/[escript]/branches/ripleygmg_from_3668/ripley/src/Rectangle.cpp
ViewVC logotype

Annotation of /branches/ripleygmg_from_3668/ripley/src/Rectangle.cpp

Parent Directory Parent Directory | Revision Log Revision Log


Revision 3702 - (hide annotations)
Fri Dec 2 06:12:32 2011 UTC (8 years ago) by caltinay
File size: 32253 byte(s)
Gradient for Rectangle elements.

1 caltinay 3691
2     /*******************************************************
3     *
4     * Copyright (c) 2003-2011 by University of Queensland
5     * Earth Systems Science Computational Center (ESSCC)
6     * http://www.uq.edu.au/esscc
7     *
8     * Primary Business: Queensland, Australia
9     * Licensed under the Open Software License version 3.0
10     * http://www.opensource.org/licenses/osl-3.0.php
11     *
12     *******************************************************/
13    
14     #include <ripley/Rectangle.h>
15     extern "C" {
16     #include "paso/SystemMatrixPattern.h"
17     }
18    
19     #if USE_SILO
20     #include <silo.h>
21     #ifdef ESYS_MPI
22     #include <pmpio.h>
23     #endif
24     #endif
25    
26     #include <iomanip>
27    
28     using namespace std;
29    
30     namespace ripley {
31    
32     Rectangle::Rectangle(int n0, int n1, double l0, double l1, int d0, int d1) :
33     RipleyDomain(2),
34     m_gNE0(n0),
35     m_gNE1(n1),
36     m_l0(l0),
37     m_l1(l1),
38     m_NX(d0),
39     m_NY(d1)
40     {
41     // ensure number of subdivisions is valid and nodes can be distributed
42     // among number of ranks
43     if (m_NX*m_NY != m_mpiInfo->size)
44     throw RipleyException("Invalid number of spatial subdivisions");
45    
46     if (n0%m_NX > 0 || n1%m_NY > 0)
47     throw RipleyException("Number of elements must be separable into number of ranks in each dimension");
48    
49     // local number of elements
50     m_NE0 = n0/m_NX;
51     m_NE1 = n1/m_NY;
52     // local number of nodes (not necessarily owned)
53     m_N0 = m_NE0+1;
54     m_N1 = m_NE1+1;
55     // bottom-left node is at (offset0,offset1) in global mesh
56     m_offset0 = m_NE0*(m_mpiInfo->rank%m_NX);
57     m_offset1 = m_NE1*(m_mpiInfo->rank/m_NX);
58     populateSampleIds();
59     }
60    
61     Rectangle::~Rectangle()
62     {
63     }
64    
65     string Rectangle::getDescription() const
66     {
67     return "ripley::Rectangle";
68     }
69    
70     bool Rectangle::operator==(const AbstractDomain& other) const
71     {
72     if (dynamic_cast<const Rectangle*>(&other))
73     return this==&other;
74    
75     return false;
76     }
77    
78     void Rectangle::dump(const string& fileName) const
79     {
80     #if USE_SILO
81     string fn(fileName);
82     if (fileName.length() < 6 || fileName.compare(fileName.length()-5, 5, ".silo") != 0) {
83     fn+=".silo";
84     }
85    
86     const int NUM_SILO_FILES = 1;
87     const char* blockDirFmt = "/block%04d";
88     int driver=DB_HDF5;
89     string siloPath;
90     DBfile* dbfile = NULL;
91    
92     #ifdef ESYS_MPI
93     PMPIO_baton_t* baton = NULL;
94     #endif
95    
96     if (m_mpiInfo->size > 1) {
97     #ifdef ESYS_MPI
98     baton = PMPIO_Init(NUM_SILO_FILES, PMPIO_WRITE, m_mpiInfo->comm,
99     0x1337, PMPIO_DefaultCreate, PMPIO_DefaultOpen,
100     PMPIO_DefaultClose, (void*)&driver);
101     // try the fallback driver in case of error
102     if (!baton && driver != DB_PDB) {
103     driver = DB_PDB;
104     baton = PMPIO_Init(NUM_SILO_FILES, PMPIO_WRITE, m_mpiInfo->comm,
105     0x1338, PMPIO_DefaultCreate, PMPIO_DefaultOpen,
106     PMPIO_DefaultClose, (void*)&driver);
107     }
108     if (baton) {
109     char str[64];
110     snprintf(str, 64, blockDirFmt, PMPIO_RankInGroup(baton, m_mpiInfo->rank));
111     siloPath = str;
112     dbfile = (DBfile*) PMPIO_WaitForBaton(baton, fn.c_str(), siloPath.c_str());
113     }
114     #endif
115     } else {
116     dbfile = DBCreate(fn.c_str(), DB_CLOBBER, DB_LOCAL,
117     getDescription().c_str(), driver);
118     // try the fallback driver in case of error
119     if (!dbfile && driver != DB_PDB) {
120     driver = DB_PDB;
121     dbfile = DBCreate(fn.c_str(), DB_CLOBBER, DB_LOCAL,
122     getDescription().c_str(), driver);
123     }
124     }
125    
126     if (!dbfile)
127     throw RipleyException("dump: Could not create Silo file");
128    
129     /*
130     if (driver==DB_HDF5) {
131     // gzip level 1 already provides good compression with minimal
132     // performance penalty. Some tests showed that gzip levels >3 performed
133     // rather badly on escript data both in terms of time and space
134     DBSetCompression("ERRMODE=FALLBACK METHOD=GZIP LEVEL=1");
135     }
136     */
137    
138     boost::scoped_ptr<double> x(new double[m_N0]);
139     boost::scoped_ptr<double> y(new double[m_N1]);
140     double* coords[2] = { x.get(), y.get() };
141 caltinay 3697 pair<double,double> xdx = getFirstCoordAndSpacing(0);
142     pair<double,double> ydy = getFirstCoordAndSpacing(1);
143 caltinay 3691 #pragma omp parallel
144     {
145     #pragma omp for
146     for (dim_t i0 = 0; i0 < m_N0; i0++) {
147 caltinay 3697 coords[0][i0]=xdx.first+i0*xdx.second;
148 caltinay 3691 }
149     #pragma omp for
150     for (dim_t i1 = 0; i1 < m_N1; i1++) {
151 caltinay 3697 coords[1][i1]=ydy.first+i1*ydy.second;
152 caltinay 3691 }
153     }
154 caltinay 3697 IndexVector dims = getNumNodesPerDim();
155    
156     // write mesh
157     DBPutQuadmesh(dbfile, "mesh", NULL, coords, &dims[0], 2, DB_DOUBLE,
158 caltinay 3691 DB_COLLINEAR, NULL);
159    
160 caltinay 3697 // write node ids
161     DBPutQuadvar1(dbfile, "nodeId", "mesh", (void*)&m_nodeId[0], &dims[0], 2,
162     NULL, 0, DB_INT, DB_NODECENT, NULL);
163    
164     // write element ids
165     dims = getNumElementsPerDim();
166     DBPutQuadvar1(dbfile, "elementId", "mesh", (void*)&m_elementId[0],
167     &dims[0], 2, NULL, 0, DB_INT, DB_ZONECENT, NULL);
168    
169     // rank 0 writes multimesh and multivar
170 caltinay 3691 if (m_mpiInfo->rank == 0) {
171     vector<string> tempstrings;
172 caltinay 3697 vector<char*> names;
173 caltinay 3691 for (dim_t i=0; i<m_mpiInfo->size; i++) {
174     stringstream path;
175     path << "/block" << setw(4) << setfill('0') << right << i << "/mesh";
176     tempstrings.push_back(path.str());
177 caltinay 3697 names.push_back((char*)tempstrings.back().c_str());
178 caltinay 3691 }
179 caltinay 3697 vector<int> types(m_mpiInfo->size, DB_QUAD_RECT);
180 caltinay 3691 DBSetDir(dbfile, "/");
181 caltinay 3697 DBPutMultimesh(dbfile, "multimesh", m_mpiInfo->size, &names[0],
182     &types[0], NULL);
183     tempstrings.clear();
184     names.clear();
185     for (dim_t i=0; i<m_mpiInfo->size; i++) {
186     stringstream path;
187     path << "/block" << setw(4) << setfill('0') << right << i << "/nodeId";
188     tempstrings.push_back(path.str());
189     names.push_back((char*)tempstrings.back().c_str());
190     }
191     types.assign(m_mpiInfo->size, DB_QUADVAR);
192     DBPutMultivar(dbfile, "nodeId", m_mpiInfo->size, &names[0],
193     &types[0], NULL);
194     tempstrings.clear();
195     names.clear();
196     for (dim_t i=0; i<m_mpiInfo->size; i++) {
197     stringstream path;
198     path << "/block" << setw(4) << setfill('0') << right << i << "/elementId";
199     tempstrings.push_back(path.str());
200     names.push_back((char*)tempstrings.back().c_str());
201     }
202     DBPutMultivar(dbfile, "elementId", m_mpiInfo->size, &names[0],
203     &types[0], NULL);
204 caltinay 3691 }
205    
206     if (m_mpiInfo->size > 1) {
207     #ifdef ESYS_MPI
208     PMPIO_HandOffBaton(baton, dbfile);
209     PMPIO_Finish(baton);
210     #endif
211     } else {
212     DBClose(dbfile);
213     }
214    
215     #else // USE_SILO
216     throw RipleyException("dump(): no Silo support");
217     #endif
218     }
219    
220 caltinay 3697 const int* Rectangle::borrowSampleReferenceIDs(int fsType) const
221 caltinay 3691 {
222 caltinay 3697 switch (fsType) {
223 caltinay 3691 case Nodes:
224     return &m_nodeId[0];
225     case Elements:
226     return &m_elementId[0];
227     case FaceElements:
228     return &m_faceId[0];
229     default:
230     break;
231     }
232    
233     stringstream msg;
234     msg << "borrowSampleReferenceIDs() not implemented for function space type "
235 caltinay 3701 << functionSpaceTypeAsString(fsType);
236 caltinay 3691 throw RipleyException(msg.str());
237     }
238    
239     bool Rectangle::ownSample(int fsCode, index_t id) const
240     {
241     #ifdef ESYS_MPI
242 caltinay 3702 if (fsCode != ReducedNodes) {
243 caltinay 3699 const index_t myFirst=m_nodeDistribution[m_mpiInfo->rank];
244     const index_t myLast=m_nodeDistribution[m_mpiInfo->rank+1]-1;
245 caltinay 3691 return (m_nodeId[id]>=myFirst && m_nodeId[id]<=myLast);
246 caltinay 3702 } else {
247     stringstream msg;
248     msg << "ownSample() not implemented for "
249     << functionSpaceTypeAsString(fsCode);
250     throw RipleyException(msg.str());
251     }
252 caltinay 3691 #else
253     return true;
254     #endif
255     }
256    
257 caltinay 3702 void Rectangle::setToGradient(escript::Data& out, const escript::Data& cIn) const
258 caltinay 3691 {
259 caltinay 3702 escript::Data& in = *const_cast<escript::Data*>(&cIn);
260 caltinay 3701 const dim_t numComp = in.getDataPointSize();
261 caltinay 3702 const double h0 = m_l0/m_gNE0;
262     const double h1 = m_l1/m_gNE1;
263     if (out.getFunctionSpace().getTypeCode() == Elements) {
264     /* GENERATOR SNIP_GRAD_ELEMENTS TOP */
265     const double tmp0_13 = 0.78867513459481288225/h1;
266     const double tmp0_0 = 0.78867513459481288225/h0;
267     const double tmp0_4 = 0.21132486540518711775/h0;
268     const double tmp0_10 = 0.78867513459481288225/h1;
269     const double tmp0_1 = 0.21132486540518711775/h0;
270     const double tmp0_8 = -0.21132486540518711775/h1;
271     const double tmp0_14 = 0.21132486540518711775/h1;
272     const double tmp0_5 = 0.78867513459481288225/h0;
273     const double tmp0_11 = -0.78867513459481288225/h1;
274     const double tmp0_2 = -0.21132486540518711775/h0;
275     const double tmp0_9 = 0.21132486540518711775/h1;
276     const double tmp0_15 = -0.21132486540518711775/h1;
277     const double tmp0_6 = -0.78867513459481288225/h0;
278     const double tmp0_3 = -0.78867513459481288225/h0;
279     const double tmp0_12 = -0.78867513459481288225/h1;
280     const double tmp0_7 = -0.21132486540518711775/h0;
281 caltinay 3697 #pragma omp parallel for
282 caltinay 3702 for (index_t k1 =0; k1 < m_NE1; ++k1) {
283     for (index_t k0 =0; k0 < m_NE0; ++k0) {
284     const register double* f_10 = in.getSampleDataRO(INDEX2(k0+1,k1, m_N0));
285     const register double* f_11 = in.getSampleDataRO(INDEX2(k0+1,k1+1, m_N0));
286     const register double* f_01 = in.getSampleDataRO(INDEX2(k0,k1+1, m_N0));
287     const register double* f_00 = in.getSampleDataRO(INDEX2(k0,k1, m_N0));
288     double* o = out.getSampleDataRW(INDEX2(k0,k1,m_NE0));
289     for (index_t i=0; i < numComp; ++i) {
290     o[INDEX3(i,0,0,numComp,2)] = f_00[i]*tmp0_3 + f_01[i]*tmp0_2 + f_10[i]*tmp0_0 + f_11[i]*tmp0_1;
291     o[INDEX3(i,1,0,numComp,2)] = f_00[i]*tmp0_11 + f_01[i]*tmp0_10 + f_10[i]*tmp0_8 + f_11[i]*tmp0_9;
292     o[INDEX3(i,0,1,numComp,2)] = f_00[i]*tmp0_3 + f_01[i]*tmp0_2 + f_10[i]*tmp0_0 + f_11[i]*tmp0_1;
293     o[INDEX3(i,1,1,numComp,2)] = f_00[i]*tmp0_15 + f_01[i]*tmp0_14 + f_10[i]*tmp0_12 + f_11[i]*tmp0_13;
294     o[INDEX3(i,0,2,numComp,2)] = f_00[i]*tmp0_7 + f_01[i]*tmp0_6 + f_10[i]*tmp0_4 + f_11[i]*tmp0_5;
295     o[INDEX3(i,1,2,numComp,2)] = f_00[i]*tmp0_11 + f_01[i]*tmp0_10 + f_10[i]*tmp0_8 + f_11[i]*tmp0_9;
296     o[INDEX3(i,0,3,numComp,2)] = f_00[i]*tmp0_7 + f_01[i]*tmp0_6 + f_10[i]*tmp0_4 + f_11[i]*tmp0_5;
297     o[INDEX3(i,1,3,numComp,2)] = f_00[i]*tmp0_15 + f_01[i]*tmp0_14 + f_10[i]*tmp0_12 + f_11[i]*tmp0_13;
298     } /* end of component loop i */
299     } /* end of k0 loop */
300     } /* end of k1 loop */
301     /* GENERATOR SNIP_GRAD_ELEMENTS BOTTOM */
302     } else {
303     throw RipleyException("setToGradient() not implemented");
304     }
305 caltinay 3701 }
306 caltinay 3697
307 caltinay 3701 void Rectangle::addPDEToSystem(escript::AbstractSystemMatrix& mat,
308     escript::Data& rhs, const escript::Data& A, const escript::Data& B,
309     const escript::Data& C, const escript::Data& D,
310     const escript::Data& X, const escript::Data& Y,
311     const escript::Data& d, const escript::Data& y,
312     const escript::Data& d_contact, const escript::Data& y_contact,
313     const escript::Data& d_dirac, const escript::Data& y_dirac) const
314     {
315     throw RipleyException("addPDEToSystem() not implemented");
316     }
317    
318 caltinay 3691 Paso_SystemMatrixPattern* Rectangle::getPattern(bool reducedRowOrder,
319     bool reducedColOrder) const
320     {
321     if (reducedRowOrder || reducedColOrder)
322     throw RipleyException("getPattern() not implemented for reduced order");
323    
324 caltinay 3699 // connector
325     RankVector neighbour;
326     IndexVector offsetInShared(1,0);
327     IndexVector sendShared, recvShared;
328     const IndexVector faces=getNumFacesPerBoundary();
329     const index_t left = (m_offset0==0 ? 0 : 1);
330     const index_t bottom = (m_offset1==0 ? 0 : 1);
331     // corner node from bottom-left
332     if (faces[0] == 0 && faces[2] == 0) {
333     neighbour.push_back(m_mpiInfo->rank-m_NX-1);
334     offsetInShared.push_back(offsetInShared.back()+1);
335     sendShared.push_back(m_nodeId[m_N0+left]);
336     recvShared.push_back(m_nodeId[0]);
337     }
338     // bottom edge
339     if (faces[2] == 0) {
340     neighbour.push_back(m_mpiInfo->rank-m_NX);
341     offsetInShared.push_back(offsetInShared.back()+m_N0-left);
342     for (dim_t i=left; i<m_N0; i++) {
343     // easy case, we know the neighbour id's
344     sendShared.push_back(m_nodeId[m_N0+i]);
345     recvShared.push_back(m_nodeId[i]);
346     }
347     }
348     // corner node from bottom-right
349     if (faces[1] == 0 && faces[2] == 0) {
350     neighbour.push_back(m_mpiInfo->rank-m_NX+1);
351     const index_t N0=(neighbour.back()%m_NX == 0 ? m_N0 : m_N0-1);
352     const index_t N1=(neighbour.back()/m_NX == 0 ? m_N1 : m_N1-1);
353     const index_t first=m_nodeDistribution[neighbour.back()];
354     offsetInShared.push_back(offsetInShared.back()+1);
355     sendShared.push_back(m_nodeId[(bottom+1)*m_N0-1]);
356     recvShared.push_back(first+N0*(N1-1));
357     }
358     // left edge
359     if (faces[0] == 0) {
360     neighbour.push_back(m_mpiInfo->rank-1);
361     offsetInShared.push_back(offsetInShared.back()+m_N1-bottom);
362     for (dim_t i=bottom; i<m_N1; i++) {
363     // easy case, we know the neighbour id's
364     sendShared.push_back(m_nodeId[i*m_N0+1]);
365     recvShared.push_back(m_nodeId[i*m_N0]);
366     }
367     }
368     // right edge
369     if (faces[1] == 0) {
370     neighbour.push_back(m_mpiInfo->rank+1);
371     const index_t rightN0=(neighbour.back()%m_NX == 0 ? m_N0 : m_N0-1);
372     const index_t first=m_nodeDistribution[neighbour.back()];
373     offsetInShared.push_back(offsetInShared.back()+m_N1-bottom);
374     for (dim_t i=bottom; i<m_N1; i++) {
375     sendShared.push_back(m_nodeId[(i+1)*m_N0-1]);
376     recvShared.push_back(first+rightN0*(i-bottom));
377     }
378     }
379     // corner node from top-left
380     if (faces[0] == 0 && faces[3] == 0) {
381     neighbour.push_back(m_mpiInfo->rank+m_NX-1);
382     const index_t N0=(neighbour.back()%m_NX == 0 ? m_N0 : m_N0-1);
383     const index_t first=m_nodeDistribution[neighbour.back()];
384     offsetInShared.push_back(offsetInShared.back()+1);
385     sendShared.push_back(m_nodeId[m_N0*(m_N1-1)+left]);
386     recvShared.push_back(first+N0-1);
387     }
388     // top edge
389     if (faces[3] == 0) {
390     neighbour.push_back(m_mpiInfo->rank+m_NX);
391     const index_t first=m_nodeDistribution[neighbour.back()];
392     offsetInShared.push_back(offsetInShared.back()+m_N0-left);
393     for (dim_t i=left; i<m_N0; i++) {
394     sendShared.push_back(m_nodeId[m_N0*(m_N1-1)+i]);
395     recvShared.push_back(first+i-left);
396     }
397     }
398     // corner node from top-right
399     if (faces[1] == 0 && faces[3] == 0) {
400     neighbour.push_back(m_mpiInfo->rank+m_NX+1);
401     const index_t first=m_nodeDistribution[neighbour.back()];
402     offsetInShared.push_back(offsetInShared.back()+1);
403     sendShared.push_back(m_nodeId[m_N0*m_N1-1]);
404     recvShared.push_back(first);
405     }
406     const int numDOF=m_nodeDistribution[m_mpiInfo->rank+1]-m_nodeDistribution[m_mpiInfo->rank];
407 caltinay 3702 /*
408 caltinay 3699 cout << "--- rcv_shcomp ---" << endl;
409     cout << "numDOF=" << numDOF << ", numNeighbors=" << neighbour.size() << endl;
410     for (size_t i=0; i<neighbour.size(); i++) {
411     cout << "neighbor[" << i << "]=" << neighbour[i]
412     << " offsetInShared[" << i+1 << "]=" << offsetInShared[i+1] << endl;
413     }
414     for (size_t i=0; i<recvShared.size(); i++) {
415     cout << "shared[" << i << "]=" << recvShared[i] << endl;
416     }
417     cout << "--- snd_shcomp ---" << endl;
418     for (size_t i=0; i<sendShared.size(); i++) {
419     cout << "shared[" << i << "]=" << sendShared[i] << endl;
420     }
421 caltinay 3702 */
422 caltinay 3691
423     Paso_SharedComponents *snd_shcomp = Paso_SharedComponents_alloc(
424 caltinay 3699 numDOF, neighbour.size(), &neighbour[0], &sendShared[0],
425 caltinay 3697 &offsetInShared[0], 1, 0, m_mpiInfo);
426 caltinay 3691 Paso_SharedComponents *rcv_shcomp = Paso_SharedComponents_alloc(
427 caltinay 3699 numDOF, neighbour.size(), &neighbour[0], &recvShared[0],
428 caltinay 3697 &offsetInShared[0], 1, 0, m_mpiInfo);
429 caltinay 3691 Paso_Connector* connector = Paso_Connector_alloc(snd_shcomp, rcv_shcomp);
430 caltinay 3699 Paso_SharedComponents_free(snd_shcomp);
431     Paso_SharedComponents_free(rcv_shcomp);
432 caltinay 3691
433     // create patterns
434 caltinay 3699 dim_t M, N;
435     IndexVector ptr(1,0);
436     IndexVector index;
437    
438     // main pattern
439     for (index_t i=0; i<numDOF; i++) {
440     // always add the node itself
441     index.push_back(i);
442     int num=insertNeighbours(index, i);
443     ptr.push_back(ptr.back()+num+1);
444     }
445     M=N=ptr.size()-1;
446     // paso will manage the memory
447     index_t* indexC = MEMALLOC(index.size(),index_t);
448     index_t* ptrC = MEMALLOC(ptr.size(), index_t);
449     copy(index.begin(), index.end(), indexC);
450     copy(ptr.begin(), ptr.end(), ptrC);
451 caltinay 3691 Paso_Pattern *mainPattern = Paso_Pattern_alloc(MATRIX_FORMAT_DEFAULT,
452 caltinay 3699 M, N, ptrC, indexC);
453 caltinay 3691
454 caltinay 3702 /*
455 caltinay 3699 cout << "--- main_pattern ---" << endl;
456     cout << "M=" << M << ", N=" << N << endl;
457     for (size_t i=0; i<ptr.size(); i++) {
458     cout << "ptr[" << i << "]=" << ptr[i] << endl;
459     }
460     for (size_t i=0; i<index.size(); i++) {
461     cout << "index[" << i << "]=" << index[i] << endl;
462     }
463 caltinay 3702 */
464 caltinay 3699
465     ptr.clear();
466     index.clear();
467    
468     // column & row couple patterns
469     Paso_Pattern *colCouplePattern, *rowCouplePattern;
470     generateCouplePatterns(&colCouplePattern, &rowCouplePattern);
471    
472     // allocate paso distribution
473     Paso_Distribution* distribution = Paso_Distribution_alloc(m_mpiInfo,
474     const_cast<index_t*>(&m_nodeDistribution[0]), 1, 0);
475    
476 caltinay 3691 Paso_SystemMatrixPattern* pattern = Paso_SystemMatrixPattern_alloc(
477     MATRIX_FORMAT_DEFAULT, distribution, distribution,
478     mainPattern, colCouplePattern, rowCouplePattern,
479     connector, connector);
480     Paso_Pattern_free(mainPattern);
481     Paso_Pattern_free(colCouplePattern);
482     Paso_Pattern_free(rowCouplePattern);
483     Paso_Distribution_free(distribution);
484 caltinay 3697 return pattern;
485 caltinay 3691 }
486    
487     void Rectangle::Print_Mesh_Info(const bool full) const
488     {
489     RipleyDomain::Print_Mesh_Info(full);
490     if (full) {
491     cout << " Id Coordinates" << endl;
492     cout.precision(15);
493     cout.setf(ios::scientific, ios::floatfield);
494 caltinay 3697 pair<double,double> xdx = getFirstCoordAndSpacing(0);
495     pair<double,double> ydy = getFirstCoordAndSpacing(1);
496 caltinay 3691 for (index_t i=0; i < getNumNodes(); i++) {
497     cout << " " << setw(5) << m_nodeId[i]
498 caltinay 3697 << " " << xdx.first+(i%m_N0)*xdx.second
499     << " " << ydy.first+(i/m_N0)*ydy.second << endl;
500 caltinay 3691 }
501     }
502     }
503    
504 caltinay 3697 IndexVector Rectangle::getNumNodesPerDim() const
505     {
506     IndexVector ret;
507     ret.push_back(m_N0);
508     ret.push_back(m_N1);
509     return ret;
510     }
511    
512     IndexVector Rectangle::getNumElementsPerDim() const
513     {
514     IndexVector ret;
515     ret.push_back(m_NE0);
516     ret.push_back(m_NE1);
517     return ret;
518     }
519    
520     IndexVector Rectangle::getNumFacesPerBoundary() const
521     {
522     IndexVector ret(4, 0);
523     //left
524     if (m_offset0==0)
525     ret[0]=m_NE1;
526     //right
527     if (m_mpiInfo->rank%m_NX==m_NX-1)
528     ret[1]=m_NE1;
529     //bottom
530     if (m_offset1==0)
531     ret[2]=m_NE0;
532     //top
533     if (m_mpiInfo->rank/m_NX==m_NY-1)
534     ret[3]=m_NE0;
535     return ret;
536     }
537    
538     pair<double,double> Rectangle::getFirstCoordAndSpacing(dim_t dim) const
539     {
540     if (dim==0) {
541     return pair<double,double>((m_l0*m_offset0)/m_gNE0, m_l0/m_gNE0);
542     } else if (dim==1) {
543     return pair<double,double>((m_l1*m_offset1)/m_gNE1, m_l1/m_gNE1);
544     }
545     throw RipleyException("getFirstCoordAndSpacing(): invalid argument");
546     }
547    
548 caltinay 3691 //protected
549     dim_t Rectangle::getNumFaceElements() const
550     {
551 caltinay 3699 const IndexVector faces = getNumFacesPerBoundary();
552 caltinay 3691 dim_t n=0;
553 caltinay 3699 for (size_t i=0; i<faces.size(); i++)
554     n+=faces[i];
555 caltinay 3691 return n;
556     }
557    
558     //protected
559     void Rectangle::assembleCoordinates(escript::Data& arg) const
560     {
561     escriptDataC x = arg.getDataC();
562     int numDim = m_numDim;
563     if (!isDataPointShapeEqual(&x, 1, &numDim))
564     throw RipleyException("setToX: Invalid Data object shape");
565     if (!numSamplesEqual(&x, 1, getNumNodes()))
566     throw RipleyException("setToX: Illegal number of samples in Data object");
567    
568 caltinay 3697 pair<double,double> xdx = getFirstCoordAndSpacing(0);
569     pair<double,double> ydy = getFirstCoordAndSpacing(1);
570 caltinay 3691 arg.requireWrite();
571     #pragma omp parallel for
572     for (dim_t i1 = 0; i1 < m_N1; i1++) {
573     for (dim_t i0 = 0; i0 < m_N0; i0++) {
574     double* point = arg.getSampleDataRW(i0+m_N0*i1);
575 caltinay 3697 point[0] = xdx.first+i0*xdx.second;
576     point[1] = ydy.first+i1*ydy.second;
577 caltinay 3691 }
578     }
579     }
580    
581     //private
582     void Rectangle::populateSampleIds()
583     {
584 caltinay 3697 // identifiers are ordered from left to right, bottom to top on each rank,
585     // except for the shared nodes which are owned by the rank below / to the
586     // left of the current rank
587    
588     // build node distribution vector first.
589     // m_nodeDistribution[i] is the first node id on rank i, that is
590     // rank i owns m_nodeDistribution[i+1]-nodeDistribution[i] nodes
591     m_nodeDistribution.assign(m_mpiInfo->size+1, 0);
592     m_nodeDistribution[1]=getNumNodes();
593     for (dim_t k=1; k<m_mpiInfo->size-1; k++) {
594     const index_t x=k%m_NX;
595     const index_t y=k/m_NX;
596     index_t numNodes=getNumNodes();
597     if (x>0)
598     numNodes-=m_N1;
599     if (y>0)
600     numNodes-=m_N0;
601     if (x>0 && y>0)
602     numNodes++; // subtracted corner twice -> fix that
603     m_nodeDistribution[k+1]=m_nodeDistribution[k]+numNodes;
604     }
605     m_nodeDistribution[m_mpiInfo->size]=getNumDataPointsGlobal();
606    
607 caltinay 3691 m_nodeId.resize(getNumNodes());
608 caltinay 3697
609     // the bottom row and left column are not owned by this rank so the
610     // identifiers need to be computed accordingly
611     const index_t left = (m_offset0==0 ? 0 : 1);
612     const index_t bottom = (m_offset1==0 ? 0 : 1);
613     if (left>0) {
614     const int neighbour=m_mpiInfo->rank-1;
615     const index_t leftN0=(neighbour%m_NX == 0 ? m_N0 : m_N0-1);
616 caltinay 3691 #pragma omp parallel for
617 caltinay 3697 for (dim_t i1=bottom; i1<m_N1; i1++) {
618     m_nodeId[i1*m_N0]=m_nodeDistribution[neighbour]
619     + (i1-bottom+1)*leftN0-1;
620     }
621     }
622     if (bottom>0) {
623     const int neighbour=m_mpiInfo->rank-m_NX;
624     const index_t bottomN0=(neighbour%m_NX == 0 ? m_N0 : m_N0-1);
625     const index_t bottomN1=(neighbour/m_NX == 0 ? m_N1 : m_N1-1);
626     #pragma omp parallel for
627     for (dim_t i0=left; i0<m_N0; i0++) {
628     m_nodeId[i0]=m_nodeDistribution[neighbour]
629     + (bottomN1-1)*bottomN0 + i0 - left;
630     }
631     }
632     if (left>0 && bottom>0) {
633     const int neighbour=m_mpiInfo->rank-m_NX-1;
634 caltinay 3699 const index_t N0=(neighbour%m_NX == 0 ? m_N0 : m_N0-1);
635     const index_t N1=(neighbour/m_NX == 0 ? m_N1 : m_N1-1);
636     m_nodeId[0]=m_nodeDistribution[neighbour]+N0*N1-1;
637 caltinay 3697 }
638    
639     // the rest of the id's are contiguous
640     const index_t firstId=m_nodeDistribution[m_mpiInfo->rank];
641     #pragma omp parallel for
642     for (dim_t i1=bottom; i1<m_N1; i1++) {
643     for (dim_t i0=left; i0<m_N0; i0++) {
644     m_nodeId[i0+i1*m_N0] = firstId+i0-left+(i1-bottom)*(m_N0-left);
645     }
646     }
647    
648     // elements
649     m_elementId.resize(getNumElements());
650     #pragma omp parallel for
651     for (dim_t k=0; k<getNumElements(); k++) {
652     m_elementId[k]=k;
653     }
654    
655     // face elements
656     m_faceId.resize(getNumFaceElements());
657     #pragma omp parallel for
658     for (dim_t k=0; k<getNumFaceElements(); k++) {
659     m_faceId[k]=k;
660     }
661 caltinay 3691 }
662    
663 caltinay 3699 //private
664     int Rectangle::insertNeighbours(IndexVector& index, index_t node) const
665     {
666     const dim_t myN0 = (m_offset0==0 ? m_N0 : m_N0-1);
667     const dim_t myN1 = (m_offset1==0 ? m_N1 : m_N1-1);
668     const int x=node%myN0;
669     const int y=node/myN0;
670     int num=0;
671     if (y>0) {
672     if (x>0) {
673     // bottom-left
674     index.push_back(node-myN0-1);
675     num++;
676     }
677     // bottom
678     index.push_back(node-myN0);
679     num++;
680     if (x<myN0-1) {
681     // bottom-right
682     index.push_back(node-myN0+1);
683     num++;
684     }
685     }
686     if (x<myN0-1) {
687     // right
688     index.push_back(node+1);
689     num++;
690     if (y<myN1-1) {
691     // top-right
692     index.push_back(node+myN0+1);
693     num++;
694     }
695     }
696     if (y<myN1-1) {
697     // top
698     index.push_back(node+myN0);
699     num++;
700     if (x>0) {
701     // top-left
702     index.push_back(node+myN0-1);
703     num++;
704     }
705     }
706     if (x>0) {
707     // left
708     index.push_back(node-1);
709     num++;
710     }
711    
712     return num;
713     }
714    
715     //private
716     void Rectangle::generateCouplePatterns(Paso_Pattern** colPattern, Paso_Pattern** rowPattern) const
717     {
718     IndexVector ptr(1,0);
719     IndexVector index;
720     const dim_t myN0 = (m_offset0==0 ? m_N0 : m_N0-1);
721     const dim_t myN1 = (m_offset1==0 ? m_N1 : m_N1-1);
722     const IndexVector faces=getNumFacesPerBoundary();
723    
724     // bottom edge
725     dim_t n=0;
726     if (faces[0] == 0) {
727     index.push_back(2*(myN0+myN1+1));
728     index.push_back(2*(myN0+myN1+1)+1);
729     n+=2;
730     if (faces[2] == 0) {
731     index.push_back(0);
732     index.push_back(1);
733     index.push_back(2);
734     n+=3;
735     }
736     } else if (faces[2] == 0) {
737     index.push_back(1);
738     index.push_back(2);
739     n+=2;
740     }
741     // n=neighbours of bottom-left corner node
742     ptr.push_back(ptr.back()+n);
743     n=0;
744     if (faces[2] == 0) {
745     for (dim_t i=1; i<myN0-1; i++) {
746     index.push_back(i);
747     index.push_back(i+1);
748     index.push_back(i+2);
749     ptr.push_back(ptr.back()+3);
750     }
751     index.push_back(myN0-1);
752     index.push_back(myN0);
753     n+=2;
754     if (faces[1] == 0) {
755     index.push_back(myN0+1);
756     index.push_back(myN0+2);
757     index.push_back(myN0+3);
758     n+=3;
759     }
760     } else {
761     for (dim_t i=1; i<myN0-1; i++) {
762     ptr.push_back(ptr.back());
763     }
764     if (faces[1] == 0) {
765     index.push_back(myN0+2);
766     index.push_back(myN0+3);
767     n+=2;
768     }
769     }
770     // n=neighbours of bottom-right corner node
771     ptr.push_back(ptr.back()+n);
772    
773     // 2nd row to 2nd last row
774     for (dim_t i=1; i<myN1-1; i++) {
775     // left edge
776     if (faces[0] == 0) {
777     index.push_back(2*(myN0+myN1+2)-i);
778     index.push_back(2*(myN0+myN1+2)-i-1);
779     index.push_back(2*(myN0+myN1+2)-i-2);
780     ptr.push_back(ptr.back()+3);
781     } else {
782     ptr.push_back(ptr.back());
783     }
784     for (dim_t j=1; j<myN0-1; j++) {
785     ptr.push_back(ptr.back());
786     }
787     // right edge
788     if (faces[1] == 0) {
789     index.push_back(myN0+i+1);
790     index.push_back(myN0+i+2);
791     index.push_back(myN0+i+3);
792     ptr.push_back(ptr.back()+3);
793     } else {
794     ptr.push_back(ptr.back());
795     }
796     }
797    
798     // top edge
799     n=0;
800     if (faces[0] == 0) {
801     index.push_back(2*myN0+myN1+5);
802     index.push_back(2*myN0+myN1+4);
803     n+=2;
804     if (faces[3] == 0) {
805     index.push_back(2*myN0+myN1+3);
806     index.push_back(2*myN0+myN1+2);
807     index.push_back(2*myN0+myN1+1);
808     n+=3;
809     }
810     } else if (faces[3] == 0) {
811     index.push_back(2*myN0+myN1+2);
812     index.push_back(2*myN0+myN1+1);
813     n+=2;
814     }
815     // n=neighbours of top-left corner node
816     ptr.push_back(ptr.back()+n);
817     n=0;
818     if (faces[3] == 0) {
819     for (dim_t i=1; i<myN0-1; i++) {
820     index.push_back(2*myN0+myN1+i+1);
821     index.push_back(2*myN0+myN1+i);
822     index.push_back(2*myN0+myN1+i-1);
823     ptr.push_back(ptr.back()+3);
824     }
825     index.push_back(myN0+myN1+4);
826     index.push_back(myN0+myN1+3);
827     n+=2;
828     if (faces[1] == 0) {
829     index.push_back(myN0+myN1+2);
830     index.push_back(myN0+myN1+1);
831     index.push_back(myN0+myN1);
832     n+=3;
833     }
834     } else {
835     for (dim_t i=1; i<myN0-1; i++) {
836     ptr.push_back(ptr.back());
837     }
838     if (faces[1] == 0) {
839     index.push_back(myN0+myN1+1);
840     index.push_back(myN0+myN1);
841     n+=2;
842     }
843     }
844     // n=neighbours of top-right corner node
845     ptr.push_back(ptr.back()+n);
846    
847     dim_t M=ptr.size()-1;
848     map<index_t,index_t> idMap;
849     dim_t N=0;
850     for (IndexVector::iterator it=index.begin(); it!=index.end(); it++) {
851     if (idMap.find(*it)==idMap.end()) {
852     idMap[*it]=N;
853     *it=N++;
854     } else {
855     *it=idMap[*it];
856     }
857     }
858    
859 caltinay 3702 /*
860 caltinay 3699 cout << "--- colCouple_pattern ---" << endl;
861     cout << "M=" << M << ", N=" << N << endl;
862     for (size_t i=0; i<ptr.size(); i++) {
863     cout << "ptr[" << i << "]=" << ptr[i] << endl;
864     }
865     for (size_t i=0; i<index.size(); i++) {
866     cout << "index[" << i << "]=" << index[i] << endl;
867     }
868 caltinay 3702 */
869 caltinay 3699
870     // now build the row couple pattern
871     IndexVector ptr2(1,0);
872     IndexVector index2;
873     for (dim_t id=0; id<N; id++) {
874     n=0;
875     for (dim_t i=0; i<M; i++) {
876     for (dim_t j=ptr[i]; j<ptr[i+1]; j++) {
877     if (index[j]==id) {
878     index2.push_back(i);
879     n++;
880     break;
881     }
882     }
883     }
884     ptr2.push_back(ptr2.back()+n);
885     }
886    
887 caltinay 3702 /*
888 caltinay 3699 cout << "--- rowCouple_pattern ---" << endl;
889     cout << "M=" << N << ", N=" << M << endl;
890     for (size_t i=0; i<ptr2.size(); i++) {
891     cout << "ptr[" << i << "]=" << ptr2[i] << endl;
892     }
893     for (size_t i=0; i<index2.size(); i++) {
894     cout << "index[" << i << "]=" << index2[i] << endl;
895     }
896 caltinay 3702 */
897 caltinay 3699
898     // paso will manage the memory
899     index_t* indexC = MEMALLOC(index.size(), index_t);
900     index_t* ptrC = MEMALLOC(ptr.size(), index_t);
901     copy(index.begin(), index.end(), indexC);
902     copy(ptr.begin(), ptr.end(), ptrC);
903     *colPattern=Paso_Pattern_alloc(MATRIX_FORMAT_DEFAULT, M, N, ptrC, indexC);
904    
905     // paso will manage the memory
906     indexC = MEMALLOC(index2.size(), index_t);
907     ptrC = MEMALLOC(ptr2.size(), index_t);
908     copy(index2.begin(), index2.end(), indexC);
909     copy(ptr2.begin(), ptr2.end(), ptrC);
910     *rowPattern=Paso_Pattern_alloc(MATRIX_FORMAT_DEFAULT, N, M, ptrC, indexC);
911     }
912    
913 caltinay 3702 //protected
914     void Rectangle::interpolateNodesOnElements(escript::Data& out, escript::Data& in) const
915     {
916     const dim_t numComp = in.getDataPointSize();
917     /* GENERATOR SNIP_INTERPOLATE_ELEMENTS TOP */
918     const double tmp0_2 = 0.62200846792814621559;
919     const double tmp0_1 = 0.044658198738520451079;
920     const double tmp0_0 = 0.16666666666666666667;
921     #pragma omp parallel for
922     for (index_t k1=0; k1 < m_NE1; ++k1) {
923     for (index_t k0=0; k0 < m_NE0; ++k0) {
924     const register double* f_10 = in.getSampleDataRO(INDEX2(k0+1,k1, m_N0));
925     const register double* f_11 = in.getSampleDataRO(INDEX2(k0+1,k1+1, m_N0));
926     const register double* f_01 = in.getSampleDataRO(INDEX2(k0,k1+1, m_N0));
927     const register double* f_00 = in.getSampleDataRO(INDEX2(k0,k1, m_N0));
928     double* o = out.getSampleDataRW(INDEX2(k0,k1,m_NE0));
929     for (index_t i=0; i < numComp; ++i) {
930     o[INDEX2(i,numComp,0)] = f_00[i]*tmp0_2 + f_11[i]*tmp0_1 + tmp0_0*(f_01[i] + f_10[i]);
931     o[INDEX2(i,numComp,1)] = f_01[i]*tmp0_1 + f_10[i]*tmp0_2 + tmp0_0*(f_00[i] + f_11[i]);
932     o[INDEX2(i,numComp,2)] = f_01[i]*tmp0_2 + f_10[i]*tmp0_1 + tmp0_0*(f_00[i] + f_11[i]);
933     o[INDEX2(i,numComp,3)] = f_00[i]*tmp0_1 + f_11[i]*tmp0_2 + tmp0_0*(f_01[i] + f_10[i]);
934     } /* end of component loop i */
935     } /* end of k0 loop */
936     } /* end of k1 loop */
937     /* GENERATOR SNIP_INTERPOLATE_ELEMENTS BOTTOM */
938     }
939    
940     //protected
941     void Rectangle::interpolateNodesOnFaces(escript::Data& out, escript::Data& in) const
942     {
943     throw RipleyException("interpolateNodesOnFaces() not implemented");
944     }
945    
946 caltinay 3691 } // end of namespace ripley
947    

  ViewVC Help
Powered by ViewVC 1.1.26