |
1829 |
|
tensor_binary_operation(size0, ptr_0, ptr_1, ptr_2, operation); |
1830 |
|
} |
1831 |
|
|
1832 |
|
} |
1833 |
|
else if (arg_0_Z.isConstant() && arg_1_Z.isExpanded()) { |
1834 |
|
|
1835 |
|
res = Data(0.0, shape0, arg_1_Z.getFunctionSpace(),true); // DataExpanded output |
1836 |
|
DataConstant* tmp_0=dynamic_cast<DataConstant*>(arg_0_Z.borrowData()); |
1837 |
|
DataExpanded* tmp_1=dynamic_cast<DataExpanded*>(arg_1_Z.borrowData()); |
1838 |
|
DataExpanded* tmp_2=dynamic_cast<DataExpanded*>(res.borrowData()); |
1839 |
|
|
1840 |
|
int sampleNo_1,dataPointNo_1; |
1841 |
|
int numSamples_1 = arg_1_Z.getNumSamples(); |
1842 |
|
int numDataPointsPerSample_1 = arg_1_Z.getNumDataPointsPerSample(); |
1843 |
|
int offset_0 = tmp_0->getPointOffset(0,0); |
1844 |
|
#pragma omp parallel for private(sampleNo_1,dataPointNo_1) schedule(static) |
1845 |
|
for (sampleNo_1 = 0; sampleNo_1 < numSamples_1; sampleNo_1++) { |
1846 |
|
for (dataPointNo_1 = 0; dataPointNo_1 < numDataPointsPerSample_1; dataPointNo_1++) { |
1847 |
|
int offset_1 = tmp_1->getPointOffset(sampleNo_1,dataPointNo_1); |
1848 |
|
int offset_2 = tmp_2->getPointOffset(sampleNo_1,dataPointNo_1); |
1849 |
|
double *ptr_0 = &((arg_0_Z.getPointDataView().getData())[offset_0]); |
1850 |
|
double *ptr_1 = &((arg_1_Z.getPointDataView().getData())[offset_1]); |
1851 |
|
double *ptr_2 = &((res.getPointDataView().getData())[offset_2]); |
1852 |
|
tensor_binary_operation(size0, ptr_0, ptr_1, ptr_2, operation); |
1853 |
|
} |
1854 |
|
} |
1855 |
|
|
1856 |
|
} |
1857 |
|
else if (arg_0_Z.isTagged() && arg_1_Z.isConstant()) { |
1858 |
|
|
1859 |
|
// Borrow DataTagged input from Data object |
1860 |
|
DataTagged* tmp_0=dynamic_cast<DataTagged*>(arg_0_Z.borrowData()); |
1861 |
|
|
1862 |
|
// Prepare the DataConstant input |
1863 |
|
DataConstant* tmp_1=dynamic_cast<DataConstant*>(arg_1_Z.borrowData()); |
1864 |
|
|
1865 |
|
// Prepare a DataTagged output 2 |
1866 |
|
res = Data(0.0, shape0, arg_0_Z.getFunctionSpace()); // DataTagged output |
1867 |
|
res.tag(); |
1868 |
|
DataTagged* tmp_2=dynamic_cast<DataTagged*>(res.borrowData()); |
1869 |
|
|
1870 |
|
// Prepare offset into DataConstant |
1871 |
|
int offset_1 = tmp_1->getPointOffset(0,0); |
1872 |
|
double *ptr_1 = &((arg_1_Z.getPointDataView().getData())[offset_1]); |
1873 |
|
// Get the views |
1874 |
|
DataArrayView view_0 = tmp_0->getDefaultValue(); |
1875 |
|
DataArrayView view_2 = tmp_2->getDefaultValue(); |
1876 |
|
// Get the pointers to the actual data |
1877 |
|
double *ptr_0 = &((view_0.getData())[0]); |
1878 |
|
double *ptr_2 = &((view_2.getData())[0]); |
1879 |
|
// Compute a result for the default |
1880 |
|
tensor_binary_operation(size0, ptr_0, ptr_1, ptr_2, operation); |
1881 |
|
// Compute a result for each tag |
1882 |
|
const DataTagged::DataMapType& lookup_0=tmp_0->getTagLookup(); |
1883 |
|
DataTagged::DataMapType::const_iterator i; // i->first is a tag, i->second is an offset into memory |
1884 |
|
for (i=lookup_0.begin();i!=lookup_0.end();i++) { |
1885 |
|
tmp_2->addTaggedValue(i->first,tmp_2->getDefaultValue()); |
1886 |
|
DataArrayView view_0 = tmp_0->getDataPointByTag(i->first); |
1887 |
|
DataArrayView view_2 = tmp_2->getDataPointByTag(i->first); |
1888 |
|
double *ptr_0 = &view_0.getData(0); |
1889 |
|
double *ptr_2 = &view_2.getData(0); |
1890 |
|
tensor_binary_operation(size0, ptr_0, ptr_1, ptr_2, operation); |
1891 |
|
} |
1892 |
|
|
1893 |
|
} |
1894 |
|
else if (arg_0_Z.isTagged() && arg_1_Z.isTagged()) { |
1895 |
|
|
1896 |
|
// Borrow DataTagged input from Data object |
1897 |
|
DataTagged* tmp_0=dynamic_cast<DataTagged*>(arg_0_Z.borrowData()); |
1898 |
|
|
1899 |
|
// Borrow DataTagged input from Data object |
1900 |
|
DataTagged* tmp_1=dynamic_cast<DataTagged*>(arg_1_Z.borrowData()); |
1901 |
|
|
1902 |
|
// Prepare a DataTagged output 2 |
1903 |
|
res = Data(0.0, shape0, arg_1_Z.getFunctionSpace()); |
1904 |
|
res.tag(); // DataTagged output |
1905 |
|
DataTagged* tmp_2=dynamic_cast<DataTagged*>(res.borrowData()); |
1906 |
|
|
1907 |
|
// Get the views |
1908 |
|
DataArrayView view_0 = tmp_0->getDefaultValue(); |
1909 |
|
DataArrayView view_1 = tmp_1->getDefaultValue(); |
1910 |
|
DataArrayView view_2 = tmp_2->getDefaultValue(); |
1911 |
|
// Get the pointers to the actual data |
1912 |
|
double *ptr_0 = &((view_0.getData())[0]); |
1913 |
|
double *ptr_1 = &((view_1.getData())[0]); |
1914 |
|
double *ptr_2 = &((view_2.getData())[0]); |
1915 |
|
// Compute a result for the default |
1916 |
|
tensor_binary_operation(size0, ptr_0, ptr_1, ptr_2, operation); |
1917 |
|
// Merge the tags |
1918 |
|
DataTagged::DataMapType::const_iterator i; // i->first is a tag, i->second is an offset into memory |
1919 |
|
const DataTagged::DataMapType& lookup_0=tmp_0->getTagLookup(); |
1920 |
|
const DataTagged::DataMapType& lookup_1=tmp_1->getTagLookup(); |
1921 |
|
for (i=lookup_0.begin();i!=lookup_0.end();i++) { |
1922 |
|
tmp_2->addTaggedValue(i->first,tmp_2->getDefaultValue()); // use tmp_2 to get correct shape |
1923 |
|
} |
1924 |
|
for (i=lookup_1.begin();i!=lookup_1.end();i++) { |
1925 |
|
tmp_2->addTaggedValue(i->first,tmp_2->getDefaultValue()); |
1926 |
|
} |
1927 |
|
// Compute a result for each tag |
1928 |
|
const DataTagged::DataMapType& lookup_2=tmp_2->getTagLookup(); |
1929 |
|
for (i=lookup_2.begin();i!=lookup_2.end();i++) { |
1930 |
|
DataArrayView view_0 = tmp_0->getDataPointByTag(i->first); |
1931 |
|
DataArrayView view_1 = tmp_1->getDataPointByTag(i->first); |
1932 |
|
DataArrayView view_2 = tmp_2->getDataPointByTag(i->first); |
1933 |
|
double *ptr_0 = &view_0.getData(0); |
1934 |
|
double *ptr_1 = &view_1.getData(0); |
1935 |
|
double *ptr_2 = &view_2.getData(0); |
1936 |
|
tensor_binary_operation(size0, ptr_0, ptr_1, ptr_2, operation); |
1937 |
|
} |
1938 |
|
|
1939 |
|
} |
1940 |
|
else if (arg_0_Z.isTagged() && arg_1_Z.isExpanded()) { |
1941 |
|
|
1942 |
|
// After finding a common function space above the two inputs have the same numSamples and num DPPS |
1943 |
|
res = Data(0.0, shape0, arg_1_Z.getFunctionSpace(),true); // DataExpanded output |
1944 |
|
DataTagged* tmp_0=dynamic_cast<DataTagged*>(arg_0_Z.borrowData()); |
1945 |
|
DataExpanded* tmp_1=dynamic_cast<DataExpanded*>(arg_1_Z.borrowData()); |
1946 |
|
DataExpanded* tmp_2=dynamic_cast<DataExpanded*>(res.borrowData()); |
1947 |
|
|
1948 |
|
int sampleNo_0,dataPointNo_0; |
1949 |
|
int numSamples_0 = arg_0_Z.getNumSamples(); |
1950 |
|
int numDataPointsPerSample_0 = arg_0_Z.getNumDataPointsPerSample(); |
1951 |
|
#pragma omp parallel for private(sampleNo_0,dataPointNo_0) schedule(static) |
1952 |
|
for (sampleNo_0 = 0; sampleNo_0 < numSamples_0; sampleNo_0++) { |
1953 |
|
int offset_0 = tmp_0->getPointOffset(sampleNo_0,0); // They're all the same, so just use #0 |
1954 |
|
double *ptr_0 = &((arg_0_Z.getPointDataView().getData())[offset_0]); |
1955 |
|
for (dataPointNo_0 = 0; dataPointNo_0 < numDataPointsPerSample_0; dataPointNo_0++) { |
1956 |
|
int offset_1 = tmp_1->getPointOffset(sampleNo_0,dataPointNo_0); |
1957 |
|
int offset_2 = tmp_2->getPointOffset(sampleNo_0,dataPointNo_0); |
1958 |
|
double *ptr_1 = &((arg_1_Z.getPointDataView().getData())[offset_1]); |
1959 |
|
double *ptr_2 = &((res.getPointDataView().getData())[offset_2]); |
1960 |
|
tensor_binary_operation(size0, ptr_0, ptr_1, ptr_2, operation); |
1961 |
|
} |
1962 |
|
} |
1963 |
|
|
1964 |
|
} |
1965 |
|
else if (arg_0_Z.isExpanded() && arg_1_Z.isConstant()) { |
1966 |
|
|
1967 |
|
res = Data(0.0, shape0, arg_1_Z.getFunctionSpace(),true); // DataExpanded output |
1968 |
|
DataExpanded* tmp_0=dynamic_cast<DataExpanded*>(arg_0_Z.borrowData()); |
1969 |
|
DataConstant* tmp_1=dynamic_cast<DataConstant*>(arg_1_Z.borrowData()); |
1970 |
|
DataExpanded* tmp_2=dynamic_cast<DataExpanded*>(res.borrowData()); |
1971 |
|
|
1972 |
|
int sampleNo_0,dataPointNo_0; |
1973 |
|
int numSamples_0 = arg_0_Z.getNumSamples(); |
1974 |
|
int numDataPointsPerSample_0 = arg_0_Z.getNumDataPointsPerSample(); |
1975 |
|
int offset_1 = tmp_1->getPointOffset(0,0); |
1976 |
|
#pragma omp parallel for private(sampleNo_0,dataPointNo_0) schedule(static) |
1977 |
|
for (sampleNo_0 = 0; sampleNo_0 < numSamples_0; sampleNo_0++) { |
1978 |
|
for (dataPointNo_0 = 0; dataPointNo_0 < numDataPointsPerSample_0; dataPointNo_0++) { |
1979 |
|
int offset_0 = tmp_0->getPointOffset(sampleNo_0,dataPointNo_0); |
1980 |
|
int offset_2 = tmp_2->getPointOffset(sampleNo_0,dataPointNo_0); |
1981 |
|
double *ptr_0 = &((arg_0_Z.getPointDataView().getData())[offset_0]); |
1982 |
|
double *ptr_1 = &((arg_1_Z.getPointDataView().getData())[offset_1]); |
1983 |
|
double *ptr_2 = &((res.getPointDataView().getData())[offset_2]); |
1984 |
|
tensor_binary_operation(size0, ptr_0, ptr_1, ptr_2, operation); |
1985 |
|
} |
1986 |
|
} |
1987 |
|
|
1988 |
|
} |
1989 |
|
else if (arg_0_Z.isExpanded() && arg_1_Z.isTagged()) { |
1990 |
|
|
1991 |
|
// After finding a common function space above the two inputs have the same numSamples and num DPPS |
1992 |
|
res = Data(0.0, shape0, arg_1_Z.getFunctionSpace(),true); // DataExpanded output |
1993 |
|
DataExpanded* tmp_0=dynamic_cast<DataExpanded*>(arg_0_Z.borrowData()); |
1994 |
|
DataTagged* tmp_1=dynamic_cast<DataTagged*>(arg_1_Z.borrowData()); |
1995 |
|
DataExpanded* tmp_2=dynamic_cast<DataExpanded*>(res.borrowData()); |
1996 |
|
|
1997 |
|
int sampleNo_0,dataPointNo_0; |
1998 |
|
int numSamples_0 = arg_0_Z.getNumSamples(); |
1999 |
|
int numDataPointsPerSample_0 = arg_0_Z.getNumDataPointsPerSample(); |
2000 |
|
#pragma omp parallel for private(sampleNo_0,dataPointNo_0) schedule(static) |
2001 |
|
for (sampleNo_0 = 0; sampleNo_0 < numSamples_0; sampleNo_0++) { |
2002 |
|
int offset_1 = tmp_1->getPointOffset(sampleNo_0,0); |
2003 |
|
double *ptr_1 = &((arg_1_Z.getPointDataView().getData())[offset_1]); |
2004 |
|
for (dataPointNo_0 = 0; dataPointNo_0 < numDataPointsPerSample_0; dataPointNo_0++) { |
2005 |
|
int offset_0 = tmp_0->getPointOffset(sampleNo_0,dataPointNo_0); |
2006 |
|
int offset_2 = tmp_2->getPointOffset(sampleNo_0,dataPointNo_0); |
2007 |
|
double *ptr_0 = &((arg_0_Z.getPointDataView().getData())[offset_0]); |
2008 |
|
double *ptr_2 = &((res.getPointDataView().getData())[offset_2]); |
2009 |
|
tensor_binary_operation(size0, ptr_0, ptr_1, ptr_2, operation); |
2010 |
|
} |
2011 |
|
} |
2012 |
|
|
2013 |
|
} |
2014 |
|
else if (arg_0_Z.isExpanded() && arg_1_Z.isExpanded()) { |
2015 |
|
|
2016 |
|
// After finding a common function space above the two inputs have the same numSamples and num DPPS |
2017 |
|
res = Data(0.0, shape0, arg_1_Z.getFunctionSpace(),true); // DataExpanded output |
2018 |
|
DataExpanded* tmp_0=dynamic_cast<DataExpanded*>(arg_0_Z.borrowData()); |
2019 |
|
DataExpanded* tmp_1=dynamic_cast<DataExpanded*>(arg_1_Z.borrowData()); |
2020 |
|
DataExpanded* tmp_2=dynamic_cast<DataExpanded*>(res.borrowData()); |
2021 |
|
|
2022 |
|
int sampleNo_0,dataPointNo_0; |
2023 |
|
int numSamples_0 = arg_0_Z.getNumSamples(); |
2024 |
|
int numDataPointsPerSample_0 = arg_0_Z.getNumDataPointsPerSample(); |
2025 |
|
#pragma omp parallel for private(sampleNo_0,dataPointNo_0) schedule(static) |
2026 |
|
for (sampleNo_0 = 0; sampleNo_0 < numSamples_0; sampleNo_0++) { |
2027 |
|
for (dataPointNo_0 = 0; dataPointNo_0 < numDataPointsPerSample_0; dataPointNo_0++) { |
2028 |
|
int offset_0 = tmp_0->getPointOffset(sampleNo_0,dataPointNo_0); |
2029 |
|
int offset_1 = tmp_1->getPointOffset(sampleNo_0,dataPointNo_0); |
2030 |
|
int offset_2 = tmp_2->getPointOffset(sampleNo_0,dataPointNo_0); |
2031 |
|
double *ptr_0 = &((arg_0_Z.getPointDataView().getData())[offset_0]); |
2032 |
|
double *ptr_1 = &((arg_1_Z.getPointDataView().getData())[offset_1]); |
2033 |
|
double *ptr_2 = &((res.getPointDataView().getData())[offset_2]); |
2034 |
|
tensor_binary_operation(size0, ptr_0, ptr_1, ptr_2, operation); |
2035 |
|
} |
2036 |
|
} |
2037 |
|
|
2038 |
|
} |
2039 |
|
else { |
2040 |
|
throw DataException("Error - C_TensorBinaryOperation: unknown combination of inputs"); |
2041 |
|
} |
2042 |
|
|
2043 |
|
} else if (0 == rank0) { |
2044 |
|
|
2045 |
|
if (arg_0_Z.isConstant() && arg_1_Z.isConstant()) { |
2046 |
|
res = Data(0.0, shape1, arg_1_Z.getFunctionSpace()); // DataConstant output |
2047 |
|
double *ptr_0 = &((arg_0_Z.getPointDataView().getData())[0]); |
2048 |
|
double *ptr_1 = &((arg_1_Z.getPointDataView().getData())[0]); |
2049 |
|
double *ptr_2 = &((res.getPointDataView().getData())[0]); |
2050 |
|
tensor_binary_operation(size1, ptr_0[0], ptr_1, ptr_2, operation); |
2051 |
|
} |
2052 |
|
else if (arg_0_Z.isConstant() && arg_1_Z.isTagged()) { |
2053 |
|
|
2054 |
|
// Prepare the DataConstant input |
2055 |
|
DataConstant* tmp_0=dynamic_cast<DataConstant*>(arg_0_Z.borrowData()); |
2056 |
|
|
2057 |
|
// Borrow DataTagged input from Data object |
2058 |
|
DataTagged* tmp_1=dynamic_cast<DataTagged*>(arg_1_Z.borrowData()); |
2059 |
|
|
2060 |
|
// Prepare a DataTagged output 2 |
2061 |
|
res = Data(0.0, shape1, arg_1_Z.getFunctionSpace()); // DataTagged output |
2062 |
|
res.tag(); |
2063 |
|
DataTagged* tmp_2=dynamic_cast<DataTagged*>(res.borrowData()); |
2064 |
|
|
2065 |
|
// Prepare offset into DataConstant |
2066 |
|
int offset_0 = tmp_0->getPointOffset(0,0); |
2067 |
|
double *ptr_0 = &((arg_0_Z.getPointDataView().getData())[offset_0]); |
2068 |
|
// Get the views |
2069 |
|
DataArrayView view_1 = tmp_1->getDefaultValue(); |
2070 |
|
DataArrayView view_2 = tmp_2->getDefaultValue(); |
2071 |
|
// Get the pointers to the actual data |
2072 |
|
double *ptr_1 = &((view_1.getData())[0]); |
2073 |
|
double *ptr_2 = &((view_2.getData())[0]); |
2074 |
|
// Compute a result for the default |
2075 |
|
tensor_binary_operation(size1, ptr_0[0], ptr_1, ptr_2, operation); |
2076 |
|
// Compute a result for each tag |
2077 |
|
const DataTagged::DataMapType& lookup_1=tmp_1->getTagLookup(); |
2078 |
|
DataTagged::DataMapType::const_iterator i; // i->first is a tag, i->second is an offset into memory |
2079 |
|
for (i=lookup_1.begin();i!=lookup_1.end();i++) { |
2080 |
|
tmp_2->addTaggedValue(i->first,tmp_2->getDefaultValue()); |
2081 |
|
DataArrayView view_1 = tmp_1->getDataPointByTag(i->first); |
2082 |
|
DataArrayView view_2 = tmp_2->getDataPointByTag(i->first); |
2083 |
|
double *ptr_1 = &view_1.getData(0); |
2084 |
|
double *ptr_2 = &view_2.getData(0); |
2085 |
|
tensor_binary_operation(size1, ptr_0[0], ptr_1, ptr_2, operation); |
2086 |
|
} |
2087 |
|
|
2088 |
|
} |
2089 |
|
else if (arg_0_Z.isConstant() && arg_1_Z.isExpanded()) { |
2090 |
|
|
2091 |
|
res = Data(0.0, shape1, arg_1_Z.getFunctionSpace(),true); // DataExpanded output |
2092 |
|
DataConstant* tmp_0=dynamic_cast<DataConstant*>(arg_0_Z.borrowData()); |
2093 |
|
DataExpanded* tmp_1=dynamic_cast<DataExpanded*>(arg_1_Z.borrowData()); |
2094 |
|
DataExpanded* tmp_2=dynamic_cast<DataExpanded*>(res.borrowData()); |
2095 |
|
|
2096 |
|
int sampleNo_1,dataPointNo_1; |
2097 |
|
int numSamples_1 = arg_1_Z.getNumSamples(); |
2098 |
|
int numDataPointsPerSample_1 = arg_1_Z.getNumDataPointsPerSample(); |
2099 |
|
int offset_0 = tmp_0->getPointOffset(0,0); |
2100 |
|
#pragma omp parallel for private(sampleNo_1,dataPointNo_1) schedule(static) |
2101 |
|
for (sampleNo_1 = 0; sampleNo_1 < numSamples_1; sampleNo_1++) { |
2102 |
|
for (dataPointNo_1 = 0; dataPointNo_1 < numDataPointsPerSample_1; dataPointNo_1++) { |
2103 |
|
int offset_1 = tmp_1->getPointOffset(sampleNo_1,dataPointNo_1); |
2104 |
|
int offset_2 = tmp_2->getPointOffset(sampleNo_1,dataPointNo_1); |
2105 |
|
double *ptr_0 = &((arg_0_Z.getPointDataView().getData())[offset_0]); |
2106 |
|
double *ptr_1 = &((arg_1_Z.getPointDataView().getData())[offset_1]); |
2107 |
|
double *ptr_2 = &((res.getPointDataView().getData())[offset_2]); |
2108 |
|
tensor_binary_operation(size1, ptr_0[0], ptr_1, ptr_2, operation); |
2109 |
|
|
2110 |
|
} |
2111 |
|
} |
2112 |
|
|
2113 |
|
} |
2114 |
|
else if (arg_0_Z.isTagged() && arg_1_Z.isConstant()) { |
2115 |
|
|
2116 |
|
// Borrow DataTagged input from Data object |
2117 |
|
DataTagged* tmp_0=dynamic_cast<DataTagged*>(arg_0_Z.borrowData()); |
2118 |
|
|
2119 |
|
// Prepare the DataConstant input |
2120 |
|
DataConstant* tmp_1=dynamic_cast<DataConstant*>(arg_1_Z.borrowData()); |
2121 |
|
|
2122 |
|
// Prepare a DataTagged output 2 |
2123 |
|
res = Data(0.0, shape1, arg_0_Z.getFunctionSpace()); // DataTagged output |
2124 |
|
res.tag(); |
2125 |
|
DataTagged* tmp_2=dynamic_cast<DataTagged*>(res.borrowData()); |
2126 |
|
|
2127 |
|
// Prepare offset into DataConstant |
2128 |
|
int offset_1 = tmp_1->getPointOffset(0,0); |
2129 |
|
double *ptr_1 = &((arg_1_Z.getPointDataView().getData())[offset_1]); |
2130 |
|
// Get the views |
2131 |
|
DataArrayView view_0 = tmp_0->getDefaultValue(); |
2132 |
|
DataArrayView view_2 = tmp_2->getDefaultValue(); |
2133 |
|
// Get the pointers to the actual data |
2134 |
|
double *ptr_0 = &((view_0.getData())[0]); |
2135 |
|
double *ptr_2 = &((view_2.getData())[0]); |
2136 |
|
// Compute a result for the default |
2137 |
|
tensor_binary_operation(size1, ptr_0[0], ptr_1, ptr_2, operation); |
2138 |
|
// Compute a result for each tag |
2139 |
|
const DataTagged::DataMapType& lookup_0=tmp_0->getTagLookup(); |
2140 |
|
DataTagged::DataMapType::const_iterator i; // i->first is a tag, i->second is an offset into memory |
2141 |
|
for (i=lookup_0.begin();i!=lookup_0.end();i++) { |
2142 |
|
tmp_2->addTaggedValue(i->first,tmp_2->getDefaultValue()); |
2143 |
|
DataArrayView view_0 = tmp_0->getDataPointByTag(i->first); |
2144 |
|
DataArrayView view_2 = tmp_2->getDataPointByTag(i->first); |
2145 |
|
double *ptr_0 = &view_0.getData(0); |
2146 |
|
double *ptr_2 = &view_2.getData(0); |
2147 |
|
tensor_binary_operation(size1, ptr_0[0], ptr_1, ptr_2, operation); |
2148 |
|
} |
2149 |
|
|
2150 |
|
} |
2151 |
|
else if (arg_0_Z.isTagged() && arg_1_Z.isTagged()) { |
2152 |
|
|
2153 |
|
// Borrow DataTagged input from Data object |
2154 |
|
DataTagged* tmp_0=dynamic_cast<DataTagged*>(arg_0_Z.borrowData()); |
2155 |
|
|
2156 |
|
// Borrow DataTagged input from Data object |
2157 |
|
DataTagged* tmp_1=dynamic_cast<DataTagged*>(arg_1_Z.borrowData()); |
2158 |
|
|
2159 |
|
// Prepare a DataTagged output 2 |
2160 |
|
res = Data(0.0, shape1, arg_1_Z.getFunctionSpace()); |
2161 |
|
res.tag(); // DataTagged output |
2162 |
|
DataTagged* tmp_2=dynamic_cast<DataTagged*>(res.borrowData()); |
2163 |
|
|
2164 |
|
// Get the views |
2165 |
|
DataArrayView view_0 = tmp_0->getDefaultValue(); |
2166 |
|
DataArrayView view_1 = tmp_1->getDefaultValue(); |
2167 |
|
DataArrayView view_2 = tmp_2->getDefaultValue(); |
2168 |
|
// Get the pointers to the actual data |
2169 |
|
double *ptr_0 = &((view_0.getData())[0]); |
2170 |
|
double *ptr_1 = &((view_1.getData())[0]); |
2171 |
|
double *ptr_2 = &((view_2.getData())[0]); |
2172 |
|
// Compute a result for the default |
2173 |
|
tensor_binary_operation(size1, ptr_0[0], ptr_1, ptr_2, operation); |
2174 |
|
// Merge the tags |
2175 |
|
DataTagged::DataMapType::const_iterator i; // i->first is a tag, i->second is an offset into memory |
2176 |
|
const DataTagged::DataMapType& lookup_0=tmp_0->getTagLookup(); |
2177 |
|
const DataTagged::DataMapType& lookup_1=tmp_1->getTagLookup(); |
2178 |
|
for (i=lookup_0.begin();i!=lookup_0.end();i++) { |
2179 |
|
tmp_2->addTaggedValue(i->first,tmp_2->getDefaultValue()); // use tmp_2 to get correct shape |
2180 |
|
} |
2181 |
|
for (i=lookup_1.begin();i!=lookup_1.end();i++) { |
2182 |
|
tmp_2->addTaggedValue(i->first,tmp_2->getDefaultValue()); |
2183 |
|
} |
2184 |
|
// Compute a result for each tag |
2185 |
|
const DataTagged::DataMapType& lookup_2=tmp_2->getTagLookup(); |
2186 |
|
for (i=lookup_2.begin();i!=lookup_2.end();i++) { |
2187 |
|
DataArrayView view_0 = tmp_0->getDataPointByTag(i->first); |
2188 |
|
DataArrayView view_1 = tmp_1->getDataPointByTag(i->first); |
2189 |
|
DataArrayView view_2 = tmp_2->getDataPointByTag(i->first); |
2190 |
|
double *ptr_0 = &view_0.getData(0); |
2191 |
|
double *ptr_1 = &view_1.getData(0); |
2192 |
|
double *ptr_2 = &view_2.getData(0); |
2193 |
|
tensor_binary_operation(size1, ptr_0[0], ptr_1, ptr_2, operation); |
2194 |
|
} |
2195 |
|
|
2196 |
|
} |
2197 |
|
else if (arg_0_Z.isTagged() && arg_1_Z.isExpanded()) { |
2198 |
|
|
2199 |
|
// After finding a common function space above the two inputs have the same numSamples and num DPPS |
2200 |
|
res = Data(0.0, shape1, arg_1_Z.getFunctionSpace(),true); // DataExpanded output |
2201 |
|
DataTagged* tmp_0=dynamic_cast<DataTagged*>(arg_0_Z.borrowData()); |
2202 |
|
DataExpanded* tmp_1=dynamic_cast<DataExpanded*>(arg_1_Z.borrowData()); |
2203 |
|
DataExpanded* tmp_2=dynamic_cast<DataExpanded*>(res.borrowData()); |
2204 |
|
|
2205 |
|
int sampleNo_0,dataPointNo_0; |
2206 |
|
int numSamples_0 = arg_0_Z.getNumSamples(); |
2207 |
|
int numDataPointsPerSample_0 = arg_0_Z.getNumDataPointsPerSample(); |
2208 |
|
#pragma omp parallel for private(sampleNo_0,dataPointNo_0) schedule(static) |
2209 |
|
for (sampleNo_0 = 0; sampleNo_0 < numSamples_0; sampleNo_0++) { |
2210 |
|
int offset_0 = tmp_0->getPointOffset(sampleNo_0,0); // They're all the same, so just use #0 |
2211 |
|
double *ptr_0 = &((arg_0_Z.getPointDataView().getData())[offset_0]); |
2212 |
|
for (dataPointNo_0 = 0; dataPointNo_0 < numDataPointsPerSample_0; dataPointNo_0++) { |
2213 |
|
int offset_1 = tmp_1->getPointOffset(sampleNo_0,dataPointNo_0); |
2214 |
|
int offset_2 = tmp_2->getPointOffset(sampleNo_0,dataPointNo_0); |
2215 |
|
double *ptr_1 = &((arg_1_Z.getPointDataView().getData())[offset_1]); |
2216 |
|
double *ptr_2 = &((res.getPointDataView().getData())[offset_2]); |
2217 |
|
tensor_binary_operation(size1, ptr_0[0], ptr_1, ptr_2, operation); |
2218 |
|
} |
2219 |
|
} |
2220 |
|
|
2221 |
|
} |
2222 |
|
else if (arg_0_Z.isExpanded() && arg_1_Z.isConstant()) { |
2223 |
|
|
2224 |
|
res = Data(0.0, shape1, arg_1_Z.getFunctionSpace(),true); // DataExpanded output |
2225 |
|
DataExpanded* tmp_0=dynamic_cast<DataExpanded*>(arg_0_Z.borrowData()); |
2226 |
|
DataConstant* tmp_1=dynamic_cast<DataConstant*>(arg_1_Z.borrowData()); |
2227 |
|
DataExpanded* tmp_2=dynamic_cast<DataExpanded*>(res.borrowData()); |
2228 |
|
|
2229 |
|
int sampleNo_0,dataPointNo_0; |
2230 |
|
int numSamples_0 = arg_0_Z.getNumSamples(); |
2231 |
|
int numDataPointsPerSample_0 = arg_0_Z.getNumDataPointsPerSample(); |
2232 |
|
int offset_1 = tmp_1->getPointOffset(0,0); |
2233 |
|
#pragma omp parallel for private(sampleNo_0,dataPointNo_0) schedule(static) |
2234 |
|
for (sampleNo_0 = 0; sampleNo_0 < numSamples_0; sampleNo_0++) { |
2235 |
|
for (dataPointNo_0 = 0; dataPointNo_0 < numDataPointsPerSample_0; dataPointNo_0++) { |
2236 |
|
int offset_0 = tmp_0->getPointOffset(sampleNo_0,dataPointNo_0); |
2237 |
|
int offset_2 = tmp_2->getPointOffset(sampleNo_0,dataPointNo_0); |
2238 |
|
double *ptr_0 = &((arg_0_Z.getPointDataView().getData())[offset_0]); |
2239 |
|
double *ptr_1 = &((arg_1_Z.getPointDataView().getData())[offset_1]); |
2240 |
|
double *ptr_2 = &((res.getPointDataView().getData())[offset_2]); |
2241 |
|
tensor_binary_operation(size1, ptr_0[0], ptr_1, ptr_2, operation); |
2242 |
|
} |
2243 |
|
} |
2244 |
|
|
2245 |
|
|
2246 |
|
} |
2247 |
|
else if (arg_0_Z.isExpanded() && arg_1_Z.isTagged()) { |
2248 |
|
|
2249 |
|
// After finding a common function space above the two inputs have the same numSamples and num DPPS |
2250 |
|
res = Data(0.0, shape1, arg_1_Z.getFunctionSpace(),true); // DataExpanded output |
2251 |
|
DataExpanded* tmp_0=dynamic_cast<DataExpanded*>(arg_0_Z.borrowData()); |
2252 |
|
DataTagged* tmp_1=dynamic_cast<DataTagged*>(arg_1_Z.borrowData()); |
2253 |
|
DataExpanded* tmp_2=dynamic_cast<DataExpanded*>(res.borrowData()); |
2254 |
|
|
2255 |
|
int sampleNo_0,dataPointNo_0; |
2256 |
|
int numSamples_0 = arg_0_Z.getNumSamples(); |
2257 |
|
int numDataPointsPerSample_0 = arg_0_Z.getNumDataPointsPerSample(); |
2258 |
|
#pragma omp parallel for private(sampleNo_0,dataPointNo_0) schedule(static) |
2259 |
|
for (sampleNo_0 = 0; sampleNo_0 < numSamples_0; sampleNo_0++) { |
2260 |
|
int offset_1 = tmp_1->getPointOffset(sampleNo_0,0); |
2261 |
|
double *ptr_1 = &((arg_1_Z.getPointDataView().getData())[offset_1]); |
2262 |
|
for (dataPointNo_0 = 0; dataPointNo_0 < numDataPointsPerSample_0; dataPointNo_0++) { |
2263 |
|
int offset_0 = tmp_0->getPointOffset(sampleNo_0,dataPointNo_0); |
2264 |
|
int offset_2 = tmp_2->getPointOffset(sampleNo_0,dataPointNo_0); |
2265 |
|
double *ptr_0 = &((arg_0_Z.getPointDataView().getData())[offset_0]); |
2266 |
|
double *ptr_2 = &((res.getPointDataView().getData())[offset_2]); |
2267 |
|
tensor_binary_operation(size1, ptr_0[0], ptr_1, ptr_2, operation); |
2268 |
|
} |
2269 |
|
} |
2270 |
|
|
2271 |
|
} |
2272 |
|
else if (arg_0_Z.isExpanded() && arg_1_Z.isExpanded()) { |
2273 |
|
|
2274 |
|
// After finding a common function space above the two inputs have the same numSamples and num DPPS |
2275 |
|
res = Data(0.0, shape1, arg_1_Z.getFunctionSpace(),true); // DataExpanded output |
2276 |
|
DataExpanded* tmp_0=dynamic_cast<DataExpanded*>(arg_0_Z.borrowData()); |
2277 |
|
DataExpanded* tmp_1=dynamic_cast<DataExpanded*>(arg_1_Z.borrowData()); |
2278 |
|
DataExpanded* tmp_2=dynamic_cast<DataExpanded*>(res.borrowData()); |
2279 |
|
|
2280 |
|
int sampleNo_0,dataPointNo_0; |
2281 |
|
int numSamples_0 = arg_0_Z.getNumSamples(); |
2282 |
|
int numDataPointsPerSample_0 = arg_0_Z.getNumDataPointsPerSample(); |
2283 |
|
#pragma omp parallel for private(sampleNo_0,dataPointNo_0) schedule(static) |
2284 |
|
for (sampleNo_0 = 0; sampleNo_0 < numSamples_0; sampleNo_0++) { |
2285 |
|
for (dataPointNo_0 = 0; dataPointNo_0 < numDataPointsPerSample_0; dataPointNo_0++) { |
2286 |
|
int offset_0 = tmp_0->getPointOffset(sampleNo_0,dataPointNo_0); |
2287 |
|
int offset_1 = tmp_1->getPointOffset(sampleNo_0,dataPointNo_0); |
2288 |
|
int offset_2 = tmp_2->getPointOffset(sampleNo_0,dataPointNo_0); |
2289 |
|
double *ptr_0 = &((arg_0_Z.getPointDataView().getData())[offset_0]); |
2290 |
|
double *ptr_1 = &((arg_1_Z.getPointDataView().getData())[offset_1]); |
2291 |
|
double *ptr_2 = &((res.getPointDataView().getData())[offset_2]); |
2292 |
|
tensor_binary_operation(size1, ptr_0[0], ptr_1, ptr_2, operation); |
2293 |
|
} |
2294 |
|
} |
2295 |
|
|
2296 |
|
} |
2297 |
|
else { |
2298 |
|
throw DataException("Error - C_TensorBinaryOperation: unknown combination of inputs"); |
2299 |
|
} |
2300 |
|
|
2301 |
|
} else if (0 == rank1) { |
2302 |
|
|
2303 |
|
if (arg_0_Z.isConstant() && arg_1_Z.isConstant()) { |
2304 |
|
res = Data(0.0, shape0, arg_1_Z.getFunctionSpace()); // DataConstant output |
2305 |
|
double *ptr_0 = &((arg_0_Z.getPointDataView().getData())[0]); |
2306 |
|
double *ptr_1 = &((arg_1_Z.getPointDataView().getData())[0]); |
2307 |
|
double *ptr_2 = &((res.getPointDataView().getData())[0]); |
2308 |
|
tensor_binary_operation(size0, ptr_0, ptr_1[0], ptr_2, operation); |
2309 |
|
} |
2310 |
|
else if (arg_0_Z.isConstant() && arg_1_Z.isTagged()) { |
2311 |
|
|
2312 |
|
// Prepare the DataConstant input |
2313 |
|
DataConstant* tmp_0=dynamic_cast<DataConstant*>(arg_0_Z.borrowData()); |
2314 |
|
|
2315 |
|
// Borrow DataTagged input from Data object |
2316 |
|
DataTagged* tmp_1=dynamic_cast<DataTagged*>(arg_1_Z.borrowData()); |
2317 |
|
|
2318 |
|
// Prepare a DataTagged output 2 |
2319 |
|
res = Data(0.0, shape0, arg_1_Z.getFunctionSpace()); // DataTagged output |
2320 |
|
res.tag(); |
2321 |
|
DataTagged* tmp_2=dynamic_cast<DataTagged*>(res.borrowData()); |
2322 |
|
|
2323 |
|
// Prepare offset into DataConstant |
2324 |
|
int offset_0 = tmp_0->getPointOffset(0,0); |
2325 |
|
double *ptr_0 = &((arg_0_Z.getPointDataView().getData())[offset_0]); |
2326 |
|
// Get the views |
2327 |
|
DataArrayView view_1 = tmp_1->getDefaultValue(); |
2328 |
|
DataArrayView view_2 = tmp_2->getDefaultValue(); |
2329 |
|
// Get the pointers to the actual data |
2330 |
|
double *ptr_1 = &((view_1.getData())[0]); |
2331 |
|
double *ptr_2 = &((view_2.getData())[0]); |
2332 |
|
// Compute a result for the default |
2333 |
|
tensor_binary_operation(size0, ptr_0, ptr_1[0], ptr_2, operation); |
2334 |
|
// Compute a result for each tag |
2335 |
|
const DataTagged::DataMapType& lookup_1=tmp_1->getTagLookup(); |
2336 |
|
DataTagged::DataMapType::const_iterator i; // i->first is a tag, i->second is an offset into memory |
2337 |
|
for (i=lookup_1.begin();i!=lookup_1.end();i++) { |
2338 |
|
tmp_2->addTaggedValue(i->first,tmp_2->getDefaultValue()); |
2339 |
|
DataArrayView view_1 = tmp_1->getDataPointByTag(i->first); |
2340 |
|
DataArrayView view_2 = tmp_2->getDataPointByTag(i->first); |
2341 |
|
double *ptr_1 = &view_1.getData(0); |
2342 |
|
double *ptr_2 = &view_2.getData(0); |
2343 |
|
tensor_binary_operation(size0, ptr_0, ptr_1[0], ptr_2, operation); |
2344 |
|
} |
2345 |
|
|
2346 |
|
} |
2347 |
|
else if (arg_0_Z.isConstant() && arg_1_Z.isExpanded()) { |
2348 |
|
|
2349 |
|
res = Data(0.0, shape0, arg_1_Z.getFunctionSpace(),true); // DataExpanded output |
2350 |
|
DataConstant* tmp_0=dynamic_cast<DataConstant*>(arg_0_Z.borrowData()); |
2351 |
|
DataExpanded* tmp_1=dynamic_cast<DataExpanded*>(arg_1_Z.borrowData()); |
2352 |
|
DataExpanded* tmp_2=dynamic_cast<DataExpanded*>(res.borrowData()); |
2353 |
|
|
2354 |
|
int sampleNo_1,dataPointNo_1; |
2355 |
|
int numSamples_1 = arg_1_Z.getNumSamples(); |
2356 |
|
int numDataPointsPerSample_1 = arg_1_Z.getNumDataPointsPerSample(); |
2357 |
|
int offset_0 = tmp_0->getPointOffset(0,0); |
2358 |
|
#pragma omp parallel for private(sampleNo_1,dataPointNo_1) schedule(static) |
2359 |
|
for (sampleNo_1 = 0; sampleNo_1 < numSamples_1; sampleNo_1++) { |
2360 |
|
for (dataPointNo_1 = 0; dataPointNo_1 < numDataPointsPerSample_1; dataPointNo_1++) { |
2361 |
|
int offset_1 = tmp_1->getPointOffset(sampleNo_1,dataPointNo_1); |
2362 |
|
int offset_2 = tmp_2->getPointOffset(sampleNo_1,dataPointNo_1); |
2363 |
|
double *ptr_0 = &((arg_0_Z.getPointDataView().getData())[offset_0]); |
2364 |
|
double *ptr_1 = &((arg_1_Z.getPointDataView().getData())[offset_1]); |
2365 |
|
double *ptr_2 = &((res.getPointDataView().getData())[offset_2]); |
2366 |
|
tensor_binary_operation(size0, ptr_0, ptr_1[0], ptr_2, operation); |
2367 |
|
} |
2368 |
|
} |
2369 |
|
|
2370 |
|
} |
2371 |
|
else if (arg_0_Z.isTagged() && arg_1_Z.isConstant()) { |
2372 |
|
|
2373 |
|
// Borrow DataTagged input from Data object |
2374 |
|
DataTagged* tmp_0=dynamic_cast<DataTagged*>(arg_0_Z.borrowData()); |
2375 |
|
|
2376 |
|
// Prepare the DataConstant input |
2377 |
|
DataConstant* tmp_1=dynamic_cast<DataConstant*>(arg_1_Z.borrowData()); |
2378 |
|
|
2379 |
|
// Prepare a DataTagged output 2 |
2380 |
|
res = Data(0.0, shape0, arg_0_Z.getFunctionSpace()); // DataTagged output |
2381 |
|
res.tag(); |
2382 |
|
DataTagged* tmp_2=dynamic_cast<DataTagged*>(res.borrowData()); |
2383 |
|
|
2384 |
|
// Prepare offset into DataConstant |
2385 |
|
int offset_1 = tmp_1->getPointOffset(0,0); |
2386 |
|
double *ptr_1 = &((arg_1_Z.getPointDataView().getData())[offset_1]); |
2387 |
|
// Get the views |
2388 |
|
DataArrayView view_0 = tmp_0->getDefaultValue(); |
2389 |
|
DataArrayView view_2 = tmp_2->getDefaultValue(); |
2390 |
|
// Get the pointers to the actual data |
2391 |
|
double *ptr_0 = &((view_0.getData())[0]); |
2392 |
|
double *ptr_2 = &((view_2.getData())[0]); |
2393 |
|
// Compute a result for the default |
2394 |
|
tensor_binary_operation(size0, ptr_0, ptr_1[0], ptr_2, operation); |
2395 |
|
// Compute a result for each tag |
2396 |
|
const DataTagged::DataMapType& lookup_0=tmp_0->getTagLookup(); |
2397 |
|
DataTagged::DataMapType::const_iterator i; // i->first is a tag, i->second is an offset into memory |
2398 |
|
for (i=lookup_0.begin();i!=lookup_0.end();i++) { |
2399 |
|
tmp_2->addTaggedValue(i->first,tmp_2->getDefaultValue()); |
2400 |
|
DataArrayView view_0 = tmp_0->getDataPointByTag(i->first); |
2401 |
|
DataArrayView view_2 = tmp_2->getDataPointByTag(i->first); |
2402 |
|
double *ptr_0 = &view_0.getData(0); |
2403 |
|
double *ptr_2 = &view_2.getData(0); |
2404 |
|
tensor_binary_operation(size0, ptr_0, ptr_1[0], ptr_2, operation); |
2405 |
|
} |
2406 |
|
|
2407 |
|
} |
2408 |
|
else if (arg_0_Z.isTagged() && arg_1_Z.isTagged()) { |
2409 |
|
|
2410 |
|
// Borrow DataTagged input from Data object |
2411 |
|
DataTagged* tmp_0=dynamic_cast<DataTagged*>(arg_0_Z.borrowData()); |
2412 |
|
|
2413 |
|
// Borrow DataTagged input from Data object |
2414 |
|
DataTagged* tmp_1=dynamic_cast<DataTagged*>(arg_1_Z.borrowData()); |
2415 |
|
|
2416 |
|
// Prepare a DataTagged output 2 |
2417 |
|
res = Data(0.0, shape0, arg_1_Z.getFunctionSpace()); |
2418 |
|
res.tag(); // DataTagged output |
2419 |
|
DataTagged* tmp_2=dynamic_cast<DataTagged*>(res.borrowData()); |
2420 |
|
|
2421 |
|
// Get the views |
2422 |
|
DataArrayView view_0 = tmp_0->getDefaultValue(); |
2423 |
|
DataArrayView view_1 = tmp_1->getDefaultValue(); |
2424 |
|
DataArrayView view_2 = tmp_2->getDefaultValue(); |
2425 |
|
// Get the pointers to the actual data |
2426 |
|
double *ptr_0 = &((view_0.getData())[0]); |
2427 |
|
double *ptr_1 = &((view_1.getData())[0]); |
2428 |
|
double *ptr_2 = &((view_2.getData())[0]); |
2429 |
|
// Compute a result for the default |
2430 |
|
tensor_binary_operation(size0, ptr_0, ptr_1[0], ptr_2, operation); |
2431 |
|
// Merge the tags |
2432 |
|
DataTagged::DataMapType::const_iterator i; // i->first is a tag, i->second is an offset into memory |
2433 |
|
const DataTagged::DataMapType& lookup_0=tmp_0->getTagLookup(); |
2434 |
|
const DataTagged::DataMapType& lookup_1=tmp_1->getTagLookup(); |
2435 |
|
for (i=lookup_0.begin();i!=lookup_0.end();i++) { |
2436 |
|
tmp_2->addTaggedValue(i->first,tmp_2->getDefaultValue()); // use tmp_2 to get correct shape |
2437 |
|
} |
2438 |
|
for (i=lookup_1.begin();i!=lookup_1.end();i++) { |
2439 |
|
tmp_2->addTaggedValue(i->first,tmp_2->getDefaultValue()); |
2440 |
|
} |
2441 |
|
// Compute a result for each tag |
2442 |
|
const DataTagged::DataMapType& lookup_2=tmp_2->getTagLookup(); |
2443 |
|
for (i=lookup_2.begin();i!=lookup_2.end();i++) { |
2444 |
|
DataArrayView view_0 = tmp_0->getDataPointByTag(i->first); |
2445 |
|
DataArrayView view_1 = tmp_1->getDataPointByTag(i->first); |
2446 |
|
DataArrayView view_2 = tmp_2->getDataPointByTag(i->first); |
2447 |
|
double *ptr_0 = &view_0.getData(0); |
2448 |
|
double *ptr_1 = &view_1.getData(0); |
2449 |
|
double *ptr_2 = &view_2.getData(0); |
2450 |
|
tensor_binary_operation(size0, ptr_0, ptr_1[0], ptr_2, operation); |
2451 |
|
} |
2452 |
|
|
2453 |
|
} |
2454 |
|
else if (arg_0_Z.isTagged() && arg_1_Z.isExpanded()) { |
2455 |
|
|
2456 |
|
// After finding a common function space above the two inputs have the same numSamples and num DPPS |
2457 |
|
res = Data(0.0, shape0, arg_1_Z.getFunctionSpace(),true); // DataExpanded output |
2458 |
|
DataTagged* tmp_0=dynamic_cast<DataTagged*>(arg_0_Z.borrowData()); |
2459 |
|
DataExpanded* tmp_1=dynamic_cast<DataExpanded*>(arg_1_Z.borrowData()); |
2460 |
|
DataExpanded* tmp_2=dynamic_cast<DataExpanded*>(res.borrowData()); |
2461 |
|
|
2462 |
|
int sampleNo_0,dataPointNo_0; |
2463 |
|
int numSamples_0 = arg_0_Z.getNumSamples(); |
2464 |
|
int numDataPointsPerSample_0 = arg_0_Z.getNumDataPointsPerSample(); |
2465 |
|
#pragma omp parallel for private(sampleNo_0,dataPointNo_0) schedule(static) |
2466 |
|
for (sampleNo_0 = 0; sampleNo_0 < numSamples_0; sampleNo_0++) { |
2467 |
|
int offset_0 = tmp_0->getPointOffset(sampleNo_0,0); // They're all the same, so just use #0 |
2468 |
|
double *ptr_0 = &((arg_0_Z.getPointDataView().getData())[offset_0]); |
2469 |
|
for (dataPointNo_0 = 0; dataPointNo_0 < numDataPointsPerSample_0; dataPointNo_0++) { |
2470 |
|
int offset_1 = tmp_1->getPointOffset(sampleNo_0,dataPointNo_0); |
2471 |
|
int offset_2 = tmp_2->getPointOffset(sampleNo_0,dataPointNo_0); |
2472 |
|
double *ptr_1 = &((arg_1_Z.getPointDataView().getData())[offset_1]); |
2473 |
|
double *ptr_2 = &((res.getPointDataView().getData())[offset_2]); |
2474 |
|
tensor_binary_operation(size0, ptr_0, ptr_1[0], ptr_2, operation); |
2475 |
|
} |
2476 |
|
} |
2477 |
|
|
2478 |
|
} |
2479 |
|
else if (arg_0_Z.isExpanded() && arg_1_Z.isConstant()) { |
2480 |
|
|
2481 |
|
res = Data(0.0, shape0, arg_1_Z.getFunctionSpace(),true); // DataExpanded output |
2482 |
|
DataExpanded* tmp_0=dynamic_cast<DataExpanded*>(arg_0_Z.borrowData()); |
2483 |
|
DataConstant* tmp_1=dynamic_cast<DataConstant*>(arg_1_Z.borrowData()); |
2484 |
|
DataExpanded* tmp_2=dynamic_cast<DataExpanded*>(res.borrowData()); |
2485 |
|
|
2486 |
|
int sampleNo_0,dataPointNo_0; |
2487 |
|
int numSamples_0 = arg_0_Z.getNumSamples(); |
2488 |
|
int numDataPointsPerSample_0 = arg_0_Z.getNumDataPointsPerSample(); |
2489 |
|
int offset_1 = tmp_1->getPointOffset(0,0); |
2490 |
|
#pragma omp parallel for private(sampleNo_0,dataPointNo_0) schedule(static) |
2491 |
|
for (sampleNo_0 = 0; sampleNo_0 < numSamples_0; sampleNo_0++) { |
2492 |
|
for (dataPointNo_0 = 0; dataPointNo_0 < numDataPointsPerSample_0; dataPointNo_0++) { |
2493 |
|
int offset_0 = tmp_0->getPointOffset(sampleNo_0,dataPointNo_0); |
2494 |
|
int offset_2 = tmp_2->getPointOffset(sampleNo_0,dataPointNo_0); |
2495 |
|
double *ptr_0 = &((arg_0_Z.getPointDataView().getData())[offset_0]); |
2496 |
|
double *ptr_1 = &((arg_1_Z.getPointDataView().getData())[offset_1]); |
2497 |
|
double *ptr_2 = &((res.getPointDataView().getData())[offset_2]); |
2498 |
|
tensor_binary_operation(size0, ptr_0, ptr_1[0], ptr_2, operation); |
2499 |
|
} |
2500 |
|
} |
2501 |
|
|
2502 |
|
|
2503 |
|
} |
2504 |
|
else if (arg_0_Z.isExpanded() && arg_1_Z.isTagged()) { |
2505 |
|
|
2506 |
|
// After finding a common function space above the two inputs have the same numSamples and num DPPS |
2507 |
|
res = Data(0.0, shape0, arg_1_Z.getFunctionSpace(),true); // DataExpanded output |
2508 |
|
DataExpanded* tmp_0=dynamic_cast<DataExpanded*>(arg_0_Z.borrowData()); |
2509 |
|
DataTagged* tmp_1=dynamic_cast<DataTagged*>(arg_1_Z.borrowData()); |
2510 |
|
DataExpanded* tmp_2=dynamic_cast<DataExpanded*>(res.borrowData()); |
2511 |
|
|
2512 |
|
int sampleNo_0,dataPointNo_0; |
2513 |
|
int numSamples_0 = arg_0_Z.getNumSamples(); |
2514 |
|
int numDataPointsPerSample_0 = arg_0_Z.getNumDataPointsPerSample(); |
2515 |
|
#pragma omp parallel for private(sampleNo_0,dataPointNo_0) schedule(static) |
2516 |
|
for (sampleNo_0 = 0; sampleNo_0 < numSamples_0; sampleNo_0++) { |
2517 |
|
int offset_1 = tmp_1->getPointOffset(sampleNo_0,0); |
2518 |
|
double *ptr_1 = &((arg_1_Z.getPointDataView().getData())[offset_1]); |
2519 |
|
for (dataPointNo_0 = 0; dataPointNo_0 < numDataPointsPerSample_0; dataPointNo_0++) { |
2520 |
|
int offset_0 = tmp_0->getPointOffset(sampleNo_0,dataPointNo_0); |
2521 |
|
int offset_2 = tmp_2->getPointOffset(sampleNo_0,dataPointNo_0); |
2522 |
|
double *ptr_0 = &((arg_0_Z.getPointDataView().getData())[offset_0]); |
2523 |
|
double *ptr_2 = &((res.getPointDataView().getData())[offset_2]); |
2524 |
|
tensor_binary_operation(size0, ptr_0, ptr_1[0], ptr_2, operation); |
2525 |
|
} |
2526 |
|
} |
2527 |
|
|
2528 |
|
} |
2529 |
|
else if (arg_0_Z.isExpanded() && arg_1_Z.isExpanded()) { |
2530 |
|
|
2531 |
|
// After finding a common function space above the two inputs have the same numSamples and num DPPS |
2532 |
|
res = Data(0.0, shape0, arg_1_Z.getFunctionSpace(),true); // DataExpanded output |
2533 |
|
DataExpanded* tmp_0=dynamic_cast<DataExpanded*>(arg_0_Z.borrowData()); |
2534 |
|
DataExpanded* tmp_1=dynamic_cast<DataExpanded*>(arg_1_Z.borrowData()); |
2535 |
|
DataExpanded* tmp_2=dynamic_cast<DataExpanded*>(res.borrowData()); |
2536 |
|
|
2537 |
|
int sampleNo_0,dataPointNo_0; |
2538 |
|
int numSamples_0 = arg_0_Z.getNumSamples(); |
2539 |
|
int numDataPointsPerSample_0 = arg_0_Z.getNumDataPointsPerSample(); |
2540 |
|
#pragma omp parallel for private(sampleNo_0,dataPointNo_0) schedule(static) |
2541 |
|
for (sampleNo_0 = 0; sampleNo_0 < numSamples_0; sampleNo_0++) { |
2542 |
|
for (dataPointNo_0 = 0; dataPointNo_0 < numDataPointsPerSample_0; dataPointNo_0++) { |
2543 |
|
int offset_0 = tmp_0->getPointOffset(sampleNo_0,dataPointNo_0); |
2544 |
|
int offset_1 = tmp_1->getPointOffset(sampleNo_0,dataPointNo_0); |
2545 |
|
int offset_2 = tmp_2->getPointOffset(sampleNo_0,dataPointNo_0); |
2546 |
|
double *ptr_0 = &((arg_0_Z.getPointDataView().getData())[offset_0]); |
2547 |
|
double *ptr_1 = &((arg_1_Z.getPointDataView().getData())[offset_1]); |
2548 |
|
double *ptr_2 = &((res.getPointDataView().getData())[offset_2]); |
2549 |
|
tensor_binary_operation(size0, ptr_0, ptr_1[0], ptr_2, operation); |
2550 |
|
} |
2551 |
|
} |
2552 |
|
|
2553 |
|
} |
2554 |
|
else { |
2555 |
|
throw DataException("Error - C_TensorBinaryOperation: unknown combination of inputs"); |
2556 |
|
} |
2557 |
|
|
2558 |
|
} else { |
2559 |
|
throw DataException("Error - C_TensorBinaryOperation: arguments have incompatible shapes"); |
2560 |
|
} |
2561 |
|
|
2562 |
|
return res; |
2563 |
|
} |
2564 |
|
|
2565 |
} |
} |
2566 |
#endif |
#endif |