1 |
|
2 |
/******************************************************* |
3 |
* |
4 |
* Copyright (c) 2003-2011 by University of Queensland |
5 |
* Earth Systems Science Computational Center (ESSCC) |
6 |
* http://www.uq.edu.au/esscc |
7 |
* |
8 |
* Primary Business: Queensland, Australia |
9 |
* Licensed under the Open Software License version 3.0 |
10 |
* http://www.opensource.org/licenses/osl-3.0.php |
11 |
* |
12 |
*******************************************************/ |
13 |
|
14 |
#include <ripley/Rectangle.h> |
15 |
extern "C" { |
16 |
#include "paso/SystemMatrixPattern.h" |
17 |
} |
18 |
|
19 |
#if USE_SILO |
20 |
#include <silo.h> |
21 |
#ifdef ESYS_MPI |
22 |
#include <pmpio.h> |
23 |
#endif |
24 |
#endif |
25 |
|
26 |
#include <iomanip> |
27 |
|
28 |
using namespace std; |
29 |
|
30 |
namespace ripley { |
31 |
|
32 |
Rectangle::Rectangle(int n0, int n1, double l0, double l1, int d0, int d1) : |
33 |
RipleyDomain(2), |
34 |
m_gNE0(n0), |
35 |
m_gNE1(n1), |
36 |
m_l0(l0), |
37 |
m_l1(l1), |
38 |
m_NX(d0), |
39 |
m_NY(d1) |
40 |
{ |
41 |
// ensure number of subdivisions is valid and nodes can be distributed |
42 |
// among number of ranks |
43 |
if (m_NX*m_NY != m_mpiInfo->size) |
44 |
throw RipleyException("Invalid number of spatial subdivisions"); |
45 |
|
46 |
if (n0%m_NX > 0 || n1%m_NY > 0) |
47 |
throw RipleyException("Number of elements must be separable into number of ranks in each dimension"); |
48 |
|
49 |
// local number of elements |
50 |
m_NE0 = n0/m_NX; |
51 |
m_NE1 = n1/m_NY; |
52 |
// local number of nodes (not necessarily owned) |
53 |
m_N0 = m_NE0+1; |
54 |
m_N1 = m_NE1+1; |
55 |
// bottom-left node is at (offset0,offset1) in global mesh |
56 |
m_offset0 = m_NE0*(m_mpiInfo->rank%m_NX); |
57 |
m_offset1 = m_NE1*(m_mpiInfo->rank/m_NX); |
58 |
populateSampleIds(); |
59 |
} |
60 |
|
61 |
Rectangle::~Rectangle() |
62 |
{ |
63 |
} |
64 |
|
65 |
string Rectangle::getDescription() const |
66 |
{ |
67 |
return "ripley::Rectangle"; |
68 |
} |
69 |
|
70 |
bool Rectangle::operator==(const AbstractDomain& other) const |
71 |
{ |
72 |
if (dynamic_cast<const Rectangle*>(&other)) |
73 |
return this==&other; |
74 |
|
75 |
return false; |
76 |
} |
77 |
|
78 |
void Rectangle::dump(const string& fileName) const |
79 |
{ |
80 |
#if USE_SILO |
81 |
string fn(fileName); |
82 |
if (fileName.length() < 6 || fileName.compare(fileName.length()-5, 5, ".silo") != 0) { |
83 |
fn+=".silo"; |
84 |
} |
85 |
|
86 |
const int NUM_SILO_FILES = 1; |
87 |
const char* blockDirFmt = "/block%04d"; |
88 |
int driver=DB_HDF5; |
89 |
string siloPath; |
90 |
DBfile* dbfile = NULL; |
91 |
|
92 |
#ifdef ESYS_MPI |
93 |
PMPIO_baton_t* baton = NULL; |
94 |
#endif |
95 |
|
96 |
if (m_mpiInfo->size > 1) { |
97 |
#ifdef ESYS_MPI |
98 |
baton = PMPIO_Init(NUM_SILO_FILES, PMPIO_WRITE, m_mpiInfo->comm, |
99 |
0x1337, PMPIO_DefaultCreate, PMPIO_DefaultOpen, |
100 |
PMPIO_DefaultClose, (void*)&driver); |
101 |
// try the fallback driver in case of error |
102 |
if (!baton && driver != DB_PDB) { |
103 |
driver = DB_PDB; |
104 |
baton = PMPIO_Init(NUM_SILO_FILES, PMPIO_WRITE, m_mpiInfo->comm, |
105 |
0x1338, PMPIO_DefaultCreate, PMPIO_DefaultOpen, |
106 |
PMPIO_DefaultClose, (void*)&driver); |
107 |
} |
108 |
if (baton) { |
109 |
char str[64]; |
110 |
snprintf(str, 64, blockDirFmt, PMPIO_RankInGroup(baton, m_mpiInfo->rank)); |
111 |
siloPath = str; |
112 |
dbfile = (DBfile*) PMPIO_WaitForBaton(baton, fn.c_str(), siloPath.c_str()); |
113 |
} |
114 |
#endif |
115 |
} else { |
116 |
dbfile = DBCreate(fn.c_str(), DB_CLOBBER, DB_LOCAL, |
117 |
getDescription().c_str(), driver); |
118 |
// try the fallback driver in case of error |
119 |
if (!dbfile && driver != DB_PDB) { |
120 |
driver = DB_PDB; |
121 |
dbfile = DBCreate(fn.c_str(), DB_CLOBBER, DB_LOCAL, |
122 |
getDescription().c_str(), driver); |
123 |
} |
124 |
} |
125 |
|
126 |
if (!dbfile) |
127 |
throw RipleyException("dump: Could not create Silo file"); |
128 |
|
129 |
/* |
130 |
if (driver==DB_HDF5) { |
131 |
// gzip level 1 already provides good compression with minimal |
132 |
// performance penalty. Some tests showed that gzip levels >3 performed |
133 |
// rather badly on escript data both in terms of time and space |
134 |
DBSetCompression("ERRMODE=FALLBACK METHOD=GZIP LEVEL=1"); |
135 |
} |
136 |
*/ |
137 |
|
138 |
boost::scoped_ptr<double> x(new double[m_N0]); |
139 |
boost::scoped_ptr<double> y(new double[m_N1]); |
140 |
double* coords[2] = { x.get(), y.get() }; |
141 |
pair<double,double> xdx = getFirstCoordAndSpacing(0); |
142 |
pair<double,double> ydy = getFirstCoordAndSpacing(1); |
143 |
#pragma omp parallel |
144 |
{ |
145 |
#pragma omp for |
146 |
for (dim_t i0 = 0; i0 < m_N0; i0++) { |
147 |
coords[0][i0]=xdx.first+i0*xdx.second; |
148 |
} |
149 |
#pragma omp for |
150 |
for (dim_t i1 = 0; i1 < m_N1; i1++) { |
151 |
coords[1][i1]=ydy.first+i1*ydy.second; |
152 |
} |
153 |
} |
154 |
IndexVector dims = getNumNodesPerDim(); |
155 |
|
156 |
// write mesh |
157 |
DBPutQuadmesh(dbfile, "mesh", NULL, coords, &dims[0], 2, DB_DOUBLE, |
158 |
DB_COLLINEAR, NULL); |
159 |
|
160 |
// write node ids |
161 |
DBPutQuadvar1(dbfile, "nodeId", "mesh", (void*)&m_nodeId[0], &dims[0], 2, |
162 |
NULL, 0, DB_INT, DB_NODECENT, NULL); |
163 |
|
164 |
// write element ids |
165 |
dims = getNumElementsPerDim(); |
166 |
DBPutQuadvar1(dbfile, "elementId", "mesh", (void*)&m_elementId[0], |
167 |
&dims[0], 2, NULL, 0, DB_INT, DB_ZONECENT, NULL); |
168 |
|
169 |
// rank 0 writes multimesh and multivar |
170 |
if (m_mpiInfo->rank == 0) { |
171 |
vector<string> tempstrings; |
172 |
vector<char*> names; |
173 |
for (dim_t i=0; i<m_mpiInfo->size; i++) { |
174 |
stringstream path; |
175 |
path << "/block" << setw(4) << setfill('0') << right << i << "/mesh"; |
176 |
tempstrings.push_back(path.str()); |
177 |
names.push_back((char*)tempstrings.back().c_str()); |
178 |
} |
179 |
vector<int> types(m_mpiInfo->size, DB_QUAD_RECT); |
180 |
DBSetDir(dbfile, "/"); |
181 |
DBPutMultimesh(dbfile, "multimesh", m_mpiInfo->size, &names[0], |
182 |
&types[0], NULL); |
183 |
tempstrings.clear(); |
184 |
names.clear(); |
185 |
for (dim_t i=0; i<m_mpiInfo->size; i++) { |
186 |
stringstream path; |
187 |
path << "/block" << setw(4) << setfill('0') << right << i << "/nodeId"; |
188 |
tempstrings.push_back(path.str()); |
189 |
names.push_back((char*)tempstrings.back().c_str()); |
190 |
} |
191 |
types.assign(m_mpiInfo->size, DB_QUADVAR); |
192 |
DBPutMultivar(dbfile, "nodeId", m_mpiInfo->size, &names[0], |
193 |
&types[0], NULL); |
194 |
tempstrings.clear(); |
195 |
names.clear(); |
196 |
for (dim_t i=0; i<m_mpiInfo->size; i++) { |
197 |
stringstream path; |
198 |
path << "/block" << setw(4) << setfill('0') << right << i << "/elementId"; |
199 |
tempstrings.push_back(path.str()); |
200 |
names.push_back((char*)tempstrings.back().c_str()); |
201 |
} |
202 |
DBPutMultivar(dbfile, "elementId", m_mpiInfo->size, &names[0], |
203 |
&types[0], NULL); |
204 |
} |
205 |
|
206 |
if (m_mpiInfo->size > 1) { |
207 |
#ifdef ESYS_MPI |
208 |
PMPIO_HandOffBaton(baton, dbfile); |
209 |
PMPIO_Finish(baton); |
210 |
#endif |
211 |
} else { |
212 |
DBClose(dbfile); |
213 |
} |
214 |
|
215 |
#else // USE_SILO |
216 |
throw RipleyException("dump(): no Silo support"); |
217 |
#endif |
218 |
} |
219 |
|
220 |
const int* Rectangle::borrowSampleReferenceIDs(int fsType) const |
221 |
{ |
222 |
switch (fsType) { |
223 |
case Nodes: |
224 |
return &m_nodeId[0]; |
225 |
case Elements: |
226 |
return &m_elementId[0]; |
227 |
case FaceElements: |
228 |
return &m_faceId[0]; |
229 |
default: |
230 |
break; |
231 |
} |
232 |
|
233 |
stringstream msg; |
234 |
msg << "borrowSampleReferenceIDs() not implemented for function space type " |
235 |
<< fsType; |
236 |
throw RipleyException(msg.str()); |
237 |
} |
238 |
|
239 |
bool Rectangle::ownSample(int fsCode, index_t id) const |
240 |
{ |
241 |
#ifdef ESYS_MPI |
242 |
if (fsCode == Nodes) { |
243 |
const index_t myFirst=getNumNodes()*m_mpiInfo->rank; |
244 |
const index_t myLast=getNumNodes()*(m_mpiInfo->rank+1)-1; |
245 |
return (m_nodeId[id]>=myFirst && m_nodeId[id]<=myLast); |
246 |
} else |
247 |
throw RipleyException("ownSample() only implemented for Nodes"); |
248 |
#else |
249 |
return true; |
250 |
#endif |
251 |
} |
252 |
|
253 |
void Rectangle::interpolateOnDomain(escript::Data& target, |
254 |
const escript::Data& in) const |
255 |
{ |
256 |
const Rectangle& inDomain=dynamic_cast<const Rectangle&>(*(in.getFunctionSpace().getDomain())); |
257 |
const Rectangle& targetDomain=dynamic_cast<const Rectangle&>(*(target.getFunctionSpace().getDomain())); |
258 |
if (inDomain != *this) |
259 |
throw RipleyException("Illegal domain of interpolant"); |
260 |
if (targetDomain != *this) |
261 |
throw RipleyException("Illegal domain of interpolation target"); |
262 |
|
263 |
stringstream msg; |
264 |
msg << "interpolateOnDomain() not implemented for function space " |
265 |
<< in.getFunctionSpace().getTypeCode() << " -> " |
266 |
<< target.getFunctionSpace().getTypeCode(); |
267 |
|
268 |
switch (in.getFunctionSpace().getTypeCode()) { |
269 |
case Nodes: |
270 |
case DegreesOfFreedom: |
271 |
switch (target.getFunctionSpace().getTypeCode()) { |
272 |
case Elements: |
273 |
{ |
274 |
const double tmp0_2 = 0.62200846792814621559; |
275 |
const double tmp0_1 = 0.044658198738520451079; |
276 |
const double tmp0_0 = 0.16666666666666666667; |
277 |
const dim_t numComp = in.getDataPointSize(); |
278 |
escript::Data* inn=const_cast<escript::Data*>(&in); |
279 |
#pragma omp parallel for |
280 |
for (index_t k1=0; k1 < m_NE1; ++k1) { |
281 |
for (index_t k0=0; k0 < m_NE0; ++k0) { |
282 |
const register double* f_10 = inn->getSampleDataRO(INDEX2(k0+1,k1, m_N0)); |
283 |
const register double* f_11 = inn->getSampleDataRO(INDEX2(k0+1,k1+1, m_N0)); |
284 |
const register double* f_01 = inn->getSampleDataRO(INDEX2(k0,k1+1, m_N0)); |
285 |
const register double* f_00 = inn->getSampleDataRO(INDEX2(k0,k1, m_N0)); |
286 |
double* o = target.getSampleDataRW(INDEX2(k0,k1,m_NE0)); |
287 |
for (index_t i=0; i < numComp; ++i) { |
288 |
o[INDEX2(i,numComp,0)] = f_00[i]*tmp0_2 + f_11[i]*tmp0_1 + tmp0_0*(f_01[i] + f_10[i]); |
289 |
o[INDEX2(i,numComp,1)] = f_01[i]*tmp0_1 + f_10[i]*tmp0_2 + tmp0_0*(f_00[i] + f_11[i]); |
290 |
o[INDEX2(i,numComp,2)] = f_01[i]*tmp0_2 + f_10[i]*tmp0_1 + tmp0_0*(f_00[i] + f_11[i]); |
291 |
o[INDEX2(i,numComp,3)] = f_00[i]*tmp0_1 + f_11[i]*tmp0_2 + tmp0_0*(f_01[i] + f_10[i]); |
292 |
} // close component loop i |
293 |
} // close k0 loop |
294 |
} // close k1 loop |
295 |
break; |
296 |
} |
297 |
|
298 |
case DegreesOfFreedom: |
299 |
target=in; |
300 |
break; |
301 |
|
302 |
default: |
303 |
throw RipleyException(msg.str()); |
304 |
} |
305 |
default: |
306 |
throw RipleyException(msg.str()); |
307 |
} |
308 |
} |
309 |
|
310 |
Paso_SystemMatrixPattern* Rectangle::getPattern(bool reducedRowOrder, |
311 |
bool reducedColOrder) const |
312 |
{ |
313 |
if (reducedRowOrder || reducedColOrder) |
314 |
throw RipleyException("getPattern() not implemented for reduced order"); |
315 |
|
316 |
/* |
317 |
// create distribution |
318 |
IndexVector dist; |
319 |
for (index_t i=0; i<m_mpiInfo->size+1; i++) |
320 |
dist.push_back(i*getNumNodes()); |
321 |
Paso_Distribution* distribution = Paso_Distribution_alloc(m_mpiInfo, |
322 |
&dist[0], 1, 0); |
323 |
|
324 |
// connectors |
325 |
dim_t numNeighbours = 0; |
326 |
RankVector neighbour(numNeighbours); |
327 |
IndexVector offsetInShared(numNeighbours+1); |
328 |
IndexVector shared(offsetInShared[numNeighbours]); |
329 |
|
330 |
Paso_SharedComponents *snd_shcomp = Paso_SharedComponents_alloc( |
331 |
getNumNodes(), numNeighbours, &neighbour[0], &shared[0], |
332 |
&offsetInShared[0], 1, 0, m_mpiInfo); |
333 |
Paso_SharedComponents *rcv_shcomp = Paso_SharedComponents_alloc( |
334 |
getNumNodes(), numNeighbours, &neighbour[0], &shared[0], |
335 |
&offsetInShared[0], 1, 0, m_mpiInfo); |
336 |
Paso_Connector* connector = Paso_Connector_alloc(snd_shcomp, rcv_shcomp); |
337 |
|
338 |
// create patterns |
339 |
dim_t M=0, N=0; |
340 |
int* ptr=NULL; |
341 |
index_t* index=NULL; |
342 |
Paso_Pattern *mainPattern = Paso_Pattern_alloc(MATRIX_FORMAT_DEFAULT, |
343 |
M, N, ptr, index); |
344 |
Paso_Pattern *colCouplePattern = Paso_Pattern_alloc(MATRIX_FORMAT_DEFAULT, |
345 |
M, N, ptr, index); |
346 |
Paso_Pattern *rowCouplePattern = Paso_Pattern_alloc(MATRIX_FORMAT_DEFAULT, |
347 |
M, N, ptr, index); |
348 |
|
349 |
Paso_SystemMatrixPattern* pattern = Paso_SystemMatrixPattern_alloc( |
350 |
MATRIX_FORMAT_DEFAULT, distribution, distribution, |
351 |
mainPattern, colCouplePattern, rowCouplePattern, |
352 |
connector, connector); |
353 |
Paso_Pattern_free(mainPattern); |
354 |
Paso_Pattern_free(colCouplePattern); |
355 |
Paso_Pattern_free(rowCouplePattern); |
356 |
Paso_Distribution_free(distribution); |
357 |
Paso_SharedComponents_free(snd_shcomp); |
358 |
Paso_SharedComponents_free(rcv_shcomp); |
359 |
return pattern; |
360 |
*/ |
361 |
throw RipleyException("getPattern() not implemented"); |
362 |
} |
363 |
|
364 |
void Rectangle::Print_Mesh_Info(const bool full) const |
365 |
{ |
366 |
RipleyDomain::Print_Mesh_Info(full); |
367 |
if (full) { |
368 |
cout << " Id Coordinates" << endl; |
369 |
cout.precision(15); |
370 |
cout.setf(ios::scientific, ios::floatfield); |
371 |
pair<double,double> xdx = getFirstCoordAndSpacing(0); |
372 |
pair<double,double> ydy = getFirstCoordAndSpacing(1); |
373 |
for (index_t i=0; i < getNumNodes(); i++) { |
374 |
cout << " " << setw(5) << m_nodeId[i] |
375 |
<< " " << xdx.first+(i%m_N0)*xdx.second |
376 |
<< " " << ydy.first+(i/m_N0)*ydy.second << endl; |
377 |
} |
378 |
} |
379 |
} |
380 |
|
381 |
IndexVector Rectangle::getNumNodesPerDim() const |
382 |
{ |
383 |
IndexVector ret; |
384 |
ret.push_back(m_N0); |
385 |
ret.push_back(m_N1); |
386 |
return ret; |
387 |
} |
388 |
|
389 |
IndexVector Rectangle::getNumElementsPerDim() const |
390 |
{ |
391 |
IndexVector ret; |
392 |
ret.push_back(m_NE0); |
393 |
ret.push_back(m_NE1); |
394 |
return ret; |
395 |
} |
396 |
|
397 |
IndexVector Rectangle::getNumFacesPerBoundary() const |
398 |
{ |
399 |
IndexVector ret(4, 0); |
400 |
//left |
401 |
if (m_offset0==0) |
402 |
ret[0]=m_NE1; |
403 |
//right |
404 |
if (m_mpiInfo->rank%m_NX==m_NX-1) |
405 |
ret[1]=m_NE1; |
406 |
//bottom |
407 |
if (m_offset1==0) |
408 |
ret[2]=m_NE0; |
409 |
//top |
410 |
if (m_mpiInfo->rank/m_NX==m_NY-1) |
411 |
ret[3]=m_NE0; |
412 |
return ret; |
413 |
} |
414 |
|
415 |
pair<double,double> Rectangle::getFirstCoordAndSpacing(dim_t dim) const |
416 |
{ |
417 |
if (dim==0) { |
418 |
return pair<double,double>((m_l0*m_offset0)/m_gNE0, m_l0/m_gNE0); |
419 |
} else if (dim==1) { |
420 |
return pair<double,double>((m_l1*m_offset1)/m_gNE1, m_l1/m_gNE1); |
421 |
} |
422 |
throw RipleyException("getFirstCoordAndSpacing(): invalid argument"); |
423 |
} |
424 |
|
425 |
//protected |
426 |
dim_t Rectangle::getNumFaceElements() const |
427 |
{ |
428 |
dim_t n=0; |
429 |
//left |
430 |
if (m_offset0==0) |
431 |
n+=m_NE1; |
432 |
//right |
433 |
if (m_mpiInfo->rank%m_NX==m_NX-1) |
434 |
n+=m_NE1; |
435 |
//bottom |
436 |
if (m_offset1==0) |
437 |
n+=m_NE0; |
438 |
//top |
439 |
if (m_mpiInfo->rank/m_NX==m_NY-1) |
440 |
n+=m_NE0; |
441 |
|
442 |
return n; |
443 |
} |
444 |
|
445 |
//protected |
446 |
void Rectangle::assembleCoordinates(escript::Data& arg) const |
447 |
{ |
448 |
escriptDataC x = arg.getDataC(); |
449 |
int numDim = m_numDim; |
450 |
if (!isDataPointShapeEqual(&x, 1, &numDim)) |
451 |
throw RipleyException("setToX: Invalid Data object shape"); |
452 |
if (!numSamplesEqual(&x, 1, getNumNodes())) |
453 |
throw RipleyException("setToX: Illegal number of samples in Data object"); |
454 |
|
455 |
pair<double,double> xdx = getFirstCoordAndSpacing(0); |
456 |
pair<double,double> ydy = getFirstCoordAndSpacing(1); |
457 |
arg.requireWrite(); |
458 |
#pragma omp parallel for |
459 |
for (dim_t i1 = 0; i1 < m_N1; i1++) { |
460 |
for (dim_t i0 = 0; i0 < m_N0; i0++) { |
461 |
double* point = arg.getSampleDataRW(i0+m_N0*i1); |
462 |
point[0] = xdx.first+i0*xdx.second; |
463 |
point[1] = ydy.first+i1*ydy.second; |
464 |
} |
465 |
} |
466 |
} |
467 |
|
468 |
//private |
469 |
void Rectangle::populateSampleIds() |
470 |
{ |
471 |
// identifiers are ordered from left to right, bottom to top on each rank, |
472 |
// except for the shared nodes which are owned by the rank below / to the |
473 |
// left of the current rank |
474 |
|
475 |
// build node distribution vector first. |
476 |
// m_nodeDistribution[i] is the first node id on rank i, that is |
477 |
// rank i owns m_nodeDistribution[i+1]-nodeDistribution[i] nodes |
478 |
m_nodeDistribution.assign(m_mpiInfo->size+1, 0); |
479 |
m_nodeDistribution[1]=getNumNodes(); |
480 |
for (dim_t k=1; k<m_mpiInfo->size-1; k++) { |
481 |
const index_t x=k%m_NX; |
482 |
const index_t y=k/m_NX; |
483 |
index_t numNodes=getNumNodes(); |
484 |
if (x>0) |
485 |
numNodes-=m_N1; |
486 |
if (y>0) |
487 |
numNodes-=m_N0; |
488 |
if (x>0 && y>0) |
489 |
numNodes++; // subtracted corner twice -> fix that |
490 |
m_nodeDistribution[k+1]=m_nodeDistribution[k]+numNodes; |
491 |
} |
492 |
m_nodeDistribution[m_mpiInfo->size]=getNumDataPointsGlobal(); |
493 |
|
494 |
m_nodeId.resize(getNumNodes()); |
495 |
|
496 |
// the bottom row and left column are not owned by this rank so the |
497 |
// identifiers need to be computed accordingly |
498 |
const index_t left = (m_offset0==0 ? 0 : 1); |
499 |
const index_t bottom = (m_offset1==0 ? 0 : 1); |
500 |
if (left>0) { |
501 |
const int neighbour=m_mpiInfo->rank-1; |
502 |
const index_t leftN0=(neighbour%m_NX == 0 ? m_N0 : m_N0-1); |
503 |
#pragma omp parallel for |
504 |
for (dim_t i1=bottom; i1<m_N1; i1++) { |
505 |
m_nodeId[i1*m_N0]=m_nodeDistribution[neighbour] |
506 |
+ (i1-bottom+1)*leftN0-1; |
507 |
} |
508 |
} |
509 |
if (bottom>0) { |
510 |
const int neighbour=m_mpiInfo->rank-m_NX; |
511 |
const index_t bottomN0=(neighbour%m_NX == 0 ? m_N0 : m_N0-1); |
512 |
const index_t bottomN1=(neighbour/m_NX == 0 ? m_N1 : m_N1-1); |
513 |
#pragma omp parallel for |
514 |
for (dim_t i0=left; i0<m_N0; i0++) { |
515 |
m_nodeId[i0]=m_nodeDistribution[neighbour] |
516 |
+ (bottomN1-1)*bottomN0 + i0 - left; |
517 |
} |
518 |
} |
519 |
if (left>0 && bottom>0) { |
520 |
const int neighbour=m_mpiInfo->rank-m_NX-1; |
521 |
const index_t bottomN0=(neighbour%m_NX == 0 ? m_N0 : m_N0-1); |
522 |
const index_t bottomN1=(neighbour/m_NX == 0 ? m_N1 : m_N1-1); |
523 |
m_nodeId[0]=m_nodeDistribution[neighbour]+bottomN1*bottomN0-1; |
524 |
} |
525 |
|
526 |
// the rest of the id's are contiguous |
527 |
const index_t firstId=m_nodeDistribution[m_mpiInfo->rank]; |
528 |
#pragma omp parallel for |
529 |
for (dim_t i1=bottom; i1<m_N1; i1++) { |
530 |
for (dim_t i0=left; i0<m_N0; i0++) { |
531 |
m_nodeId[i0+i1*m_N0] = firstId+i0-left+(i1-bottom)*(m_N0-left); |
532 |
} |
533 |
} |
534 |
|
535 |
// elements |
536 |
m_elementId.resize(getNumElements()); |
537 |
#pragma omp parallel for |
538 |
for (dim_t k=0; k<getNumElements(); k++) { |
539 |
m_elementId[k]=k; |
540 |
} |
541 |
|
542 |
// face elements |
543 |
m_faceId.resize(getNumFaceElements()); |
544 |
#pragma omp parallel for |
545 |
for (dim_t k=0; k<getNumFaceElements(); k++) { |
546 |
m_faceId[k]=k; |
547 |
} |
548 |
} |
549 |
|
550 |
} // end of namespace ripley |
551 |
|