1 |
|
2 |
/******************************************************* |
3 |
* |
4 |
* Copyright (c) 2003-2008 by University of Queensland |
5 |
* Earth Systems Science Computational Center (ESSCC) |
6 |
* http://www.uq.edu.au/esscc |
7 |
* |
8 |
* Primary Business: Queensland, Australia |
9 |
* Licensed under the Open Software License version 3.0 |
10 |
* http://www.opensource.org/licenses/osl-3.0.php |
11 |
* |
12 |
*******************************************************/ |
13 |
|
14 |
|
15 |
/** \file Data.h */ |
16 |
|
17 |
#ifndef DATA_H |
18 |
#define DATA_H |
19 |
#include "system_dep.h" |
20 |
|
21 |
#include "DataAbstract.h" |
22 |
#include "DataAlgorithm.h" |
23 |
#include "FunctionSpace.h" |
24 |
#include "BinaryOp.h" |
25 |
#include "UnaryOp.h" |
26 |
#include "DataException.h" |
27 |
#include "DataTypes.h" |
28 |
|
29 |
extern "C" { |
30 |
#include "DataC.h" |
31 |
/* #include "paso/Paso.h" doesn't belong in this file...causes trouble for BruceFactory.cpp */ |
32 |
} |
33 |
|
34 |
#include "esysmpi.h" |
35 |
#include <string> |
36 |
#include <algorithm> |
37 |
#include <sstream> |
38 |
|
39 |
|
40 |
#include <boost/shared_ptr.hpp> |
41 |
#include <boost/python/object.hpp> |
42 |
#include <boost/python/tuple.hpp> |
43 |
#include <boost/python/numeric.hpp> |
44 |
|
45 |
namespace escript { |
46 |
|
47 |
// |
48 |
// Forward declaration for various implementations of Data. |
49 |
class DataConstant; |
50 |
class DataTagged; |
51 |
class DataExpanded; |
52 |
|
53 |
/** |
54 |
\brief |
55 |
Data represents a collection of datapoints. |
56 |
|
57 |
Description: |
58 |
Internally, the datapoints are actually stored by a DataAbstract object. |
59 |
The specific instance of DataAbstract used may vary over the lifetime |
60 |
of the Data object. |
61 |
Some methods on this class return references (eg getShape()). |
62 |
These references should not be used after an operation which changes the underlying DataAbstract object. |
63 |
Doing so will lead to invalid memory access. |
64 |
This should not affect any methods exposed via boost::python. |
65 |
*/ |
66 |
class Data { |
67 |
|
68 |
public: |
69 |
|
70 |
// These typedefs allow function names to be cast to pointers |
71 |
// to functions of the appropriate type when calling unaryOp etc. |
72 |
typedef double (*UnaryDFunPtr)(double); |
73 |
typedef double (*BinaryDFunPtr)(double,double); |
74 |
|
75 |
|
76 |
/** |
77 |
Constructors. |
78 |
*/ |
79 |
|
80 |
/** |
81 |
\brief |
82 |
Default constructor. |
83 |
Creates a DataEmpty object. |
84 |
*/ |
85 |
ESCRIPT_DLL_API |
86 |
Data(); |
87 |
|
88 |
/** |
89 |
\brief |
90 |
Copy constructor. |
91 |
WARNING: Only performs a shallow copy. |
92 |
*/ |
93 |
ESCRIPT_DLL_API |
94 |
Data(const Data& inData); |
95 |
|
96 |
/** |
97 |
\brief |
98 |
Constructor from another Data object. If "what" is different from the |
99 |
function space of inData the inData are tried to be interpolated to what, |
100 |
otherwise a shallow copy of inData is returned. |
101 |
*/ |
102 |
ESCRIPT_DLL_API |
103 |
Data(const Data& inData, |
104 |
const FunctionSpace& what); |
105 |
|
106 |
/** |
107 |
\brief Copy Data from an existing vector |
108 |
*/ |
109 |
|
110 |
ESCRIPT_DLL_API |
111 |
Data(const DataTypes::ValueType& value, |
112 |
const DataTypes::ShapeType& shape, |
113 |
const FunctionSpace& what=FunctionSpace(), |
114 |
bool expanded=false); |
115 |
|
116 |
/** |
117 |
\brief |
118 |
Constructor which creates a Data from a DataArrayView shape. |
119 |
|
120 |
\param value - Input - Single value applied to all Data. |
121 |
\param dataPointShape - Input - The shape of each data point. |
122 |
\param what - Input - A description of what this data represents. |
123 |
\param expanded - Input - Flag, if true fill the entire container with |
124 |
the given value. Otherwise a more efficient storage |
125 |
mechanism will be used. |
126 |
*/ |
127 |
ESCRIPT_DLL_API |
128 |
Data(double value, |
129 |
const DataTypes::ShapeType& dataPointShape=DataTypes::ShapeType(), |
130 |
const FunctionSpace& what=FunctionSpace(), |
131 |
bool expanded=false); |
132 |
|
133 |
/** |
134 |
\brief |
135 |
Constructor which performs a deep copy of a region from another Data object. |
136 |
|
137 |
\param inData - Input - Input Data object. |
138 |
\param region - Input - Region to copy. |
139 |
*/ |
140 |
ESCRIPT_DLL_API |
141 |
Data(const Data& inData, |
142 |
const DataTypes::RegionType& region); |
143 |
|
144 |
/** |
145 |
\brief |
146 |
Constructor which copies data from a python numarray. |
147 |
|
148 |
\param value - Input - Data value for a single point. |
149 |
\param what - Input - A description of what this data represents. |
150 |
\param expanded - Input - Flag, if true fill the entire container with |
151 |
the value. Otherwise a more efficient storage |
152 |
mechanism will be used. |
153 |
*/ |
154 |
ESCRIPT_DLL_API |
155 |
Data(const boost::python::numeric::array& value, |
156 |
const FunctionSpace& what=FunctionSpace(), |
157 |
bool expanded=false); |
158 |
|
159 |
/** |
160 |
\brief |
161 |
Constructor which copies data from any object that can be converted into |
162 |
a python numarray. |
163 |
|
164 |
\param value - Input - Input data. |
165 |
\param what - Input - A description of what this data represents. |
166 |
\param expanded - Input - Flag, if true fill the entire container with |
167 |
the value. Otherwise a more efficient storage |
168 |
mechanism will be used. |
169 |
*/ |
170 |
ESCRIPT_DLL_API |
171 |
Data(const boost::python::object& value, |
172 |
const FunctionSpace& what=FunctionSpace(), |
173 |
bool expanded=false); |
174 |
|
175 |
/** |
176 |
\brief |
177 |
Constructor which creates a DataConstant. |
178 |
Copies data from any object that can be converted |
179 |
into a numarray. All other parameters are copied from other. |
180 |
|
181 |
\param value - Input - Input data. |
182 |
\param other - Input - contains all other parameters. |
183 |
*/ |
184 |
ESCRIPT_DLL_API |
185 |
Data(const boost::python::object& value, |
186 |
const Data& other); |
187 |
|
188 |
/** |
189 |
\brief |
190 |
Constructor which creates a DataConstant of "shape" with constant value. |
191 |
*/ |
192 |
ESCRIPT_DLL_API |
193 |
Data(double value, |
194 |
const boost::python::tuple& shape=boost::python::make_tuple(), |
195 |
const FunctionSpace& what=FunctionSpace(), |
196 |
bool expanded=false); |
197 |
|
198 |
|
199 |
|
200 |
/** |
201 |
\brief Create a Data using an existing DataAbstract. Warning: The new object assumes ownership of the pointer! |
202 |
Once you have passed the pointer, do not delete it. |
203 |
*/ |
204 |
ESCRIPT_DLL_API |
205 |
explicit Data(DataAbstract* underlyingdata); |
206 |
|
207 |
/** |
208 |
\brief Create a Data based on the supplied DataAbstract |
209 |
*/ |
210 |
ESCRIPT_DLL_API |
211 |
explicit Data(DataAbstract_ptr underlyingdata); |
212 |
|
213 |
/** |
214 |
\brief |
215 |
Destructor |
216 |
*/ |
217 |
ESCRIPT_DLL_API |
218 |
~Data(); |
219 |
|
220 |
/** |
221 |
\brief Make this object a deep copy of "other". |
222 |
*/ |
223 |
ESCRIPT_DLL_API |
224 |
void |
225 |
copy(const Data& other); |
226 |
|
227 |
/** |
228 |
\brief Return a pointer to a deep copy of this object. |
229 |
*/ |
230 |
ESCRIPT_DLL_API |
231 |
Data* |
232 |
copySelf(); |
233 |
|
234 |
|
235 |
/** |
236 |
\brief produce a delayed evaluation version of this Data. |
237 |
*/ |
238 |
ESCRIPT_DLL_API |
239 |
Data |
240 |
delay(); |
241 |
|
242 |
/** |
243 |
\brief convert the current data into lazy data. |
244 |
*/ |
245 |
ESCRIPT_DLL_API |
246 |
void |
247 |
delaySelf(); |
248 |
|
249 |
|
250 |
/** |
251 |
Member access methods. |
252 |
*/ |
253 |
|
254 |
/** |
255 |
\brief |
256 |
switches on update protection |
257 |
|
258 |
*/ |
259 |
ESCRIPT_DLL_API |
260 |
void |
261 |
setProtection(); |
262 |
|
263 |
/** |
264 |
\brief |
265 |
Returns trueif the data object is protected against update |
266 |
|
267 |
*/ |
268 |
ESCRIPT_DLL_API |
269 |
bool |
270 |
isProtected() const; |
271 |
|
272 |
/** |
273 |
\brief |
274 |
Return the values of a data point on this process |
275 |
*/ |
276 |
ESCRIPT_DLL_API |
277 |
const boost::python::numeric::array |
278 |
getValueOfDataPoint(int dataPointNo); |
279 |
|
280 |
/** |
281 |
\brief |
282 |
sets the values of a data-point from a python object on this process |
283 |
*/ |
284 |
ESCRIPT_DLL_API |
285 |
void |
286 |
setValueOfDataPointToPyObject(int dataPointNo, const boost::python::object& py_object); |
287 |
|
288 |
/** |
289 |
\brief |
290 |
sets the values of a data-point from a numarray object on this process |
291 |
*/ |
292 |
ESCRIPT_DLL_API |
293 |
void |
294 |
setValueOfDataPointToArray(int dataPointNo, const boost::python::numeric::array&); |
295 |
|
296 |
/** |
297 |
\brief |
298 |
sets the values of a data-point on this process |
299 |
*/ |
300 |
ESCRIPT_DLL_API |
301 |
void |
302 |
setValueOfDataPoint(int dataPointNo, const double); |
303 |
|
304 |
/** |
305 |
\brief |
306 |
Return the value of the specified data-point across all processors |
307 |
*/ |
308 |
ESCRIPT_DLL_API |
309 |
const boost::python::numeric::array |
310 |
getValueOfGlobalDataPoint(int procNo, int dataPointNo); |
311 |
|
312 |
/** |
313 |
\brief |
314 |
Return the tag number associated with the given data-point. |
315 |
|
316 |
*/ |
317 |
ESCRIPT_DLL_API |
318 |
int |
319 |
getTagNumber(int dpno); |
320 |
|
321 |
/** |
322 |
\brief |
323 |
Return the C wrapper for the Data object. |
324 |
*/ |
325 |
ESCRIPT_DLL_API |
326 |
escriptDataC |
327 |
getDataC(); |
328 |
|
329 |
|
330 |
|
331 |
|
332 |
|
333 |
|
334 |
// REMOVE ME |
335 |
// ESCRIPT_DLL_API |
336 |
// void |
337 |
// CompareDebug(const Data& rd); |
338 |
|
339 |
|
340 |
/** |
341 |
\brief |
342 |
Return the C wrapper for the Data object - const version. |
343 |
*/ |
344 |
ESCRIPT_DLL_API |
345 |
escriptDataC |
346 |
getDataC() const; |
347 |
|
348 |
/** |
349 |
\brief |
350 |
Write the data as a string. For large amounts of data, a summary is printed. |
351 |
*/ |
352 |
ESCRIPT_DLL_API |
353 |
std::string |
354 |
toString() const; |
355 |
|
356 |
/** |
357 |
\brief |
358 |
Whatever the current Data type make this into a DataExpanded. |
359 |
*/ |
360 |
ESCRIPT_DLL_API |
361 |
void |
362 |
expand(); |
363 |
|
364 |
/** |
365 |
\brief |
366 |
If possible convert this Data to DataTagged. This will only allow |
367 |
Constant data to be converted to tagged. An attempt to convert |
368 |
Expanded data to tagged will throw an exception. |
369 |
*/ |
370 |
ESCRIPT_DLL_API |
371 |
void |
372 |
tag(); |
373 |
|
374 |
/** |
375 |
\brief If this data is lazy, then convert it to ready data. |
376 |
What type of ready data depends on the expression. For example, Constant+Tagged==Tagged. |
377 |
*/ |
378 |
ESCRIPT_DLL_API |
379 |
void |
380 |
resolve(); |
381 |
|
382 |
|
383 |
/** |
384 |
\brief |
385 |
Return true if this Data is expanded. |
386 |
*/ |
387 |
ESCRIPT_DLL_API |
388 |
bool |
389 |
isExpanded() const; |
390 |
|
391 |
/** |
392 |
\brief |
393 |
Return true if this Data is tagged. |
394 |
*/ |
395 |
ESCRIPT_DLL_API |
396 |
bool |
397 |
isTagged() const; |
398 |
|
399 |
/** |
400 |
\brief |
401 |
Return true if this Data is constant. |
402 |
*/ |
403 |
ESCRIPT_DLL_API |
404 |
bool |
405 |
isConstant() const; |
406 |
|
407 |
/** |
408 |
\brief Return true if this Data is lazy. |
409 |
*/ |
410 |
ESCRIPT_DLL_API |
411 |
bool |
412 |
isLazy() const; |
413 |
|
414 |
/** |
415 |
\brief Return true if this data is ready. |
416 |
*/ |
417 |
ESCRIPT_DLL_API |
418 |
bool |
419 |
isReady() const; |
420 |
|
421 |
/** |
422 |
\brief |
423 |
Return true if this Data holds an instance of DataEmpty. This is _not_ the same as asking if the object |
424 |
contains datapoints. |
425 |
*/ |
426 |
ESCRIPT_DLL_API |
427 |
bool |
428 |
isEmpty() const; |
429 |
|
430 |
/** |
431 |
\brief |
432 |
Return the function space. |
433 |
*/ |
434 |
ESCRIPT_DLL_API |
435 |
inline |
436 |
const FunctionSpace& |
437 |
getFunctionSpace() const |
438 |
{ |
439 |
return m_data->getFunctionSpace(); |
440 |
} |
441 |
|
442 |
/** |
443 |
\brief |
444 |
Return a copy of the function space. |
445 |
*/ |
446 |
ESCRIPT_DLL_API |
447 |
const FunctionSpace |
448 |
getCopyOfFunctionSpace() const; |
449 |
|
450 |
/** |
451 |
\brief |
452 |
Return the domain. |
453 |
*/ |
454 |
ESCRIPT_DLL_API |
455 |
inline |
456 |
// const AbstractDomain& |
457 |
const_Domain_ptr |
458 |
getDomain() const |
459 |
{ |
460 |
return getFunctionSpace().getDomain(); |
461 |
} |
462 |
|
463 |
|
464 |
/** |
465 |
\brief |
466 |
Return the domain. |
467 |
TODO: For internal use only. This should be removed. |
468 |
*/ |
469 |
ESCRIPT_DLL_API |
470 |
inline |
471 |
// const AbstractDomain& |
472 |
Domain_ptr |
473 |
getDomainPython() const |
474 |
{ |
475 |
return getFunctionSpace().getDomainPython(); |
476 |
} |
477 |
|
478 |
/** |
479 |
\brief |
480 |
Return a copy of the domain. |
481 |
*/ |
482 |
ESCRIPT_DLL_API |
483 |
const AbstractDomain |
484 |
getCopyOfDomain() const; |
485 |
|
486 |
/** |
487 |
\brief |
488 |
Return the rank of the point data. |
489 |
*/ |
490 |
ESCRIPT_DLL_API |
491 |
inline |
492 |
int |
493 |
getDataPointRank() const |
494 |
{ |
495 |
// return m_data->getPointDataView().getRank(); |
496 |
return m_data->getRank(); |
497 |
} |
498 |
|
499 |
/** |
500 |
\brief |
501 |
Return the number of data points |
502 |
*/ |
503 |
ESCRIPT_DLL_API |
504 |
inline |
505 |
int |
506 |
getNumDataPoints() const |
507 |
{ |
508 |
return getNumSamples() * getNumDataPointsPerSample(); |
509 |
} |
510 |
/** |
511 |
\brief |
512 |
Return the number of samples. |
513 |
*/ |
514 |
ESCRIPT_DLL_API |
515 |
inline |
516 |
int |
517 |
getNumSamples() const |
518 |
{ |
519 |
return m_data->getNumSamples(); |
520 |
} |
521 |
|
522 |
/** |
523 |
\brief |
524 |
Return the number of data points per sample. |
525 |
*/ |
526 |
ESCRIPT_DLL_API |
527 |
inline |
528 |
int |
529 |
getNumDataPointsPerSample() const |
530 |
{ |
531 |
return m_data->getNumDPPSample(); |
532 |
} |
533 |
|
534 |
|
535 |
/** |
536 |
\brief |
537 |
Return the number of values in the shape for this object. |
538 |
*/ |
539 |
ESCRIPT_DLL_API |
540 |
int |
541 |
getNoValues() const |
542 |
{ |
543 |
return m_data->getNoValues(); |
544 |
} |
545 |
|
546 |
|
547 |
/** |
548 |
\brief |
549 |
dumps the object into a netCDF file |
550 |
*/ |
551 |
ESCRIPT_DLL_API |
552 |
void |
553 |
dump(const std::string fileName) const; |
554 |
|
555 |
/** |
556 |
\brief |
557 |
Return the sample data for the given sample no. This is not the |
558 |
preferred interface but is provided for use by C code. |
559 |
\param sampleNo - Input - the given sample no. |
560 |
*/ |
561 |
ESCRIPT_DLL_API |
562 |
inline |
563 |
DataAbstract::ValueType::value_type* |
564 |
getSampleData(DataAbstract::ValueType::size_type sampleNo); |
565 |
|
566 |
/** |
567 |
\brief |
568 |
Return the sample data for the given tag. If an attempt is made to |
569 |
access data that isn't tagged an exception will be thrown. |
570 |
\param tag - Input - the tag key. |
571 |
*/ |
572 |
ESCRIPT_DLL_API |
573 |
inline |
574 |
DataAbstract::ValueType::value_type* |
575 |
getSampleDataByTag(int tag) |
576 |
{ |
577 |
return m_data->getSampleDataByTag(tag); |
578 |
} |
579 |
|
580 |
/** |
581 |
\brief |
582 |
Return a view into the data for the data point specified. |
583 |
NOTE: Construction of the DataArrayView is a relatively expensive |
584 |
operation. |
585 |
\param sampleNo - Input - |
586 |
\param dataPointNo - Input - |
587 |
*/ |
588 |
ESCRIPT_DLL_API |
589 |
DataTypes::ValueType::const_reference |
590 |
getDataPoint(int sampleNo, int dataPointNo) const; |
591 |
|
592 |
|
593 |
ESCRIPT_DLL_API |
594 |
DataTypes::ValueType::reference |
595 |
getDataPoint(int sampleNo, int dataPointNo); |
596 |
|
597 |
|
598 |
|
599 |
/** |
600 |
\brief |
601 |
Return the offset for the given sample and point within the sample |
602 |
*/ |
603 |
ESCRIPT_DLL_API |
604 |
inline |
605 |
DataTypes::ValueType::size_type |
606 |
getDataOffset(int sampleNo, |
607 |
int dataPointNo) |
608 |
{ |
609 |
return m_data->getPointOffset(sampleNo,dataPointNo); |
610 |
} |
611 |
|
612 |
/** |
613 |
\brief |
614 |
Return a reference to the data point shape. |
615 |
*/ |
616 |
ESCRIPT_DLL_API |
617 |
inline |
618 |
const DataTypes::ShapeType& |
619 |
getDataPointShape() const |
620 |
{ |
621 |
return m_data->getShape(); |
622 |
} |
623 |
|
624 |
/** |
625 |
\brief |
626 |
Return the data point shape as a tuple of integers. |
627 |
*/ |
628 |
ESCRIPT_DLL_API |
629 |
const boost::python::tuple |
630 |
getShapeTuple() const; |
631 |
|
632 |
/** |
633 |
\brief |
634 |
Return the size of the data point. It is the product of the |
635 |
data point shape dimensions. |
636 |
*/ |
637 |
ESCRIPT_DLL_API |
638 |
int |
639 |
getDataPointSize() const; |
640 |
|
641 |
/** |
642 |
\brief |
643 |
Return the number of doubles stored for this Data. |
644 |
*/ |
645 |
ESCRIPT_DLL_API |
646 |
DataTypes::ValueType::size_type |
647 |
getLength() const; |
648 |
|
649 |
|
650 |
|
651 |
/** |
652 |
\brief |
653 |
Assign the given value to the tag assocciated with name. Implicitly converts this |
654 |
object to type DataTagged. Throws an exception if this object |
655 |
cannot be converted to a DataTagged object or name cannot be mapped onto a tag key. |
656 |
\param tagKey - Input - Integer key. |
657 |
\param value - Input - Value to associate with given key. |
658 |
==>* |
659 |
*/ |
660 |
ESCRIPT_DLL_API |
661 |
void |
662 |
setTaggedValueByName(std::string name, |
663 |
const boost::python::object& value); |
664 |
|
665 |
/** |
666 |
\brief |
667 |
Assign the given value to the tag. Implicitly converts this |
668 |
object to type DataTagged if it is constant. |
669 |
|
670 |
\param tagKey - Input - Integer key. |
671 |
\param value - Input - Value to associate with given key. |
672 |
==>* |
673 |
*/ |
674 |
ESCRIPT_DLL_API |
675 |
void |
676 |
setTaggedValue(int tagKey, |
677 |
const boost::python::object& value); |
678 |
|
679 |
/** |
680 |
\brief |
681 |
Assign the given value to the tag. Implicitly converts this |
682 |
object to type DataTagged if it is constant. |
683 |
|
684 |
\param tagKey - Input - Integer key. |
685 |
\param pointshape - Input - The shape of the value parameter |
686 |
\param value - Input - Value to associate with given key. |
687 |
\param dataOffset - Input - Offset of the begining of the point within the value parameter |
688 |
*/ |
689 |
ESCRIPT_DLL_API |
690 |
void |
691 |
setTaggedValueFromCPP(int tagKey, |
692 |
const DataTypes::ShapeType& pointshape, |
693 |
const DataTypes::ValueType& value, |
694 |
int dataOffset=0); |
695 |
|
696 |
|
697 |
|
698 |
/** |
699 |
\brief |
700 |
Copy other Data object into this Data object where mask is positive. |
701 |
*/ |
702 |
ESCRIPT_DLL_API |
703 |
void |
704 |
copyWithMask(const Data& other, |
705 |
const Data& mask); |
706 |
|
707 |
/** |
708 |
Data object operation methods and operators. |
709 |
*/ |
710 |
|
711 |
/** |
712 |
\brief |
713 |
set all values to zero |
714 |
* |
715 |
*/ |
716 |
ESCRIPT_DLL_API |
717 |
void |
718 |
setToZero(); |
719 |
|
720 |
/** |
721 |
\brief |
722 |
Interpolates this onto the given functionspace and returns |
723 |
the result as a Data object. |
724 |
* |
725 |
*/ |
726 |
ESCRIPT_DLL_API |
727 |
Data |
728 |
interpolate(const FunctionSpace& functionspace) const; |
729 |
/** |
730 |
\brief |
731 |
Calculates the gradient of the data at the data points of functionspace. |
732 |
If functionspace is not present the function space of Function(getDomain()) is used. |
733 |
* |
734 |
*/ |
735 |
ESCRIPT_DLL_API |
736 |
Data |
737 |
gradOn(const FunctionSpace& functionspace) const; |
738 |
|
739 |
ESCRIPT_DLL_API |
740 |
Data |
741 |
grad() const; |
742 |
|
743 |
/** |
744 |
\brief |
745 |
Calculate the integral over the function space domain. |
746 |
* |
747 |
*/ |
748 |
ESCRIPT_DLL_API |
749 |
boost::python::numeric::array |
750 |
integrate_const() const; |
751 |
|
752 |
ESCRIPT_DLL_API |
753 |
boost::python::numeric::array |
754 |
integrate(); |
755 |
|
756 |
/** |
757 |
\brief |
758 |
Returns 1./ Data object |
759 |
* |
760 |
*/ |
761 |
ESCRIPT_DLL_API |
762 |
Data |
763 |
oneOver() const; |
764 |
/** |
765 |
\brief |
766 |
Return a Data with a 1 for +ive values and a 0 for 0 or -ive values. |
767 |
* |
768 |
*/ |
769 |
ESCRIPT_DLL_API |
770 |
Data |
771 |
wherePositive() const; |
772 |
|
773 |
/** |
774 |
\brief |
775 |
Return a Data with a 1 for -ive values and a 0 for +ive or 0 values. |
776 |
* |
777 |
*/ |
778 |
ESCRIPT_DLL_API |
779 |
Data |
780 |
whereNegative() const; |
781 |
|
782 |
/** |
783 |
\brief |
784 |
Return a Data with a 1 for +ive or 0 values and a 0 for -ive values. |
785 |
* |
786 |
*/ |
787 |
ESCRIPT_DLL_API |
788 |
Data |
789 |
whereNonNegative() const; |
790 |
|
791 |
/** |
792 |
\brief |
793 |
Return a Data with a 1 for -ive or 0 values and a 0 for +ive values. |
794 |
* |
795 |
*/ |
796 |
ESCRIPT_DLL_API |
797 |
Data |
798 |
whereNonPositive() const; |
799 |
|
800 |
/** |
801 |
\brief |
802 |
Return a Data with a 1 for 0 values and a 0 for +ive or -ive values. |
803 |
* |
804 |
*/ |
805 |
ESCRIPT_DLL_API |
806 |
Data |
807 |
whereZero(double tol=0.0) const; |
808 |
|
809 |
/** |
810 |
\brief |
811 |
Return a Data with a 0 for 0 values and a 1 for +ive or -ive values. |
812 |
* |
813 |
*/ |
814 |
ESCRIPT_DLL_API |
815 |
Data |
816 |
whereNonZero(double tol=0.0) const; |
817 |
|
818 |
/** |
819 |
\brief |
820 |
Return the maximum absolute value of this Data object. |
821 |
The method is not const because lazy data needs to be expanded before Lsup can be computed. |
822 |
The _const form can be used when the Data object is const, however this will only work for |
823 |
Data which is not Lazy. |
824 |
* |
825 |
*/ |
826 |
ESCRIPT_DLL_API |
827 |
double |
828 |
Lsup(); |
829 |
|
830 |
ESCRIPT_DLL_API |
831 |
double |
832 |
Lsup_const() const; |
833 |
|
834 |
|
835 |
/** |
836 |
\brief |
837 |
Return the maximum value of this Data object. |
838 |
The method is not const because lazy data needs to be expanded before sup can be computed. |
839 |
The _const form can be used when the Data object is const, however this will only work for |
840 |
Data which is not Lazy. |
841 |
* |
842 |
*/ |
843 |
ESCRIPT_DLL_API |
844 |
double |
845 |
sup(); |
846 |
|
847 |
ESCRIPT_DLL_API |
848 |
double |
849 |
sup_const() const; |
850 |
|
851 |
|
852 |
/** |
853 |
\brief |
854 |
Return the minimum value of this Data object. |
855 |
The method is not const because lazy data needs to be expanded before inf can be computed. |
856 |
The _const form can be used when the Data object is const, however this will only work for |
857 |
Data which is not Lazy. |
858 |
* |
859 |
*/ |
860 |
ESCRIPT_DLL_API |
861 |
double |
862 |
inf(); |
863 |
|
864 |
ESCRIPT_DLL_API |
865 |
double |
866 |
inf_const() const; |
867 |
|
868 |
|
869 |
|
870 |
/** |
871 |
\brief |
872 |
Return the absolute value of each data point of this Data object. |
873 |
* |
874 |
*/ |
875 |
ESCRIPT_DLL_API |
876 |
Data |
877 |
abs() const; |
878 |
|
879 |
/** |
880 |
\brief |
881 |
Return the maximum value of each data point of this Data object. |
882 |
* |
883 |
*/ |
884 |
ESCRIPT_DLL_API |
885 |
Data |
886 |
maxval() const; |
887 |
|
888 |
/** |
889 |
\brief |
890 |
Return the minimum value of each data point of this Data object. |
891 |
* |
892 |
*/ |
893 |
ESCRIPT_DLL_API |
894 |
Data |
895 |
minval() const; |
896 |
|
897 |
/** |
898 |
\brief |
899 |
Return the (sample number, data-point number) of the data point with |
900 |
the minimum value in this Data object. |
901 |
*/ |
902 |
ESCRIPT_DLL_API |
903 |
const boost::python::tuple |
904 |
minGlobalDataPoint() const; |
905 |
|
906 |
ESCRIPT_DLL_API |
907 |
void |
908 |
calc_minGlobalDataPoint(int& ProcNo, int& DataPointNo) const; |
909 |
/** |
910 |
\brief |
911 |
Return the sign of each data point of this Data object. |
912 |
-1 for negative values, zero for zero values, 1 for positive values. |
913 |
* |
914 |
*/ |
915 |
ESCRIPT_DLL_API |
916 |
Data |
917 |
sign() const; |
918 |
|
919 |
/** |
920 |
\brief |
921 |
Return the symmetric part of a matrix which is half the matrix plus its transpose. |
922 |
* |
923 |
*/ |
924 |
ESCRIPT_DLL_API |
925 |
Data |
926 |
symmetric() const; |
927 |
|
928 |
/** |
929 |
\brief |
930 |
Return the nonsymmetric part of a matrix which is half the matrix minus its transpose. |
931 |
* |
932 |
*/ |
933 |
ESCRIPT_DLL_API |
934 |
Data |
935 |
nonsymmetric() const; |
936 |
|
937 |
/** |
938 |
\brief |
939 |
Return the trace of a matrix |
940 |
* |
941 |
*/ |
942 |
ESCRIPT_DLL_API |
943 |
Data |
944 |
trace(int axis_offset) const; |
945 |
|
946 |
/** |
947 |
\brief |
948 |
Transpose each data point of this Data object around the given axis. |
949 |
* |
950 |
*/ |
951 |
ESCRIPT_DLL_API |
952 |
Data |
953 |
transpose(int axis_offset) const; |
954 |
|
955 |
/** |
956 |
\brief |
957 |
Return the eigenvalues of the symmetric part at each data point of this Data object in increasing values. |
958 |
Currently this function is restricted to rank 2, square shape, and dimension 3. |
959 |
* |
960 |
*/ |
961 |
ESCRIPT_DLL_API |
962 |
Data |
963 |
eigenvalues() const; |
964 |
|
965 |
/** |
966 |
\brief |
967 |
Return the eigenvalues and corresponding eigenvcetors of the symmetric part at each data point of this Data object. |
968 |
the eigenvalues are ordered in increasing size where eigenvalues with relative difference less than |
969 |
tol are treated as equal. The eigenvectors are orthogonal, normalized and the sclaed such that the |
970 |
first non-zero entry is positive. |
971 |
Currently this function is restricted to rank 2, square shape, and dimension 3 |
972 |
* |
973 |
*/ |
974 |
ESCRIPT_DLL_API |
975 |
const boost::python::tuple |
976 |
eigenvalues_and_eigenvectors(const double tol=1.e-12) const; |
977 |
|
978 |
/** |
979 |
\brief |
980 |
swaps the components axis0 and axis1 |
981 |
* |
982 |
*/ |
983 |
ESCRIPT_DLL_API |
984 |
Data |
985 |
swapaxes(const int axis0, const int axis1) const; |
986 |
|
987 |
/** |
988 |
\brief |
989 |
Return the error function erf of each data point of this Data object. |
990 |
* |
991 |
*/ |
992 |
ESCRIPT_DLL_API |
993 |
Data |
994 |
erf() const; |
995 |
|
996 |
/** |
997 |
\brief |
998 |
Return the sin of each data point of this Data object. |
999 |
* |
1000 |
*/ |
1001 |
ESCRIPT_DLL_API |
1002 |
Data |
1003 |
sin() const; |
1004 |
|
1005 |
/** |
1006 |
\brief |
1007 |
Return the cos of each data point of this Data object. |
1008 |
* |
1009 |
*/ |
1010 |
ESCRIPT_DLL_API |
1011 |
Data |
1012 |
cos() const; |
1013 |
|
1014 |
/** |
1015 |
\brief |
1016 |
Return the tan of each data point of this Data object. |
1017 |
* |
1018 |
*/ |
1019 |
ESCRIPT_DLL_API |
1020 |
Data |
1021 |
tan() const; |
1022 |
|
1023 |
/** |
1024 |
\brief |
1025 |
Return the asin of each data point of this Data object. |
1026 |
* |
1027 |
*/ |
1028 |
ESCRIPT_DLL_API |
1029 |
Data |
1030 |
asin() const; |
1031 |
|
1032 |
/** |
1033 |
\brief |
1034 |
Return the acos of each data point of this Data object. |
1035 |
* |
1036 |
*/ |
1037 |
ESCRIPT_DLL_API |
1038 |
Data |
1039 |
acos() const; |
1040 |
|
1041 |
/** |
1042 |
\brief |
1043 |
Return the atan of each data point of this Data object. |
1044 |
* |
1045 |
*/ |
1046 |
ESCRIPT_DLL_API |
1047 |
Data |
1048 |
atan() const; |
1049 |
|
1050 |
/** |
1051 |
\brief |
1052 |
Return the sinh of each data point of this Data object. |
1053 |
* |
1054 |
*/ |
1055 |
ESCRIPT_DLL_API |
1056 |
Data |
1057 |
sinh() const; |
1058 |
|
1059 |
/** |
1060 |
\brief |
1061 |
Return the cosh of each data point of this Data object. |
1062 |
* |
1063 |
*/ |
1064 |
ESCRIPT_DLL_API |
1065 |
Data |
1066 |
cosh() const; |
1067 |
|
1068 |
/** |
1069 |
\brief |
1070 |
Return the tanh of each data point of this Data object. |
1071 |
* |
1072 |
*/ |
1073 |
ESCRIPT_DLL_API |
1074 |
Data |
1075 |
tanh() const; |
1076 |
|
1077 |
/** |
1078 |
\brief |
1079 |
Return the asinh of each data point of this Data object. |
1080 |
* |
1081 |
*/ |
1082 |
ESCRIPT_DLL_API |
1083 |
Data |
1084 |
asinh() const; |
1085 |
|
1086 |
/** |
1087 |
\brief |
1088 |
Return the acosh of each data point of this Data object. |
1089 |
* |
1090 |
*/ |
1091 |
ESCRIPT_DLL_API |
1092 |
Data |
1093 |
acosh() const; |
1094 |
|
1095 |
/** |
1096 |
\brief |
1097 |
Return the atanh of each data point of this Data object. |
1098 |
* |
1099 |
*/ |
1100 |
ESCRIPT_DLL_API |
1101 |
Data |
1102 |
atanh() const; |
1103 |
|
1104 |
/** |
1105 |
\brief |
1106 |
Return the log to base 10 of each data point of this Data object. |
1107 |
* |
1108 |
*/ |
1109 |
ESCRIPT_DLL_API |
1110 |
Data |
1111 |
log10() const; |
1112 |
|
1113 |
/** |
1114 |
\brief |
1115 |
Return the natural log of each data point of this Data object. |
1116 |
* |
1117 |
*/ |
1118 |
ESCRIPT_DLL_API |
1119 |
Data |
1120 |
log() const; |
1121 |
|
1122 |
/** |
1123 |
\brief |
1124 |
Return the exponential function of each data point of this Data object. |
1125 |
* |
1126 |
*/ |
1127 |
ESCRIPT_DLL_API |
1128 |
Data |
1129 |
exp() const; |
1130 |
|
1131 |
/** |
1132 |
\brief |
1133 |
Return the square root of each data point of this Data object. |
1134 |
* |
1135 |
*/ |
1136 |
ESCRIPT_DLL_API |
1137 |
Data |
1138 |
sqrt() const; |
1139 |
|
1140 |
/** |
1141 |
\brief |
1142 |
Return the negation of each data point of this Data object. |
1143 |
* |
1144 |
*/ |
1145 |
ESCRIPT_DLL_API |
1146 |
Data |
1147 |
neg() const; |
1148 |
|
1149 |
/** |
1150 |
\brief |
1151 |
Return the identity of each data point of this Data object. |
1152 |
Simply returns this object unmodified. |
1153 |
* |
1154 |
*/ |
1155 |
ESCRIPT_DLL_API |
1156 |
Data |
1157 |
pos() const; |
1158 |
|
1159 |
/** |
1160 |
\brief |
1161 |
Return the given power of each data point of this Data object. |
1162 |
|
1163 |
\param right Input - the power to raise the object to. |
1164 |
* |
1165 |
*/ |
1166 |
ESCRIPT_DLL_API |
1167 |
Data |
1168 |
powD(const Data& right) const; |
1169 |
|
1170 |
/** |
1171 |
\brief |
1172 |
Return the given power of each data point of this boost python object. |
1173 |
|
1174 |
\param right Input - the power to raise the object to. |
1175 |
* |
1176 |
*/ |
1177 |
ESCRIPT_DLL_API |
1178 |
Data |
1179 |
powO(const boost::python::object& right) const; |
1180 |
|
1181 |
/** |
1182 |
\brief |
1183 |
Return the given power of each data point of this boost python object. |
1184 |
|
1185 |
\param left Input - the bases |
1186 |
* |
1187 |
*/ |
1188 |
|
1189 |
ESCRIPT_DLL_API |
1190 |
Data |
1191 |
rpowO(const boost::python::object& left) const; |
1192 |
|
1193 |
/** |
1194 |
\brief |
1195 |
writes the object to a file in the DX file format |
1196 |
*/ |
1197 |
ESCRIPT_DLL_API |
1198 |
void |
1199 |
saveDX(std::string fileName) const; |
1200 |
|
1201 |
/** |
1202 |
\brief |
1203 |
writes the object to a file in the VTK file format |
1204 |
*/ |
1205 |
ESCRIPT_DLL_API |
1206 |
void |
1207 |
saveVTK(std::string fileName) const; |
1208 |
|
1209 |
/** |
1210 |
\brief |
1211 |
Overloaded operator += |
1212 |
\param right - Input - The right hand side. |
1213 |
* |
1214 |
*/ |
1215 |
ESCRIPT_DLL_API |
1216 |
Data& operator+=(const Data& right); |
1217 |
ESCRIPT_DLL_API |
1218 |
Data& operator+=(const boost::python::object& right); |
1219 |
|
1220 |
ESCRIPT_DLL_API |
1221 |
Data& operator=(const Data& other); |
1222 |
|
1223 |
/** |
1224 |
\brief |
1225 |
Overloaded operator -= |
1226 |
\param right - Input - The right hand side. |
1227 |
* |
1228 |
*/ |
1229 |
ESCRIPT_DLL_API |
1230 |
Data& operator-=(const Data& right); |
1231 |
ESCRIPT_DLL_API |
1232 |
Data& operator-=(const boost::python::object& right); |
1233 |
|
1234 |
/** |
1235 |
\brief |
1236 |
Overloaded operator *= |
1237 |
\param right - Input - The right hand side. |
1238 |
* |
1239 |
*/ |
1240 |
ESCRIPT_DLL_API |
1241 |
Data& operator*=(const Data& right); |
1242 |
ESCRIPT_DLL_API |
1243 |
Data& operator*=(const boost::python::object& right); |
1244 |
|
1245 |
/** |
1246 |
\brief |
1247 |
Overloaded operator /= |
1248 |
\param right - Input - The right hand side. |
1249 |
* |
1250 |
*/ |
1251 |
ESCRIPT_DLL_API |
1252 |
Data& operator/=(const Data& right); |
1253 |
ESCRIPT_DLL_API |
1254 |
Data& operator/=(const boost::python::object& right); |
1255 |
|
1256 |
/** |
1257 |
\brief |
1258 |
Returns true if this can be interpolated to functionspace. |
1259 |
*/ |
1260 |
ESCRIPT_DLL_API |
1261 |
bool |
1262 |
probeInterpolation(const FunctionSpace& functionspace) const; |
1263 |
|
1264 |
/** |
1265 |
Data object slicing methods. |
1266 |
*/ |
1267 |
|
1268 |
/** |
1269 |
\brief |
1270 |
Returns a slice from this Data object. |
1271 |
|
1272 |
/description |
1273 |
Implements the [] get operator in python. |
1274 |
Calls getSlice. |
1275 |
|
1276 |
\param key - Input - python slice tuple specifying |
1277 |
slice to return. |
1278 |
*/ |
1279 |
ESCRIPT_DLL_API |
1280 |
Data |
1281 |
getItem(const boost::python::object& key) const; |
1282 |
|
1283 |
/** |
1284 |
\brief |
1285 |
Copies slice from value into this Data object. |
1286 |
|
1287 |
Implements the [] set operator in python. |
1288 |
Calls setSlice. |
1289 |
|
1290 |
\param key - Input - python slice tuple specifying |
1291 |
slice to copy from value. |
1292 |
\param value - Input - Data object to copy from. |
1293 |
*/ |
1294 |
ESCRIPT_DLL_API |
1295 |
void |
1296 |
setItemD(const boost::python::object& key, |
1297 |
const Data& value); |
1298 |
|
1299 |
ESCRIPT_DLL_API |
1300 |
void |
1301 |
setItemO(const boost::python::object& key, |
1302 |
const boost::python::object& value); |
1303 |
|
1304 |
// These following public methods should be treated as private. |
1305 |
|
1306 |
/** |
1307 |
\brief |
1308 |
Perform the given unary operation on every element of every data point in |
1309 |
this Data object. |
1310 |
*/ |
1311 |
template <class UnaryFunction> |
1312 |
ESCRIPT_DLL_API |
1313 |
inline |
1314 |
void |
1315 |
unaryOp2(UnaryFunction operation); |
1316 |
|
1317 |
/** |
1318 |
\brief |
1319 |
Return a Data object containing the specified slice of |
1320 |
this Data object. |
1321 |
\param region - Input - Region to copy. |
1322 |
* |
1323 |
*/ |
1324 |
ESCRIPT_DLL_API |
1325 |
Data |
1326 |
getSlice(const DataTypes::RegionType& region) const; |
1327 |
|
1328 |
/** |
1329 |
\brief |
1330 |
Copy the specified slice from the given value into this |
1331 |
Data object. |
1332 |
\param value - Input - Data to copy from. |
1333 |
\param region - Input - Region to copy. |
1334 |
* |
1335 |
*/ |
1336 |
ESCRIPT_DLL_API |
1337 |
void |
1338 |
setSlice(const Data& value, |
1339 |
const DataTypes::RegionType& region); |
1340 |
|
1341 |
/** |
1342 |
\brief |
1343 |
print the data values to stdout. Used for debugging |
1344 |
*/ |
1345 |
ESCRIPT_DLL_API |
1346 |
void |
1347 |
print(void); |
1348 |
|
1349 |
/** |
1350 |
\brief |
1351 |
return the MPI rank number of the local data |
1352 |
MPI_COMM_WORLD is assumed and the result of MPI_Comm_size() |
1353 |
is returned |
1354 |
*/ |
1355 |
ESCRIPT_DLL_API |
1356 |
int |
1357 |
get_MPIRank(void) const; |
1358 |
|
1359 |
/** |
1360 |
\brief |
1361 |
return the MPI rank number of the local data |
1362 |
MPI_COMM_WORLD is assumed and the result of MPI_Comm_rank() |
1363 |
is returned |
1364 |
*/ |
1365 |
ESCRIPT_DLL_API |
1366 |
int |
1367 |
get_MPISize(void) const; |
1368 |
|
1369 |
/** |
1370 |
\brief |
1371 |
return the MPI rank number of the local data |
1372 |
MPI_COMM_WORLD is assumed and returned. |
1373 |
*/ |
1374 |
ESCRIPT_DLL_API |
1375 |
MPI_Comm |
1376 |
get_MPIComm(void) const; |
1377 |
|
1378 |
/** |
1379 |
\brief |
1380 |
return the object produced by the factory, which is a DataConstant or DataExpanded |
1381 |
TODO Ownership of this object should be explained in doco. |
1382 |
*/ |
1383 |
ESCRIPT_DLL_API |
1384 |
DataAbstract* |
1385 |
borrowData(void) const; |
1386 |
|
1387 |
ESCRIPT_DLL_API |
1388 |
DataAbstract_ptr |
1389 |
borrowDataPtr(void) const; |
1390 |
|
1391 |
ESCRIPT_DLL_API |
1392 |
DataReady_ptr |
1393 |
borrowReadyPtr(void) const; |
1394 |
|
1395 |
|
1396 |
|
1397 |
/** |
1398 |
\brief |
1399 |
Return a pointer to the beginning of the datapoint at the specified offset. |
1400 |
TODO Eventually these should be inlined. |
1401 |
\param i - position(offset) in the underlying datastructure |
1402 |
*/ |
1403 |
ESCRIPT_DLL_API |
1404 |
DataTypes::ValueType::const_reference |
1405 |
getDataAtOffset(DataTypes::ValueType::size_type i) const; |
1406 |
|
1407 |
|
1408 |
ESCRIPT_DLL_API |
1409 |
DataTypes::ValueType::reference |
1410 |
getDataAtOffset(DataTypes::ValueType::size_type i); |
1411 |
|
1412 |
protected: |
1413 |
|
1414 |
private: |
1415 |
|
1416 |
double |
1417 |
LsupWorker() const; |
1418 |
|
1419 |
double |
1420 |
supWorker() const; |
1421 |
|
1422 |
double |
1423 |
infWorker() const; |
1424 |
|
1425 |
boost::python::numeric::array |
1426 |
integrateWorker() const; |
1427 |
|
1428 |
/** |
1429 |
\brief |
1430 |
Check *this and the right operand are compatible. Throws |
1431 |
an exception if they aren't. |
1432 |
\param right - Input - The right hand side. |
1433 |
*/ |
1434 |
inline |
1435 |
void |
1436 |
operandCheck(const Data& right) const |
1437 |
{ |
1438 |
return m_data->operandCheck(*(right.m_data.get())); |
1439 |
} |
1440 |
|
1441 |
/** |
1442 |
\brief |
1443 |
Perform the specified reduction algorithm on every element of every data point in |
1444 |
this Data object according to the given function and return the single value result. |
1445 |
*/ |
1446 |
template <class BinaryFunction> |
1447 |
inline |
1448 |
double |
1449 |
algorithm(BinaryFunction operation, |
1450 |
double initial_value) const; |
1451 |
|
1452 |
/** |
1453 |
\brief |
1454 |
Reduce each data-point in this Data object using the given operation. Return a Data |
1455 |
object with the same number of data-points, but with each data-point containing only |
1456 |
one value - the result of the reduction operation on the corresponding data-point in |
1457 |
this Data object |
1458 |
*/ |
1459 |
template <class BinaryFunction> |
1460 |
inline |
1461 |
Data |
1462 |
dp_algorithm(BinaryFunction operation, |
1463 |
double initial_value) const; |
1464 |
|
1465 |
/** |
1466 |
\brief |
1467 |
Perform the given binary operation on all of the data's elements. |
1468 |
The underlying type of the right hand side (right) determines the final |
1469 |
type of *this after the operation. For example if the right hand side |
1470 |
is expanded *this will be expanded if necessary. |
1471 |
RHS is a Data object. |
1472 |
*/ |
1473 |
template <class BinaryFunction> |
1474 |
inline |
1475 |
void |
1476 |
binaryOp(const Data& right, |
1477 |
BinaryFunction operation); |
1478 |
|
1479 |
/** |
1480 |
\brief |
1481 |
Convert the data type of the RHS to match this. |
1482 |
\param right - Input - data type to match. |
1483 |
*/ |
1484 |
void |
1485 |
typeMatchLeft(Data& right) const; |
1486 |
|
1487 |
/** |
1488 |
\brief |
1489 |
Convert the data type of this to match the RHS. |
1490 |
\param right - Input - data type to match. |
1491 |
*/ |
1492 |
void |
1493 |
typeMatchRight(const Data& right); |
1494 |
|
1495 |
/** |
1496 |
\brief |
1497 |
Construct a Data object of the appropriate type. |
1498 |
*/ |
1499 |
|
1500 |
void |
1501 |
initialise(const DataTypes::ValueType& value, |
1502 |
const DataTypes::ShapeType& shape, |
1503 |
const FunctionSpace& what, |
1504 |
bool expanded); |
1505 |
|
1506 |
void |
1507 |
initialise(const boost::python::numeric::array& value, |
1508 |
const FunctionSpace& what, |
1509 |
bool expanded); |
1510 |
|
1511 |
// |
1512 |
// flag to protect the data object against any update |
1513 |
bool m_protected; |
1514 |
|
1515 |
// |
1516 |
// pointer to the actual data object |
1517 |
// boost::shared_ptr<DataAbstract> m_data; |
1518 |
DataAbstract_ptr m_data; |
1519 |
|
1520 |
const DataReady* |
1521 |
getReady() const; |
1522 |
|
1523 |
DataReady* |
1524 |
getReady(); |
1525 |
|
1526 |
}; |
1527 |
|
1528 |
} // end namespace escript |
1529 |
|
1530 |
|
1531 |
// No, this is not supposed to be at the top of the file |
1532 |
// DataAbstact needs to be declared first, then DataReady needs to be fully declared |
1533 |
// so that I can dynamic cast between them below. |
1534 |
#include "DataReady.h" |
1535 |
|
1536 |
namespace escript |
1537 |
{ |
1538 |
|
1539 |
inline |
1540 |
const DataReady* |
1541 |
Data::getReady() const |
1542 |
{ |
1543 |
const DataReady* dr=dynamic_cast<const DataReady*>(m_data.get()); |
1544 |
EsysAssert((dr!=0), "Error - casting to DataReady."); |
1545 |
return dr; |
1546 |
} |
1547 |
|
1548 |
inline |
1549 |
DataReady* |
1550 |
Data::getReady() |
1551 |
{ |
1552 |
DataReady* dr=dynamic_cast<DataReady*>(m_data.get()); |
1553 |
EsysAssert((dr!=0), "Error - casting to DataReady."); |
1554 |
return dr; |
1555 |
} |
1556 |
|
1557 |
inline |
1558 |
DataAbstract::ValueType::value_type* |
1559 |
Data::getSampleData(DataAbstract::ValueType::size_type sampleNo) |
1560 |
{ |
1561 |
if (isLazy()) |
1562 |
{ |
1563 |
resolve(); |
1564 |
} |
1565 |
return getReady()->getSampleData(sampleNo); |
1566 |
} |
1567 |
|
1568 |
|
1569 |
/** |
1570 |
Modify a filename for MPI parallel output to multiple files |
1571 |
*/ |
1572 |
char *Escript_MPI_appendRankToFileName(const char *, int, int); |
1573 |
|
1574 |
/** |
1575 |
Binary Data object operators. |
1576 |
*/ |
1577 |
inline double rpow(double x,double y) |
1578 |
{ |
1579 |
return pow(y,x); |
1580 |
} |
1581 |
|
1582 |
/** |
1583 |
\brief |
1584 |
Operator+ |
1585 |
Takes two Data objects. |
1586 |
*/ |
1587 |
ESCRIPT_DLL_API Data operator+(const Data& left, const Data& right); |
1588 |
|
1589 |
/** |
1590 |
\brief |
1591 |
Operator- |
1592 |
Takes two Data objects. |
1593 |
*/ |
1594 |
ESCRIPT_DLL_API Data operator-(const Data& left, const Data& right); |
1595 |
|
1596 |
/** |
1597 |
\brief |
1598 |
Operator* |
1599 |
Takes two Data objects. |
1600 |
*/ |
1601 |
ESCRIPT_DLL_API Data operator*(const Data& left, const Data& right); |
1602 |
|
1603 |
/** |
1604 |
\brief |
1605 |
Operator/ |
1606 |
Takes two Data objects. |
1607 |
*/ |
1608 |
ESCRIPT_DLL_API Data operator/(const Data& left, const Data& right); |
1609 |
|
1610 |
/** |
1611 |
\brief |
1612 |
Operator+ |
1613 |
Takes LHS Data object and RHS python::object. |
1614 |
python::object must be convertable to Data type. |
1615 |
*/ |
1616 |
ESCRIPT_DLL_API Data operator+(const Data& left, const boost::python::object& right); |
1617 |
|
1618 |
/** |
1619 |
\brief |
1620 |
Operator- |
1621 |
Takes LHS Data object and RHS python::object. |
1622 |
python::object must be convertable to Data type. |
1623 |
*/ |
1624 |
ESCRIPT_DLL_API Data operator-(const Data& left, const boost::python::object& right); |
1625 |
|
1626 |
/** |
1627 |
\brief |
1628 |
Operator* |
1629 |
Takes LHS Data object and RHS python::object. |
1630 |
python::object must be convertable to Data type. |
1631 |
*/ |
1632 |
ESCRIPT_DLL_API Data operator*(const Data& left, const boost::python::object& right); |
1633 |
|
1634 |
/** |
1635 |
\brief |
1636 |
Operator/ |
1637 |
Takes LHS Data object and RHS python::object. |
1638 |
python::object must be convertable to Data type. |
1639 |
*/ |
1640 |
ESCRIPT_DLL_API Data operator/(const Data& left, const boost::python::object& right); |
1641 |
|
1642 |
/** |
1643 |
\brief |
1644 |
Operator+ |
1645 |
Takes LHS python::object and RHS Data object. |
1646 |
python::object must be convertable to Data type. |
1647 |
*/ |
1648 |
ESCRIPT_DLL_API Data operator+(const boost::python::object& left, const Data& right); |
1649 |
|
1650 |
/** |
1651 |
\brief |
1652 |
Operator- |
1653 |
Takes LHS python::object and RHS Data object. |
1654 |
python::object must be convertable to Data type. |
1655 |
*/ |
1656 |
ESCRIPT_DLL_API Data operator-(const boost::python::object& left, const Data& right); |
1657 |
|
1658 |
/** |
1659 |
\brief |
1660 |
Operator* |
1661 |
Takes LHS python::object and RHS Data object. |
1662 |
python::object must be convertable to Data type. |
1663 |
*/ |
1664 |
ESCRIPT_DLL_API Data operator*(const boost::python::object& left, const Data& right); |
1665 |
|
1666 |
/** |
1667 |
\brief |
1668 |
Operator/ |
1669 |
Takes LHS python::object and RHS Data object. |
1670 |
python::object must be convertable to Data type. |
1671 |
*/ |
1672 |
ESCRIPT_DLL_API Data operator/(const boost::python::object& left, const Data& right); |
1673 |
|
1674 |
|
1675 |
|
1676 |
/** |
1677 |
\brief |
1678 |
Output operator |
1679 |
*/ |
1680 |
ESCRIPT_DLL_API std::ostream& operator<<(std::ostream& o, const Data& data); |
1681 |
|
1682 |
/** |
1683 |
\brief |
1684 |
Compute a tensor product of two Data objects |
1685 |
\param arg0 - Input - Data object |
1686 |
\param arg1 - Input - Data object |
1687 |
\param axis_offset - Input - axis offset |
1688 |
\param transpose - Input - 0: transpose neither, 1: transpose arg0, 2: transpose arg1 |
1689 |
*/ |
1690 |
ESCRIPT_DLL_API |
1691 |
Data |
1692 |
C_GeneralTensorProduct(Data& arg0, |
1693 |
Data& arg1, |
1694 |
int axis_offset=0, |
1695 |
int transpose=0); |
1696 |
|
1697 |
/** |
1698 |
\brief |
1699 |
Perform the given binary operation with this and right as operands. |
1700 |
Right is a Data object. |
1701 |
*/ |
1702 |
template <class BinaryFunction> |
1703 |
inline |
1704 |
void |
1705 |
Data::binaryOp(const Data& right, |
1706 |
BinaryFunction operation) |
1707 |
{ |
1708 |
// |
1709 |
// if this has a rank of zero promote it to the rank of the RHS |
1710 |
if (getDataPointRank()==0 && right.getDataPointRank()!=0) { |
1711 |
throw DataException("Error - attempt to update rank zero object with object with rank bigger than zero."); |
1712 |
} |
1713 |
|
1714 |
if (isLazy() || right.isLazy()) |
1715 |
{ |
1716 |
throw DataException("Programmer error - attempt to call binaryOp with Lazy Data."); |
1717 |
} |
1718 |
// |
1719 |
// initially make the temporary a shallow copy |
1720 |
Data tempRight(right); |
1721 |
|
1722 |
if (getFunctionSpace()!=right.getFunctionSpace()) { |
1723 |
if (right.probeInterpolation(getFunctionSpace())) { |
1724 |
// |
1725 |
// an interpolation is required so create a new Data |
1726 |
tempRight=Data(right,this->getFunctionSpace()); |
1727 |
} else if (probeInterpolation(right.getFunctionSpace())) { |
1728 |
// |
1729 |
// interpolate onto the RHS function space |
1730 |
Data tempLeft(*this,right.getFunctionSpace()); |
1731 |
m_data=tempLeft.m_data; |
1732 |
} |
1733 |
} |
1734 |
operandCheck(tempRight); |
1735 |
// |
1736 |
// ensure this has the right type for the RHS |
1737 |
typeMatchRight(tempRight); |
1738 |
// |
1739 |
// Need to cast to the concrete types so that the correct binaryOp |
1740 |
// is called. |
1741 |
if (isExpanded()) { |
1742 |
// |
1743 |
// Expanded data will be done in parallel, the right hand side can be |
1744 |
// of any data type |
1745 |
DataExpanded* leftC=dynamic_cast<DataExpanded*>(m_data.get()); |
1746 |
EsysAssert((leftC!=0), "Programming error - casting to DataExpanded."); |
1747 |
escript::binaryOp(*leftC,*(tempRight.getReady()),operation); |
1748 |
} else if (isTagged()) { |
1749 |
// |
1750 |
// Tagged data is operated on serially, the right hand side can be |
1751 |
// either DataConstant or DataTagged |
1752 |
DataTagged* leftC=dynamic_cast<DataTagged*>(m_data.get()); |
1753 |
EsysAssert((leftC!=0), "Programming error - casting to DataTagged."); |
1754 |
if (right.isTagged()) { |
1755 |
DataTagged* rightC=dynamic_cast<DataTagged*>(tempRight.m_data.get()); |
1756 |
EsysAssert((rightC!=0), "Programming error - casting to DataTagged."); |
1757 |
escript::binaryOp(*leftC,*rightC,operation); |
1758 |
} else { |
1759 |
DataConstant* rightC=dynamic_cast<DataConstant*>(tempRight.m_data.get()); |
1760 |
EsysAssert((rightC!=0), "Programming error - casting to DataConstant."); |
1761 |
escript::binaryOp(*leftC,*rightC,operation); |
1762 |
} |
1763 |
} else if (isConstant()) { |
1764 |
DataConstant* leftC=dynamic_cast<DataConstant*>(m_data.get()); |
1765 |
DataConstant* rightC=dynamic_cast<DataConstant*>(tempRight.m_data.get()); |
1766 |
EsysAssert((leftC!=0 && rightC!=0), "Programming error - casting to DataConstant."); |
1767 |
escript::binaryOp(*leftC,*rightC,operation); |
1768 |
} |
1769 |
} |
1770 |
|
1771 |
/** |
1772 |
\brief |
1773 |
Perform the given Data object reduction algorithm on this and return the result. |
1774 |
Given operation combines each element of each data point, thus argument |
1775 |
object (*this) is a rank n Data object, and returned object is a scalar. |
1776 |
Calls escript::algorithm. |
1777 |
*/ |
1778 |
template <class BinaryFunction> |
1779 |
inline |
1780 |
double |
1781 |
Data::algorithm(BinaryFunction operation, double initial_value) const |
1782 |
{ |
1783 |
if (isExpanded()) { |
1784 |
DataExpanded* leftC=dynamic_cast<DataExpanded*>(m_data.get()); |
1785 |
EsysAssert((leftC!=0), "Programming error - casting to DataExpanded."); |
1786 |
return escript::algorithm(*leftC,operation,initial_value); |
1787 |
} else if (isTagged()) { |
1788 |
DataTagged* leftC=dynamic_cast<DataTagged*>(m_data.get()); |
1789 |
EsysAssert((leftC!=0), "Programming error - casting to DataTagged."); |
1790 |
return escript::algorithm(*leftC,operation,initial_value); |
1791 |
} else if (isConstant()) { |
1792 |
DataConstant* leftC=dynamic_cast<DataConstant*>(m_data.get()); |
1793 |
EsysAssert((leftC!=0), "Programming error - casting to DataConstant."); |
1794 |
return escript::algorithm(*leftC,operation,initial_value); |
1795 |
} else if (isEmpty()) { |
1796 |
throw DataException("Error - Operations not permitted on instances of DataEmpty."); |
1797 |
} else if (isLazy()) { |
1798 |
throw DataException("Error - Operations not permitted on instances of DataLazy."); |
1799 |
} else { |
1800 |
throw DataException("Error - Data encapsulates an unknown type."); |
1801 |
} |
1802 |
} |
1803 |
|
1804 |
/** |
1805 |
\brief |
1806 |
Perform the given data point reduction algorithm on data and return the result. |
1807 |
Given operation combines each element within each data point into a scalar, |
1808 |
thus argument object is a rank n Data object, and returned object is a |
1809 |
rank 0 Data object. |
1810 |
Calls escript::dp_algorithm. |
1811 |
*/ |
1812 |
template <class BinaryFunction> |
1813 |
inline |
1814 |
Data |
1815 |
Data::dp_algorithm(BinaryFunction operation, double initial_value) const |
1816 |
{ |
1817 |
if (isEmpty()) { |
1818 |
throw DataException("Error - Operations not permitted on instances of DataEmpty."); |
1819 |
} |
1820 |
else if (isExpanded()) { |
1821 |
Data result(0,DataTypes::ShapeType(),getFunctionSpace(),isExpanded()); |
1822 |
DataExpanded* dataE=dynamic_cast<DataExpanded*>(m_data.get()); |
1823 |
DataExpanded* resultE=dynamic_cast<DataExpanded*>(result.m_data.get()); |
1824 |
EsysAssert((dataE!=0), "Programming error - casting data to DataExpanded."); |
1825 |
EsysAssert((resultE!=0), "Programming error - casting result to DataExpanded."); |
1826 |
escript::dp_algorithm(*dataE,*resultE,operation,initial_value); |
1827 |
return result; |
1828 |
} |
1829 |
else if (isTagged()) { |
1830 |
DataTagged* dataT=dynamic_cast<DataTagged*>(m_data.get()); |
1831 |
EsysAssert((dataT!=0), "Programming error - casting data to DataTagged."); |
1832 |
DataTypes::ValueType defval(1); |
1833 |
defval[0]=0; |
1834 |
DataTagged* resultT=new DataTagged(getFunctionSpace(), DataTypes::scalarShape, defval, dataT); |
1835 |
escript::dp_algorithm(*dataT,*resultT,operation,initial_value); |
1836 |
return Data(resultT); // note: the Data object now owns the resultT pointer |
1837 |
} |
1838 |
else if (isConstant()) { |
1839 |
Data result(0,DataTypes::ShapeType(),getFunctionSpace(),isExpanded()); |
1840 |
DataConstant* dataC=dynamic_cast<DataConstant*>(m_data.get()); |
1841 |
DataConstant* resultC=dynamic_cast<DataConstant*>(result.m_data.get()); |
1842 |
EsysAssert((dataC!=0), "Programming error - casting data to DataConstant."); |
1843 |
EsysAssert((resultC!=0), "Programming error - casting result to DataConstant."); |
1844 |
escript::dp_algorithm(*dataC,*resultC,operation,initial_value); |
1845 |
return result; |
1846 |
} else if (isLazy()) { |
1847 |
throw DataException("Error - Operations not permitted on instances of DataLazy."); |
1848 |
} else { |
1849 |
throw DataException("Error - Data encapsulates an unknown type."); |
1850 |
} |
1851 |
} |
1852 |
|
1853 |
/** |
1854 |
\brief |
1855 |
Compute a tensor operation with two Data objects |
1856 |
\param arg0 - Input - Data object |
1857 |
\param arg1 - Input - Data object |
1858 |
\param operation - Input - Binary op functor |
1859 |
*/ |
1860 |
template <typename BinaryFunction> |
1861 |
inline |
1862 |
Data |
1863 |
C_TensorBinaryOperation(Data const &arg_0, |
1864 |
Data const &arg_1, |
1865 |
BinaryFunction operation) |
1866 |
{ |
1867 |
if (arg_0.isEmpty() || arg_1.isEmpty()) |
1868 |
{ |
1869 |
throw DataException("Error - Operations not permitted on instances of DataEmpty."); |
1870 |
} |
1871 |
if (arg_0.isLazy() || arg_1.isLazy()) |
1872 |
{ |
1873 |
throw DataException("Error - Operations not permitted on lazy data."); |
1874 |
} |
1875 |
// Interpolate if necessary and find an appropriate function space |
1876 |
Data arg_0_Z, arg_1_Z; |
1877 |
if (arg_0.getFunctionSpace()!=arg_1.getFunctionSpace()) { |
1878 |
if (arg_0.probeInterpolation(arg_1.getFunctionSpace())) { |
1879 |
arg_0_Z = arg_0.interpolate(arg_1.getFunctionSpace()); |
1880 |
arg_1_Z = Data(arg_1); |
1881 |
} |
1882 |
else if (arg_1.probeInterpolation(arg_0.getFunctionSpace())) { |
1883 |
arg_1_Z=arg_1.interpolate(arg_0.getFunctionSpace()); |
1884 |
arg_0_Z =Data(arg_0); |
1885 |
} |
1886 |
else { |
1887 |
throw DataException("Error - C_TensorBinaryOperation: arguments have incompatible function spaces."); |
1888 |
} |
1889 |
} else { |
1890 |
arg_0_Z = Data(arg_0); |
1891 |
arg_1_Z = Data(arg_1); |
1892 |
} |
1893 |
// Get rank and shape of inputs |
1894 |
int rank0 = arg_0_Z.getDataPointRank(); |
1895 |
int rank1 = arg_1_Z.getDataPointRank(); |
1896 |
DataTypes::ShapeType shape0 = arg_0_Z.getDataPointShape(); |
1897 |
DataTypes::ShapeType shape1 = arg_1_Z.getDataPointShape(); |
1898 |
int size0 = arg_0_Z.getDataPointSize(); |
1899 |
int size1 = arg_1_Z.getDataPointSize(); |
1900 |
|
1901 |
// Declare output Data object |
1902 |
Data res; |
1903 |
|
1904 |
if (shape0 == shape1) { |
1905 |
|
1906 |
if (arg_0_Z.isConstant() && arg_1_Z.isConstant()) { |
1907 |
res = Data(0.0, shape0, arg_1_Z.getFunctionSpace()); // DataConstant output |
1908 |
/* double *ptr_0 = &((arg_0_Z.getPointDataView().getData())[0]); |
1909 |
double *ptr_1 = &((arg_1_Z.getPointDataView().getData())[0]); |
1910 |
double *ptr_2 = &((res.getPointDataView().getData())[0]);*/ |
1911 |
double *ptr_0 = &(arg_0_Z.getDataAtOffset(0)); |
1912 |
double *ptr_1 = &(arg_1_Z.getDataAtOffset(0)); |
1913 |
double *ptr_2 = &(res.getDataAtOffset(0)); |
1914 |
|
1915 |
tensor_binary_operation(size0, ptr_0, ptr_1, ptr_2, operation); |
1916 |
} |
1917 |
else if (arg_0_Z.isConstant() && arg_1_Z.isTagged()) { |
1918 |
|
1919 |
// Prepare the DataConstant input |
1920 |
DataConstant* tmp_0=dynamic_cast<DataConstant*>(arg_0_Z.borrowData()); |
1921 |
|
1922 |
// Borrow DataTagged input from Data object |
1923 |
DataTagged* tmp_1=dynamic_cast<DataTagged*>(arg_1_Z.borrowData()); |
1924 |
|
1925 |
// Prepare a DataTagged output 2 |
1926 |
res = Data(0.0, shape0, arg_1_Z.getFunctionSpace()); // DataTagged output |
1927 |
res.tag(); |
1928 |
DataTagged* tmp_2=dynamic_cast<DataTagged*>(res.borrowData()); |
1929 |
|
1930 |
// Prepare offset into DataConstant |
1931 |
int offset_0 = tmp_0->getPointOffset(0,0); |
1932 |
double *ptr_0 = &(arg_0_Z.getDataAtOffset(offset_0)); |
1933 |
// Get the views |
1934 |
// DataArrayView view_1 = tmp_1->getDefaultValue(); |
1935 |
// DataArrayView view_2 = tmp_2->getDefaultValue(); |
1936 |
// // Get the pointers to the actual data |
1937 |
// double *ptr_1 = &((view_1.getData())[0]); |
1938 |
// double *ptr_2 = &((view_2.getData())[0]); |
1939 |
|
1940 |
// Get the pointers to the actual data |
1941 |
double *ptr_1 = &(tmp_1->getDefaultValue(0)); |
1942 |
double *ptr_2 = &(tmp_2->getDefaultValue(0)); |
1943 |
|
1944 |
// Compute a result for the default |
1945 |
tensor_binary_operation(size0, ptr_0, ptr_1, ptr_2, operation); |
1946 |
// Compute a result for each tag |
1947 |
const DataTagged::DataMapType& lookup_1=tmp_1->getTagLookup(); |
1948 |
DataTagged::DataMapType::const_iterator i; // i->first is a tag, i->second is an offset into memory |
1949 |
for (i=lookup_1.begin();i!=lookup_1.end();i++) { |
1950 |
tmp_2->addTag(i->first); |
1951 |
/* DataArrayView view_1 = tmp_1->getDataPointByTag(i->first); |
1952 |
DataArrayView view_2 = tmp_2->getDataPointByTag(i->first); |
1953 |
double *ptr_1 = &view_1.getData(0); |
1954 |
double *ptr_2 = &view_2.getData(0);*/ |
1955 |
double *ptr_1 = &(tmp_1->getDataByTag(i->first,0)); |
1956 |
double *ptr_2 = &(tmp_2->getDataByTag(i->first,0)); |
1957 |
|
1958 |
tensor_binary_operation(size0, ptr_0, ptr_1, ptr_2, operation); |
1959 |
} |
1960 |
|
1961 |
} |
1962 |
else if (arg_0_Z.isConstant() && arg_1_Z.isExpanded()) { |
1963 |
|
1964 |
res = Data(0.0, shape0, arg_1_Z.getFunctionSpace(),true); // DataExpanded output |
1965 |
DataConstant* tmp_0=dynamic_cast<DataConstant*>(arg_0_Z.borrowData()); |
1966 |
DataExpanded* tmp_1=dynamic_cast<DataExpanded*>(arg_1_Z.borrowData()); |
1967 |
DataExpanded* tmp_2=dynamic_cast<DataExpanded*>(res.borrowData()); |
1968 |
|
1969 |
int sampleNo_1,dataPointNo_1; |
1970 |
int numSamples_1 = arg_1_Z.getNumSamples(); |
1971 |
int numDataPointsPerSample_1 = arg_1_Z.getNumDataPointsPerSample(); |
1972 |
int offset_0 = tmp_0->getPointOffset(0,0); |
1973 |
#pragma omp parallel for private(sampleNo_1,dataPointNo_1) schedule(static) |
1974 |
for (sampleNo_1 = 0; sampleNo_1 < numSamples_1; sampleNo_1++) { |
1975 |
for (dataPointNo_1 = 0; dataPointNo_1 < numDataPointsPerSample_1; dataPointNo_1++) { |
1976 |
int offset_1 = tmp_1->getPointOffset(sampleNo_1,dataPointNo_1); |
1977 |
int offset_2 = tmp_2->getPointOffset(sampleNo_1,dataPointNo_1); |
1978 |
// double *ptr_0 = &((arg_0_Z.getPointDataView().getData())[offset_0]); |
1979 |
// double *ptr_1 = &((arg_1_Z.getPointDataView().getData())[offset_1]); |
1980 |
// double *ptr_2 = &((res.getPointDataView().getData())[offset_2]); |
1981 |
|
1982 |
double *ptr_0 = &(arg_0_Z.getDataAtOffset(offset_0)); |
1983 |
double *ptr_1 = &(arg_1_Z.getDataAtOffset(offset_1)); |
1984 |
double *ptr_2 = &(res.getDataAtOffset(offset_2)); |
1985 |
tensor_binary_operation(size0, ptr_0, ptr_1, ptr_2, operation); |
1986 |
} |
1987 |
} |
1988 |
|
1989 |
} |
1990 |
else if (arg_0_Z.isTagged() && arg_1_Z.isConstant()) { |
1991 |
|
1992 |
// Borrow DataTagged input from Data object |
1993 |
DataTagged* tmp_0=dynamic_cast<DataTagged*>(arg_0_Z.borrowData()); |
1994 |
|
1995 |
// Prepare the DataConstant input |
1996 |
DataConstant* tmp_1=dynamic_cast<DataConstant*>(arg_1_Z.borrowData()); |
1997 |
|
1998 |
// Prepare a DataTagged output 2 |
1999 |
res = Data(0.0, shape0, arg_0_Z.getFunctionSpace()); // DataTagged output |
2000 |
res.tag(); |
2001 |
DataTagged* tmp_2=dynamic_cast<DataTagged*>(res.borrowData()); |
2002 |
|
2003 |
// Prepare offset into DataConstant |
2004 |
int offset_1 = tmp_1->getPointOffset(0,0); |
2005 |
// double *ptr_1 = &((arg_1_Z.getPointDataView().getData())[offset_1]); |
2006 |
double *ptr_1 = &(arg_1_Z.getDataAtOffset(offset_1)); |
2007 |
// Get the views |
2008 |
// DataArrayView view_0 = tmp_0->getDefaultValue(); |
2009 |
// DataArrayView view_2 = tmp_2->getDefaultValue(); |
2010 |
// // Get the pointers to the actual data |
2011 |
// double *ptr_0 = &((view_0.getData())[0]); |
2012 |
// double *ptr_2 = &((view_2.getData())[0]); |
2013 |
// Get the pointers to the actual data |
2014 |
double *ptr_0 = &(tmp_0->getDefaultValue(0)); |
2015 |
double *ptr_2 = &(tmp_2->getDefaultValue(0)); |
2016 |
// Compute a result for the default |
2017 |
tensor_binary_operation(size0, ptr_0, ptr_1, ptr_2, operation); |
2018 |
// Compute a result for each tag |
2019 |
const DataTagged::DataMapType& lookup_0=tmp_0->getTagLookup(); |
2020 |
DataTagged::DataMapType::const_iterator i; // i->first is a tag, i->second is an offset into memory |
2021 |
for (i=lookup_0.begin();i!=lookup_0.end();i++) { |
2022 |
tmp_2->addTag(i->first); |
2023 |
// DataArrayView view_0 = tmp_0->getDataPointByTag(i->first); |
2024 |
// DataArrayView view_2 = tmp_2->getDataPointByTag(i->first); |
2025 |
// double *ptr_0 = &view_0.getData(0); |
2026 |
// double *ptr_2 = &view_2.getData(0); |
2027 |
double *ptr_0 = &(tmp_0->getDataByTag(i->first,0)); |
2028 |
double *ptr_2 = &(tmp_2->getDataByTag(i->first,0)); |
2029 |
tensor_binary_operation(size0, ptr_0, ptr_1, ptr_2, operation); |
2030 |
} |
2031 |
|
2032 |
} |
2033 |
else if (arg_0_Z.isTagged() && arg_1_Z.isTagged()) { |
2034 |
|
2035 |
// Borrow DataTagged input from Data object |
2036 |
DataTagged* tmp_0=dynamic_cast<DataTagged*>(arg_0_Z.borrowData()); |
2037 |
|
2038 |
// Borrow DataTagged input from Data object |
2039 |
DataTagged* tmp_1=dynamic_cast<DataTagged*>(arg_1_Z.borrowData()); |
2040 |
|
2041 |
// Prepare a DataTagged output 2 |
2042 |
res = Data(0.0, shape0, arg_1_Z.getFunctionSpace()); |
2043 |
res.tag(); // DataTagged output |
2044 |
DataTagged* tmp_2=dynamic_cast<DataTagged*>(res.borrowData()); |
2045 |
|
2046 |
// // Get the views |
2047 |
// DataArrayView view_0 = tmp_0->getDefaultValue(); |
2048 |
// DataArrayView view_1 = tmp_1->getDefaultValue(); |
2049 |
// DataArrayView view_2 = tmp_2->getDefaultValue(); |
2050 |
// // Get the pointers to the actual data |
2051 |
// double *ptr_0 = &((view_0.getData())[0]); |
2052 |
// double *ptr_1 = &((view_1.getData())[0]); |
2053 |
// double *ptr_2 = &((view_2.getData())[0]); |
2054 |
|
2055 |
// Get the pointers to the actual data |
2056 |
double *ptr_0 = &(tmp_0->getDefaultValue(0)); |
2057 |
double *ptr_1 = &(tmp_1->getDefaultValue(0)); |
2058 |
double *ptr_2 = &(tmp_2->getDefaultValue(0)); |
2059 |
|
2060 |
// Compute a result for the default |
2061 |
tensor_binary_operation(size0, ptr_0, ptr_1, ptr_2, operation); |
2062 |
// Merge the tags |
2063 |
DataTagged::DataMapType::const_iterator i; // i->first is a tag, i->second is an offset into memory |
2064 |
const DataTagged::DataMapType& lookup_0=tmp_0->getTagLookup(); |
2065 |
const DataTagged::DataMapType& lookup_1=tmp_1->getTagLookup(); |
2066 |
for (i=lookup_0.begin();i!=lookup_0.end();i++) { |
2067 |
tmp_2->addTag(i->first); // use tmp_2 to get correct shape |
2068 |
} |
2069 |
for (i=lookup_1.begin();i!=lookup_1.end();i++) { |
2070 |
tmp_2->addTag(i->first); |
2071 |
} |
2072 |
// Compute a result for each tag |
2073 |
const DataTagged::DataMapType& lookup_2=tmp_2->getTagLookup(); |
2074 |
for (i=lookup_2.begin();i!=lookup_2.end();i++) { |
2075 |
|
2076 |
// DataArrayView view_0 = tmp_0->getDataPointByTag(i->first); |
2077 |
// DataArrayView view_1 = tmp_1->getDataPointByTag(i->first); |
2078 |
// DataArrayView view_2 = tmp_2->getDataPointByTag(i->first); |
2079 |
// double *ptr_0 = &view_0.getData(0); |
2080 |
// double *ptr_1 = &view_1.getData(0); |
2081 |
// double *ptr_2 = &view_2.getData(0); |
2082 |
|
2083 |
double *ptr_0 = &(tmp_0->getDataByTag(i->first,0)); |
2084 |
double *ptr_1 = &(tmp_1->getDataByTag(i->first,0)); |
2085 |
double *ptr_2 = &(tmp_2->getDataByTag(i->first,0)); |
2086 |
|
2087 |
tensor_binary_operation(size0, ptr_0, ptr_1, ptr_2, operation); |
2088 |
} |
2089 |
|
2090 |
} |
2091 |
else if (arg_0_Z.isTagged() && arg_1_Z.isExpanded()) { |
2092 |
|
2093 |
// After finding a common function space above the two inputs have the same numSamples and num DPPS |
2094 |
res = Data(0.0, shape0, arg_1_Z.getFunctionSpace(),true); // DataExpanded output |
2095 |
DataTagged* tmp_0=dynamic_cast<DataTagged*>(arg_0_Z.borrowData()); |
2096 |
DataExpanded* tmp_1=dynamic_cast<DataExpanded*>(arg_1_Z.borrowData()); |
2097 |
DataExpanded* tmp_2=dynamic_cast<DataExpanded*>(res.borrowData()); |
2098 |
|
2099 |
int sampleNo_0,dataPointNo_0; |
2100 |
int numSamples_0 = arg_0_Z.getNumSamples(); |
2101 |
int numDataPointsPerSample_0 = arg_0_Z.getNumDataPointsPerSample(); |
2102 |
#pragma omp parallel for private(sampleNo_0,dataPointNo_0) schedule(static) |
2103 |
for (sampleNo_0 = 0; sampleNo_0 < numSamples_0; sampleNo_0++) { |
2104 |
int offset_0 = tmp_0->getPointOffset(sampleNo_0,0); // They're all the same, so just use #0 |
2105 |
double *ptr_0 = &(arg_0_Z.getDataAtOffset(offset_0)); |
2106 |
for (dataPointNo_0 = 0; dataPointNo_0 < numDataPointsPerSample_0; dataPointNo_0++) { |
2107 |
int offset_1 = tmp_1->getPointOffset(sampleNo_0,dataPointNo_0); |
2108 |
int offset_2 = tmp_2->getPointOffset(sampleNo_0,dataPointNo_0); |
2109 |
|
2110 |
// double *ptr_1 = &((arg_1_Z.getPointDataView().getData())[offset_1]); |
2111 |
// double *ptr_2 = &((res.getPointDataView().getData())[offset_2]); |
2112 |
double *ptr_1 = &(arg_1_Z.getDataAtOffset(offset_1)); |
2113 |
double *ptr_2 = &(res.getDataAtOffset(offset_2)); |
2114 |
|
2115 |
|
2116 |
tensor_binary_operation(size0, ptr_0, ptr_1, ptr_2, operation); |
2117 |
} |
2118 |
} |
2119 |
|
2120 |
} |
2121 |
else if (arg_0_Z.isExpanded() && arg_1_Z.isConstant()) { |
2122 |
|
2123 |
res = Data(0.0, shape0, arg_1_Z.getFunctionSpace(),true); // DataExpanded output |
2124 |
DataExpanded* tmp_0=dynamic_cast<DataExpanded*>(arg_0_Z.borrowData()); |
2125 |
DataConstant* tmp_1=dynamic_cast<DataConstant*>(arg_1_Z.borrowData()); |
2126 |
DataExpanded* tmp_2=dynamic_cast<DataExpanded*>(res.borrowData()); |
2127 |
|
2128 |
int sampleNo_0,dataPointNo_0; |
2129 |
int numSamples_0 = arg_0_Z.getNumSamples(); |
2130 |
int numDataPointsPerSample_0 = arg_0_Z.getNumDataPointsPerSample(); |
2131 |
int offset_1 = tmp_1->getPointOffset(0,0); |
2132 |
#pragma omp parallel for private(sampleNo_0,dataPointNo_0) schedule(static) |
2133 |
for (sampleNo_0 = 0; sampleNo_0 < numSamples_0; sampleNo_0++) { |
2134 |
for (dataPointNo_0 = 0; dataPointNo_0 < numDataPointsPerSample_0; dataPointNo_0++) { |
2135 |
int offset_0 = tmp_0->getPointOffset(sampleNo_0,dataPointNo_0); |
2136 |
int offset_2 = tmp_2->getPointOffset(sampleNo_0,dataPointNo_0); |
2137 |
|
2138 |
// double *ptr_0 = &((arg_0_Z.getPointDataView().getData())[offset_0]); |
2139 |
// double *ptr_1 = &((arg_1_Z.getPointDataView().getData())[offset_1]); |
2140 |
// double *ptr_2 = &((res.getPointDataView().getData())[offset_2]); |
2141 |
|
2142 |
double *ptr_0 = &(arg_0_Z.getDataAtOffset(offset_0)); |
2143 |
double *ptr_1 = &(arg_1_Z.getDataAtOffset(offset_1)); |
2144 |
double *ptr_2 = &(res.getDataAtOffset(offset_2)); |
2145 |
|
2146 |
|
2147 |
tensor_binary_operation(size0, ptr_0, ptr_1, ptr_2, operation); |
2148 |
} |
2149 |
} |
2150 |
|
2151 |
} |
2152 |
else if (arg_0_Z.isExpanded() && arg_1_Z.isTagged()) { |
2153 |
|
2154 |
// After finding a common function space above the two inputs have the same numSamples and num DPPS |
2155 |
res = Data(0.0, shape0, arg_1_Z.getFunctionSpace(),true); // DataExpanded output |
2156 |
DataExpanded* tmp_0=dynamic_cast<DataExpanded*>(arg_0_Z.borrowData()); |
2157 |
DataTagged* tmp_1=dynamic_cast<DataTagged*>(arg_1_Z.borrowData()); |
2158 |
DataExpanded* tmp_2=dynamic_cast<DataExpanded*>(res.borrowData()); |
2159 |
|
2160 |
int sampleNo_0,dataPointNo_0; |
2161 |
int numSamples_0 = arg_0_Z.getNumSamples(); |
2162 |
int numDataPointsPerSample_0 = arg_0_Z.getNumDataPointsPerSample(); |
2163 |
#pragma omp parallel for private(sampleNo_0,dataPointNo_0) schedule(static) |
2164 |
for (sampleNo_0 = 0; sampleNo_0 < numSamples_0; sampleNo_0++) { |
2165 |
int offset_1 = tmp_1->getPointOffset(sampleNo_0,0); |
2166 |
double *ptr_1 = &(arg_1_Z.getDataAtOffset(offset_1)); |
2167 |
for (dataPointNo_0 = 0; dataPointNo_0 < numDataPointsPerSample_0; dataPointNo_0++) { |
2168 |
int offset_0 = tmp_0->getPointOffset(sampleNo_0,dataPointNo_0); |
2169 |
int offset_2 = tmp_2->getPointOffset(sampleNo_0,dataPointNo_0); |
2170 |
double *ptr_0 = &(arg_0_Z.getDataAtOffset(offset_0)); |
2171 |
double *ptr_2 = &(res.getDataAtOffset(offset_2)); |
2172 |
tensor_binary_operation(size0, ptr_0, ptr_1, ptr_2, operation); |
2173 |
} |
2174 |
} |
2175 |
|
2176 |
} |
2177 |
else if (arg_0_Z.isExpanded() && arg_1_Z.isExpanded()) { |
2178 |
|
2179 |
// After finding a common function space above the two inputs have the same numSamples and num DPPS |
2180 |
res = Data(0.0, shape0, arg_1_Z.getFunctionSpace(),true); // DataExpanded output |
2181 |
DataExpanded* tmp_0=dynamic_cast<DataExpanded*>(arg_0_Z.borrowData()); |
2182 |
DataExpanded* tmp_1=dynamic_cast<DataExpanded*>(arg_1_Z.borrowData()); |
2183 |
DataExpanded* tmp_2=dynamic_cast<DataExpanded*>(res.borrowData()); |
2184 |
|
2185 |
int sampleNo_0,dataPointNo_0; |
2186 |
int numSamples_0 = arg_0_Z.getNumSamples(); |
2187 |
int numDataPointsPerSample_0 = arg_0_Z.getNumDataPointsPerSample(); |
2188 |
#pragma omp parallel for private(sampleNo_0,dataPointNo_0) schedule(static) |
2189 |
for (sampleNo_0 = 0; sampleNo_0 < numSamples_0; sampleNo_0++) { |
2190 |
for (dataPointNo_0 = 0; dataPointNo_0 < numDataPointsPerSample_0; dataPointNo_0++) { |
2191 |
int offset_0 = tmp_0->getPointOffset(sampleNo_0,dataPointNo_0); |
2192 |
int offset_1 = tmp_1->getPointOffset(sampleNo_0,dataPointNo_0); |
2193 |
int offset_2 = tmp_2->getPointOffset(sampleNo_0,dataPointNo_0); |
2194 |
double *ptr_0 = &(arg_0_Z.getDataAtOffset(offset_0)); |
2195 |
double *ptr_1 = &(arg_1_Z.getDataAtOffset(offset_1)); |
2196 |
double *ptr_2 = &(res.getDataAtOffset(offset_2)); |
2197 |
tensor_binary_operation(size0, ptr_0, ptr_1, ptr_2, operation); |
2198 |
} |
2199 |
} |
2200 |
|
2201 |
} |
2202 |
else { |
2203 |
throw DataException("Error - C_TensorBinaryOperation: unknown combination of inputs"); |
2204 |
} |
2205 |
|
2206 |
} else if (0 == rank0) { |
2207 |
|
2208 |
if (arg_0_Z.isConstant() && arg_1_Z.isConstant()) { |
2209 |
res = Data(0.0, shape1, arg_1_Z.getFunctionSpace()); // DataConstant output |
2210 |
double *ptr_0 = &(arg_0_Z.getDataAtOffset(0)); |
2211 |
double *ptr_1 = &(arg_1_Z.getDataAtOffset(0)); |
2212 |
double *ptr_2 = &(res.getDataAtOffset(0)); |
2213 |
tensor_binary_operation(size1, ptr_0[0], ptr_1, ptr_2, operation); |
2214 |
} |
2215 |
else if (arg_0_Z.isConstant() && arg_1_Z.isTagged()) { |
2216 |
|
2217 |
// Prepare the DataConstant input |
2218 |
DataConstant* tmp_0=dynamic_cast<DataConstant*>(arg_0_Z.borrowData()); |
2219 |
|
2220 |
// Borrow DataTagged input from Data object |
2221 |
DataTagged* tmp_1=dynamic_cast<DataTagged*>(arg_1_Z.borrowData()); |
2222 |
|
2223 |
// Prepare a DataTagged output 2 |
2224 |
res = Data(0.0, shape1, arg_1_Z.getFunctionSpace()); // DataTagged output |
2225 |
res.tag(); |
2226 |
DataTagged* tmp_2=dynamic_cast<DataTagged*>(res.borrowData()); |
2227 |
|
2228 |
// Prepare offset into DataConstant |
2229 |
int offset_0 = tmp_0->getPointOffset(0,0); |
2230 |
double *ptr_0 = &(arg_0_Z.getDataAtOffset(offset_0)); |
2231 |
// Get the views |
2232 |
// DataArrayView view_1 = tmp_1->getDefaultValue(); |
2233 |
// DataArrayView view_2 = tmp_2->getDefaultValue(); |
2234 |
// // Get the pointers to the actual data |
2235 |
// double *ptr_1 = &((view_1.getData())[0]); |
2236 |
// double *ptr_2 = &((view_2.getData())[0]); |
2237 |
double *ptr_1 = &(tmp_1->getDefaultValue(0)); |
2238 |
double *ptr_2 = &(tmp_2->getDefaultValue(0)); |
2239 |
|
2240 |
// Compute a result for the default |
2241 |
tensor_binary_operation(size1, ptr_0[0], ptr_1, ptr_2, operation); |
2242 |
// Compute a result for each tag |
2243 |
const DataTagged::DataMapType& lookup_1=tmp_1->getTagLookup(); |
2244 |
DataTagged::DataMapType::const_iterator i; // i->first is a tag, i->second is an offset into memory |
2245 |
for (i=lookup_1.begin();i!=lookup_1.end();i++) { |
2246 |
tmp_2->addTag(i->first); |
2247 |
// DataArrayView view_1 = tmp_1->getDataPointByTag(i->first); |
2248 |
// DataArrayView view_2 = tmp_2->getDataPointByTag(i->first); |
2249 |
// double *ptr_1 = &view_1.getData(0); |
2250 |
// double *ptr_2 = &view_2.getData(0); |
2251 |
double *ptr_1 = &(tmp_1->getDataByTag(i->first,0)); |
2252 |
double *ptr_2 = &(tmp_2->getDataByTag(i->first,0)); |
2253 |
tensor_binary_operation(size1, ptr_0[0], ptr_1, ptr_2, operation); |
2254 |
} |
2255 |
|
2256 |
} |
2257 |
else if (arg_0_Z.isConstant() && arg_1_Z.isExpanded()) { |
2258 |
|
2259 |
res = Data(0.0, shape1, arg_1_Z.getFunctionSpace(),true); // DataExpanded output |
2260 |
DataConstant* tmp_0=dynamic_cast<DataConstant*>(arg_0_Z.borrowData()); |
2261 |
DataExpanded* tmp_1=dynamic_cast<DataExpanded*>(arg_1_Z.borrowData()); |
2262 |
DataExpanded* tmp_2=dynamic_cast<DataExpanded*>(res.borrowData()); |
2263 |
|
2264 |
int sampleNo_1,dataPointNo_1; |
2265 |
int numSamples_1 = arg_1_Z.getNumSamples(); |
2266 |
int numDataPointsPerSample_1 = arg_1_Z.getNumDataPointsPerSample(); |
2267 |
int offset_0 = tmp_0->getPointOffset(0,0); |
2268 |
#pragma omp parallel for private(sampleNo_1,dataPointNo_1) schedule(static) |
2269 |
for (sampleNo_1 = 0; sampleNo_1 < numSamples_1; sampleNo_1++) { |
2270 |
for (dataPointNo_1 = 0; dataPointNo_1 < numDataPointsPerSample_1; dataPointNo_1++) { |
2271 |
int offset_1 = tmp_1->getPointOffset(sampleNo_1,dataPointNo_1); |
2272 |
int offset_2 = tmp_2->getPointOffset(sampleNo_1,dataPointNo_1); |
2273 |
double *ptr_0 = &(arg_0_Z.getDataAtOffset(offset_0)); |
2274 |
double *ptr_1 = &(arg_1_Z.getDataAtOffset(offset_1)); |
2275 |
double *ptr_2 = &(res.getDataAtOffset(offset_2)); |
2276 |
tensor_binary_operation(size1, ptr_0[0], ptr_1, ptr_2, operation); |
2277 |
|
2278 |
} |
2279 |
} |
2280 |
|
2281 |
} |
2282 |
else if (arg_0_Z.isTagged() && arg_1_Z.isConstant()) { |
2283 |
|
2284 |
// Borrow DataTagged input from Data object |
2285 |
DataTagged* tmp_0=dynamic_cast<DataTagged*>(arg_0_Z.borrowData()); |
2286 |
|
2287 |
// Prepare the DataConstant input |
2288 |
DataConstant* tmp_1=dynamic_cast<DataConstant*>(arg_1_Z.borrowData()); |
2289 |
|
2290 |
// Prepare a DataTagged output 2 |
2291 |
res = Data(0.0, shape1, arg_0_Z.getFunctionSpace()); // DataTagged output |
2292 |
res.tag(); |
2293 |
DataTagged* tmp_2=dynamic_cast<DataTagged*>(res.borrowData()); |
2294 |
|
2295 |
// Prepare offset into DataConstant |
2296 |
int offset_1 = tmp_1->getPointOffset(0,0); |
2297 |
// double *ptr_1 = &((arg_1_Z.getPointDataView().getData())[offset_1]); |
2298 |
double *ptr_1 = &(arg_1_Z.getDataAtOffset(offset_1)); |
2299 |
// Get the views |
2300 |
/* DataArrayView view_0 = tmp_0->getDefaultValue(); |
2301 |
DataArrayView view_2 = tmp_2->getDefaultValue(); |
2302 |
// Get the pointers to the actual data |
2303 |
double *ptr_0 = &((view_0.getData())[0]); |
2304 |
double *ptr_2 = &((view_2.getData())[0]);*/ |
2305 |
|
2306 |
// Get the pointers to the actual data |
2307 |
double *ptr_0 = &(tmp_0->getDefaultValue(0)); |
2308 |
double *ptr_2 = &(tmp_2->getDefaultValue(0)); |
2309 |
|
2310 |
|
2311 |
// Compute a result for the default |
2312 |
tensor_binary_operation(size1, ptr_0[0], ptr_1, ptr_2, operation); |
2313 |
// Compute a result for each tag |
2314 |
const DataTagged::DataMapType& lookup_0=tmp_0->getTagLookup(); |
2315 |
DataTagged::DataMapType::const_iterator i; // i->first is a tag, i->second is an offset into memory |
2316 |
for (i=lookup_0.begin();i!=lookup_0.end();i++) { |
2317 |
tmp_2->addTag(i->first); |
2318 |
/* DataArrayView view_0 = tmp_0->getDataPointByTag(i->first); |
2319 |
DataArrayView view_2 = tmp_2->getDataPointByTag(i->first); |
2320 |
double *ptr_0 = &view_0.getData(0); |
2321 |
double *ptr_2 = &view_2.getData(0);*/ |
2322 |
double *ptr_0 = &(tmp_0->getDataByTag(i->first,0)); |
2323 |
double *ptr_2 = &(tmp_2->getDataByTag(i->first,0)); |
2324 |
|
2325 |
tensor_binary_operation(size1, ptr_0[0], ptr_1, ptr_2, operation); |
2326 |
} |
2327 |
|
2328 |
} |
2329 |
else if (arg_0_Z.isTagged() && arg_1_Z.isTagged()) { |
2330 |
|
2331 |
// Borrow DataTagged input from Data object |
2332 |
DataTagged* tmp_0=dynamic_cast<DataTagged*>(arg_0_Z.borrowData()); |
2333 |
|
2334 |
// Borrow DataTagged input from Data object |
2335 |
DataTagged* tmp_1=dynamic_cast<DataTagged*>(arg_1_Z.borrowData()); |
2336 |
|
2337 |
// Prepare a DataTagged output 2 |
2338 |
res = Data(0.0, shape1, arg_1_Z.getFunctionSpace()); |
2339 |
res.tag(); // DataTagged output |
2340 |
DataTagged* tmp_2=dynamic_cast<DataTagged*>(res.borrowData()); |
2341 |
|
2342 |
// Get the views |
2343 |
/* DataArrayView view_0 = tmp_0->getDefaultValue(); |
2344 |
DataArrayView view_1 = tmp_1->getDefaultValue(); |
2345 |
DataArrayView view_2 = tmp_2->getDefaultValue(); |
2346 |
// Get the pointers to the actual data |
2347 |
double *ptr_0 = &((view_0.getData())[0]); |
2348 |
double *ptr_1 = &((view_1.getData())[0]); |
2349 |
double *ptr_2 = &((view_2.getData())[0]);*/ |
2350 |
|
2351 |
// Get the pointers to the actual data |
2352 |
double *ptr_0 = &(tmp_0->getDefaultValue(0)); |
2353 |
double *ptr_1 = &(tmp_1->getDefaultValue(0)); |
2354 |
double *ptr_2 = &(tmp_2->getDefaultValue(0)); |
2355 |
|
2356 |
|
2357 |
// Compute a result for the default |
2358 |
tensor_binary_operation(size1, ptr_0[0], ptr_1, ptr_2, operation); |
2359 |
// Merge the tags |
2360 |
DataTagged::DataMapType::const_iterator i; // i->first is a tag, i->second is an offset into memory |
2361 |
const DataTagged::DataMapType& lookup_0=tmp_0->getTagLookup(); |
2362 |
const DataTagged::DataMapType& lookup_1=tmp_1->getTagLookup(); |
2363 |
for (i=lookup_0.begin();i!=lookup_0.end();i++) { |
2364 |
tmp_2->addTag(i->first); // use tmp_2 to get correct shape |
2365 |
} |
2366 |
for (i=lookup_1.begin();i!=lookup_1.end();i++) { |
2367 |
tmp_2->addTag(i->first); |
2368 |
} |
2369 |
// Compute a result for each tag |
2370 |
const DataTagged::DataMapType& lookup_2=tmp_2->getTagLookup(); |
2371 |
for (i=lookup_2.begin();i!=lookup_2.end();i++) { |
2372 |
|
2373 |
/* DataArrayView view_0 = tmp_0->getDataPointByTag(i->first); |
2374 |
DataArrayView view_1 = tmp_1->getDataPointByTag(i->first); |
2375 |
DataArrayView view_2 = tmp_2->getDataPointByTag(i->first); |
2376 |
double *ptr_0 = &view_0.getData(0); |
2377 |
double *ptr_1 = &view_1.getData(0); |
2378 |
double *ptr_2 = &view_2.getData(0);*/ |
2379 |
|
2380 |
double *ptr_0 = &(tmp_0->getDataByTag(i->first,0)); |
2381 |
double *ptr_1 = &(tmp_1->getDataByTag(i->first,0)); |
2382 |
double *ptr_2 = &(tmp_2->getDataByTag(i->first,0)); |
2383 |
|
2384 |
tensor_binary_operation(size1, ptr_0[0], ptr_1, ptr_2, operation); |
2385 |
} |
2386 |
|
2387 |
} |
2388 |
else if (arg_0_Z.isTagged() && arg_1_Z.isExpanded()) { |
2389 |
|
2390 |
// After finding a common function space above the two inputs have the same numSamples and num DPPS |
2391 |
res = Data(0.0, shape1, arg_1_Z.getFunctionSpace(),true); // DataExpanded output |
2392 |
DataTagged* tmp_0=dynamic_cast<DataTagged*>(arg_0_Z.borrowData()); |
2393 |
DataExpanded* tmp_1=dynamic_cast<DataExpanded*>(arg_1_Z.borrowData()); |
2394 |
DataExpanded* tmp_2=dynamic_cast<DataExpanded*>(res.borrowData()); |
2395 |
|
2396 |
int sampleNo_0,dataPointNo_0; |
2397 |
int numSamples_0 = arg_0_Z.getNumSamples(); |
2398 |
int numDataPointsPerSample_0 = arg_0_Z.getNumDataPointsPerSample(); |
2399 |
#pragma omp parallel for private(sampleNo_0,dataPointNo_0) schedule(static) |
2400 |
for (sampleNo_0 = 0; sampleNo_0 < numSamples_0; sampleNo_0++) { |
2401 |
int offset_0 = tmp_0->getPointOffset(sampleNo_0,0); // They're all the same, so just use #0 |
2402 |
double *ptr_0 = &(arg_0_Z.getDataAtOffset(offset_0)); |
2403 |
for (dataPointNo_0 = 0; dataPointNo_0 < numDataPointsPerSample_0; dataPointNo_0++) { |
2404 |
int offset_1 = tmp_1->getPointOffset(sampleNo_0,dataPointNo_0); |
2405 |
int offset_2 = tmp_2->getPointOffset(sampleNo_0,dataPointNo_0); |
2406 |
double *ptr_1 = &(arg_1_Z.getDataAtOffset(offset_1)); |
2407 |
double *ptr_2 = &(res.getDataAtOffset(offset_2)); |
2408 |
tensor_binary_operation(size1, ptr_0[0], ptr_1, ptr_2, operation); |
2409 |
} |
2410 |
} |
2411 |
|
2412 |
} |
2413 |
else if (arg_0_Z.isExpanded() && arg_1_Z.isConstant()) { |
2414 |
|
2415 |
res = Data(0.0, shape1, arg_1_Z.getFunctionSpace(),true); // DataExpanded output |
2416 |
DataExpanded* tmp_0=dynamic_cast<DataExpanded*>(arg_0_Z.borrowData()); |
2417 |
DataConstant* tmp_1=dynamic_cast<DataConstant*>(arg_1_Z.borrowData()); |
2418 |
DataExpanded* tmp_2=dynamic_cast<DataExpanded*>(res.borrowData()); |
2419 |
|
2420 |
int sampleNo_0,dataPointNo_0; |
2421 |
int numSamples_0 = arg_0_Z.getNumSamples(); |
2422 |
int numDataPointsPerSample_0 = arg_0_Z.getNumDataPointsPerSample(); |
2423 |
int offset_1 = tmp_1->getPointOffset(0,0); |
2424 |
#pragma omp parallel for private(sampleNo_0,dataPointNo_0) schedule(static) |
2425 |
for (sampleNo_0 = 0; sampleNo_0 < numSamples_0; sampleNo_0++) { |
2426 |
for (dataPointNo_0 = 0; dataPointNo_0 < numDataPointsPerSample_0; dataPointNo_0++) { |
2427 |
int offset_0 = tmp_0->getPointOffset(sampleNo_0,dataPointNo_0); |
2428 |
int offset_2 = tmp_2->getPointOffset(sampleNo_0,dataPointNo_0); |
2429 |
double *ptr_0 = &(arg_0_Z.getDataAtOffset(offset_0)); |
2430 |
double *ptr_1 = &(arg_1_Z.getDataAtOffset(offset_1)); |
2431 |
double *ptr_2 = &(res.getDataAtOffset(offset_2)); |
2432 |
tensor_binary_operation(size1, ptr_0[0], ptr_1, ptr_2, operation); |
2433 |
} |
2434 |
} |
2435 |
|
2436 |
|
2437 |
} |
2438 |
else if (arg_0_Z.isExpanded() && arg_1_Z.isTagged()) { |
2439 |
|
2440 |
// After finding a common function space above the two inputs have the same numSamples and num DPPS |
2441 |
res = Data(0.0, shape1, arg_1_Z.getFunctionSpace(),true); // DataExpanded output |
2442 |
DataExpanded* tmp_0=dynamic_cast<DataExpanded*>(arg_0_Z.borrowData()); |
2443 |
DataTagged* tmp_1=dynamic_cast<DataTagged*>(arg_1_Z.borrowData()); |
2444 |
DataExpanded* tmp_2=dynamic_cast<DataExpanded*>(res.borrowData()); |
2445 |
|
2446 |
int sampleNo_0,dataPointNo_0; |
2447 |
int numSamples_0 = arg_0_Z.getNumSamples(); |
2448 |
int numDataPointsPerSample_0 = arg_0_Z.getNumDataPointsPerSample(); |
2449 |
#pragma omp parallel for private(sampleNo_0,dataPointNo_0) schedule(static) |
2450 |
for (sampleNo_0 = 0; sampleNo_0 < numSamples_0; sampleNo_0++) { |
2451 |
int offset_1 = tmp_1->getPointOffset(sampleNo_0,0); |
2452 |
double *ptr_1 = &(arg_1_Z.getDataAtOffset(offset_1)); |
2453 |
for (dataPointNo_0 = 0; dataPointNo_0 < numDataPointsPerSample_0; dataPointNo_0++) { |
2454 |
int offset_0 = tmp_0->getPointOffset(sampleNo_0,dataPointNo_0); |
2455 |
int offset_2 = tmp_2->getPointOffset(sampleNo_0,dataPointNo_0); |
2456 |
double *ptr_0 = &(arg_0_Z.getDataAtOffset(offset_0)); |
2457 |
double *ptr_2 = &(res.getDataAtOffset(offset_2)); |
2458 |
tensor_binary_operation(size1, ptr_0[0], ptr_1, ptr_2, operation); |
2459 |
} |
2460 |
} |
2461 |
|
2462 |
} |
2463 |
else if (arg_0_Z.isExpanded() && arg_1_Z.isExpanded()) { |
2464 |
|
2465 |
// After finding a common function space above the two inputs have the same numSamples and num DPPS |
2466 |
res = Data(0.0, shape1, arg_1_Z.getFunctionSpace(),true); // DataExpanded output |
2467 |
DataExpanded* tmp_0=dynamic_cast<DataExpanded*>(arg_0_Z.borrowData()); |
2468 |
DataExpanded* tmp_1=dynamic_cast<DataExpanded*>(arg_1_Z.borrowData()); |
2469 |
DataExpanded* tmp_2=dynamic_cast<DataExpanded*>(res.borrowData()); |
2470 |
|
2471 |
int sampleNo_0,dataPointNo_0; |
2472 |
int numSamples_0 = arg_0_Z.getNumSamples(); |
2473 |
int numDataPointsPerSample_0 = arg_0_Z.getNumDataPointsPerSample(); |
2474 |
#pragma omp parallel for private(sampleNo_0,dataPointNo_0) schedule(static) |
2475 |
for (sampleNo_0 = 0; sampleNo_0 < numSamples_0; sampleNo_0++) { |
2476 |
for (dataPointNo_0 = 0; dataPointNo_0 < numDataPointsPerSample_0; dataPointNo_0++) { |
2477 |
int offset_0 = tmp_0->getPointOffset(sampleNo_0,dataPointNo_0); |
2478 |
int offset_1 = tmp_1->getPointOffset(sampleNo_0,dataPointNo_0); |
2479 |
int offset_2 = tmp_2->getPointOffset(sampleNo_0,dataPointNo_0); |
2480 |
double *ptr_0 = &(arg_0_Z.getDataAtOffset(offset_0)); |
2481 |
double *ptr_1 = &(arg_1_Z.getDataAtOffset(offset_1)); |
2482 |
double *ptr_2 = &(res.getDataAtOffset(offset_2)); |
2483 |
tensor_binary_operation(size1, ptr_0[0], ptr_1, ptr_2, operation); |
2484 |
} |
2485 |
} |
2486 |
|
2487 |
} |
2488 |
else { |
2489 |
throw DataException("Error - C_TensorBinaryOperation: unknown combination of inputs"); |
2490 |
} |
2491 |
|
2492 |
} else if (0 == rank1) { |
2493 |
|
2494 |
if (arg_0_Z.isConstant() && arg_1_Z.isConstant()) { |
2495 |
res = Data(0.0, shape0, arg_1_Z.getFunctionSpace()); // DataConstant output |
2496 |
double *ptr_0 = &(arg_0_Z.getDataAtOffset(0)); |
2497 |
double *ptr_1 = &(arg_1_Z.getDataAtOffset(0)); |
2498 |
double *ptr_2 = &(res.getDataAtOffset(0)); |
2499 |
tensor_binary_operation(size0, ptr_0, ptr_1[0], ptr_2, operation); |
2500 |
} |
2501 |
else if (arg_0_Z.isConstant() && arg_1_Z.isTagged()) { |
2502 |
|
2503 |
// Prepare the DataConstant input |
2504 |
DataConstant* tmp_0=dynamic_cast<DataConstant*>(arg_0_Z.borrowData()); |
2505 |
|
2506 |
// Borrow DataTagged input from Data object |
2507 |
DataTagged* tmp_1=dynamic_cast<DataTagged*>(arg_1_Z.borrowData()); |
2508 |
|
2509 |
// Prepare a DataTagged output 2 |
2510 |
res = Data(0.0, shape0, arg_1_Z.getFunctionSpace()); // DataTagged output |
2511 |
res.tag(); |
2512 |
DataTagged* tmp_2=dynamic_cast<DataTagged*>(res.borrowData()); |
2513 |
|
2514 |
// Prepare offset into DataConstant |
2515 |
int offset_0 = tmp_0->getPointOffset(0,0); |
2516 |
double *ptr_0 = &(arg_0_Z.getDataAtOffset(offset_0)); |
2517 |
// Get the views |
2518 |
/* DataArrayView view_1 = tmp_1->getDefaultValue(); |
2519 |
DataArrayView view_2 = tmp_2->getDefaultValue(); |
2520 |
// Get the pointers to the actual data |
2521 |
double *ptr_1 = &((view_1.getData())[0]); |
2522 |
double *ptr_2 = &((view_2.getData())[0]);*/ |
2523 |
//Get the pointers to the actual data |
2524 |
double *ptr_1 = &(tmp_1->getDefaultValue(0)); |
2525 |
double *ptr_2 = &(tmp_2->getDefaultValue(0)); |
2526 |
|
2527 |
// Compute a result for the default |
2528 |
tensor_binary_operation(size0, ptr_0, ptr_1[0], ptr_2, operation); |
2529 |
// Compute a result for each tag |
2530 |
const DataTagged::DataMapType& lookup_1=tmp_1->getTagLookup(); |
2531 |
DataTagged::DataMapType::const_iterator i; // i->first is a tag, i->second is an offset into memory |
2532 |
for (i=lookup_1.begin();i!=lookup_1.end();i++) { |
2533 |
tmp_2->addTag(i->first); |
2534 |
// DataArrayView view_1 = tmp_1->getDataPointByTag(i->first); |
2535 |
// DataArrayView view_2 = tmp_2->getDataPointByTag(i->first); |
2536 |
// double *ptr_1 = &view_1.getData(0); |
2537 |
// double *ptr_2 = &view_2.getData(0); |
2538 |
double *ptr_1 = &(tmp_1->getDataByTag(i->first,0)); |
2539 |
double *ptr_2 = &(tmp_2->getDataByTag(i->first,0)); |
2540 |
|
2541 |
|
2542 |
tensor_binary_operation(size0, ptr_0, ptr_1[0], ptr_2, operation); |
2543 |
} |
2544 |
|
2545 |
} |
2546 |
else if (arg_0_Z.isConstant() && arg_1_Z.isExpanded()) { |
2547 |
|
2548 |
res = Data(0.0, shape0, arg_1_Z.getFunctionSpace(),true); // DataExpanded output |
2549 |
DataConstant* tmp_0=dynamic_cast<DataConstant*>(arg_0_Z.borrowData()); |
2550 |
DataExpanded* tmp_1=dynamic_cast<DataExpanded*>(arg_1_Z.borrowData()); |
2551 |
DataExpanded* tmp_2=dynamic_cast<DataExpanded*>(res.borrowData()); |
2552 |
|
2553 |
int sampleNo_1,dataPointNo_1; |
2554 |
int numSamples_1 = arg_1_Z.getNumSamples(); |
2555 |
int numDataPointsPerSample_1 = arg_1_Z.getNumDataPointsPerSample(); |
2556 |
int offset_0 = tmp_0->getPointOffset(0,0); |
2557 |
#pragma omp parallel for private(sampleNo_1,dataPointNo_1) schedule(static) |
2558 |
for (sampleNo_1 = 0; sampleNo_1 < numSamples_1; sampleNo_1++) { |
2559 |
for (dataPointNo_1 = 0; dataPointNo_1 < numDataPointsPerSample_1; dataPointNo_1++) { |
2560 |
int offset_1 = tmp_1->getPointOffset(sampleNo_1,dataPointNo_1); |
2561 |
int offset_2 = tmp_2->getPointOffset(sampleNo_1,dataPointNo_1); |
2562 |
double *ptr_0 = &(arg_0_Z.getDataAtOffset(offset_0)); |
2563 |
double *ptr_1 = &(arg_1_Z.getDataAtOffset(offset_1)); |
2564 |
double *ptr_2 = &(res.getDataAtOffset(offset_2)); |
2565 |
tensor_binary_operation(size0, ptr_0, ptr_1[0], ptr_2, operation); |
2566 |
} |
2567 |
} |
2568 |
|
2569 |
} |
2570 |
else if (arg_0_Z.isTagged() && arg_1_Z.isConstant()) { |
2571 |
|
2572 |
// Borrow DataTagged input from Data object |
2573 |
DataTagged* tmp_0=dynamic_cast<DataTagged*>(arg_0_Z.borrowData()); |
2574 |
|
2575 |
// Prepare the DataConstant input |
2576 |
DataConstant* tmp_1=dynamic_cast<DataConstant*>(arg_1_Z.borrowData()); |
2577 |
|
2578 |
// Prepare a DataTagged output 2 |
2579 |
res = Data(0.0, shape0, arg_0_Z.getFunctionSpace()); // DataTagged output |
2580 |
res.tag(); |
2581 |
DataTagged* tmp_2=dynamic_cast<DataTagged*>(res.borrowData()); |
2582 |
|
2583 |
// Prepare offset into DataConstant |
2584 |
int offset_1 = tmp_1->getPointOffset(0,0); |
2585 |
double *ptr_1 = &(arg_1_Z.getDataAtOffset(offset_1)); |
2586 |
// Get the views |
2587 |
// DataArrayView view_0 = tmp_0->getDefaultValue(); |
2588 |
// DataArrayView view_2 = tmp_2->getDefaultValue(); |
2589 |
// // Get the pointers to the actual data |
2590 |
// double *ptr_0 = &((view_0.getData())[0]); |
2591 |
// double *ptr_2 = &((view_2.getData())[0]); |
2592 |
// Get the pointers to the actual data |
2593 |
double *ptr_0 = &(tmp_0->getDefaultValue(0)); |
2594 |
double *ptr_2 = &(tmp_2->getDefaultValue(0)); |
2595 |
// Compute a result for the default |
2596 |
tensor_binary_operation(size0, ptr_0, ptr_1[0], ptr_2, operation); |
2597 |
// Compute a result for each tag |
2598 |
const DataTagged::DataMapType& lookup_0=tmp_0->getTagLookup(); |
2599 |
DataTagged::DataMapType::const_iterator i; // i->first is a tag, i->second is an offset into memory |
2600 |
for (i=lookup_0.begin();i!=lookup_0.end();i++) { |
2601 |
tmp_2->addTag(i->first); |
2602 |
/* DataArrayView view_0 = tmp_0->getDataPointByTag(i->first); |
2603 |
DataArrayView view_2 = tmp_2->getDataPointByTag(i->first); |
2604 |
double *ptr_0 = &view_0.getData(0); |
2605 |
double *ptr_2 = &view_2.getData(0);*/ |
2606 |
double *ptr_0 = &(tmp_0->getDataByTag(i->first,0)); |
2607 |
double *ptr_2 = &(tmp_2->getDataByTag(i->first,0)); |
2608 |
tensor_binary_operation(size0, ptr_0, ptr_1[0], ptr_2, operation); |
2609 |
} |
2610 |
|
2611 |
} |
2612 |
else if (arg_0_Z.isTagged() && arg_1_Z.isTagged()) { |
2613 |
|
2614 |
// Borrow DataTagged input from Data object |
2615 |
DataTagged* tmp_0=dynamic_cast<DataTagged*>(arg_0_Z.borrowData()); |
2616 |
|
2617 |
// Borrow DataTagged input from Data object |
2618 |
DataTagged* tmp_1=dynamic_cast<DataTagged*>(arg_1_Z.borrowData()); |
2619 |
|
2620 |
// Prepare a DataTagged output 2 |
2621 |
res = Data(0.0, shape0, arg_1_Z.getFunctionSpace()); |
2622 |
res.tag(); // DataTagged output |
2623 |
DataTagged* tmp_2=dynamic_cast<DataTagged*>(res.borrowData()); |
2624 |
|
2625 |
// Get the views |
2626 |
// DataArrayView view_0 = tmp_0->getDefaultValue(); |
2627 |
// DataArrayView view_1 = tmp_1->getDefaultValue(); |
2628 |
// DataArrayView view_2 = tmp_2->getDefaultValue(); |
2629 |
// // Get the pointers to the actual data |
2630 |
// double *ptr_0 = &((view_0.getData())[0]); |
2631 |
// double *ptr_1 = &((view_1.getData())[0]); |
2632 |
// double *ptr_2 = &((view_2.getData())[0]); |
2633 |
|
2634 |
// Get the pointers to the actual data |
2635 |
double *ptr_0 = &(tmp_0->getDefaultValue(0)); |
2636 |
double *ptr_1 = &(tmp_1->getDefaultValue(0)); |
2637 |
double *ptr_2 = &(tmp_2->getDefaultValue(0)); |
2638 |
|
2639 |
// Compute a result for the default |
2640 |
tensor_binary_operation(size0, ptr_0, ptr_1[0], ptr_2, operation); |
2641 |
// Merge the tags |
2642 |
DataTagged::DataMapType::const_iterator i; // i->first is a tag, i->second is an offset into memory |
2643 |
const DataTagged::DataMapType& lookup_0=tmp_0->getTagLookup(); |
2644 |
const DataTagged::DataMapType& lookup_1=tmp_1->getTagLookup(); |
2645 |
for (i=lookup_0.begin();i!=lookup_0.end();i++) { |
2646 |
tmp_2->addTag(i->first); // use tmp_2 to get correct shape |
2647 |
} |
2648 |
for (i=lookup_1.begin();i!=lookup_1.end();i++) { |
2649 |
tmp_2->addTag(i->first); |
2650 |
} |
2651 |
// Compute a result for each tag |
2652 |
const DataTagged::DataMapType& lookup_2=tmp_2->getTagLookup(); |
2653 |
for (i=lookup_2.begin();i!=lookup_2.end();i++) { |
2654 |
// DataArrayView view_0 = tmp_0->getDataPointByTag(i->first); |
2655 |
// DataArrayView view_1 = tmp_1->getDataPointByTag(i->first); |
2656 |
// DataArrayView view_2 = tmp_2->getDataPointByTag(i->first); |
2657 |
// double *ptr_0 = &view_0.getData(0); |
2658 |
// double *ptr_1 = &view_1.getData(0); |
2659 |
// double *ptr_2 = &view_2.getData(0); |
2660 |
|
2661 |
double *ptr_0 = &(tmp_0->getDataByTag(i->first,0)); |
2662 |
double *ptr_1 = &(tmp_1->getDataByTag(i->first,0)); |
2663 |
double *ptr_2 = &(tmp_2->getDataByTag(i->first,0)); |
2664 |
tensor_binary_operation(size0, ptr_0, ptr_1[0], ptr_2, operation); |
2665 |
} |
2666 |
|
2667 |
} |
2668 |
else if (arg_0_Z.isTagged() && arg_1_Z.isExpanded()) { |
2669 |
|
2670 |
// After finding a common function space above the two inputs have the same numSamples and num DPPS |
2671 |
res = Data(0.0, shape0, arg_1_Z.getFunctionSpace(),true); // DataExpanded output |
2672 |
DataTagged* tmp_0=dynamic_cast<DataTagged*>(arg_0_Z.borrowData()); |
2673 |
DataExpanded* tmp_1=dynamic_cast<DataExpanded*>(arg_1_Z.borrowData()); |
2674 |
DataExpanded* tmp_2=dynamic_cast<DataExpanded*>(res.borrowData()); |
2675 |
|
2676 |
int sampleNo_0,dataPointNo_0; |
2677 |
int numSamples_0 = arg_0_Z.getNumSamples(); |
2678 |
int numDataPointsPerSample_0 = arg_0_Z.getNumDataPointsPerSample(); |
2679 |
#pragma omp parallel for private(sampleNo_0,dataPointNo_0) schedule(static) |
2680 |
for (sampleNo_0 = 0; sampleNo_0 < numSamples_0; sampleNo_0++) { |
2681 |
int offset_0 = tmp_0->getPointOffset(sampleNo_0,0); // They're all the same, so just use #0 |
2682 |
double *ptr_0 = &(arg_0_Z.getDataAtOffset(offset_0)); |
2683 |
for (dataPointNo_0 = 0; dataPointNo_0 < numDataPointsPerSample_0; dataPointNo_0++) { |
2684 |
int offset_1 = tmp_1->getPointOffset(sampleNo_0,dataPointNo_0); |
2685 |
int offset_2 = tmp_2->getPointOffset(sampleNo_0,dataPointNo_0); |
2686 |
double *ptr_1 = &(arg_1_Z.getDataAtOffset(offset_1)); |
2687 |
double *ptr_2 = &(res.getDataAtOffset(offset_2)); |
2688 |
tensor_binary_operation(size0, ptr_0, ptr_1[0], ptr_2, operation); |
2689 |
} |
2690 |
} |
2691 |
|
2692 |
} |
2693 |
else if (arg_0_Z.isExpanded() && arg_1_Z.isConstant()) { |
2694 |
|
2695 |
res = Data(0.0, shape0, arg_1_Z.getFunctionSpace(),true); // DataExpanded output |
2696 |
DataExpanded* tmp_0=dynamic_cast<DataExpanded*>(arg_0_Z.borrowData()); |
2697 |
DataConstant* tmp_1=dynamic_cast<DataConstant*>(arg_1_Z.borrowData()); |
2698 |
DataExpanded* tmp_2=dynamic_cast<DataExpanded*>(res.borrowData()); |
2699 |
|
2700 |
int sampleNo_0,dataPointNo_0; |
2701 |
int numSamples_0 = arg_0_Z.getNumSamples(); |
2702 |
int numDataPointsPerSample_0 = arg_0_Z.getNumDataPointsPerSample(); |
2703 |
int offset_1 = tmp_1->getPointOffset(0,0); |
2704 |
#pragma omp parallel for private(sampleNo_0,dataPointNo_0) schedule(static) |
2705 |
for (sampleNo_0 = 0; sampleNo_0 < numSamples_0; sampleNo_0++) { |
2706 |
for (dataPointNo_0 = 0; dataPointNo_0 < numDataPointsPerSample_0; dataPointNo_0++) { |
2707 |
int offset_0 = tmp_0->getPointOffset(sampleNo_0,dataPointNo_0); |
2708 |
int offset_2 = tmp_2->getPointOffset(sampleNo_0,dataPointNo_0); |
2709 |
double *ptr_0 = &(arg_0_Z.getDataAtOffset(offset_0)); |
2710 |
double *ptr_1 = &(arg_1_Z.getDataAtOffset(offset_1)); |
2711 |
double *ptr_2 = &(res.getDataAtOffset(offset_2)); |
2712 |
tensor_binary_operation(size0, ptr_0, ptr_1[0], ptr_2, operation); |
2713 |
} |
2714 |
} |
2715 |
|
2716 |
|
2717 |
} |
2718 |
else if (arg_0_Z.isExpanded() && arg_1_Z.isTagged()) { |
2719 |
|
2720 |
// After finding a common function space above the two inputs have the same numSamples and num DPPS |
2721 |
res = Data(0.0, shape0, arg_1_Z.getFunctionSpace(),true); // DataExpanded output |
2722 |
DataExpanded* tmp_0=dynamic_cast<DataExpanded*>(arg_0_Z.borrowData()); |
2723 |
DataTagged* tmp_1=dynamic_cast<DataTagged*>(arg_1_Z.borrowData()); |
2724 |
DataExpanded* tmp_2=dynamic_cast<DataExpanded*>(res.borrowData()); |
2725 |
|
2726 |
int sampleNo_0,dataPointNo_0; |
2727 |
int numSamples_0 = arg_0_Z.getNumSamples(); |
2728 |
int numDataPointsPerSample_0 = arg_0_Z.getNumDataPointsPerSample(); |
2729 |
#pragma omp parallel for private(sampleNo_0,dataPointNo_0) schedule(static) |
2730 |
for (sampleNo_0 = 0; sampleNo_0 < numSamples_0; sampleNo_0++) { |
2731 |
int offset_1 = tmp_1->getPointOffset(sampleNo_0,0); |
2732 |
double *ptr_1 = &(arg_1_Z.getDataAtOffset(offset_1)); |
2733 |
for (dataPointNo_0 = 0; dataPointNo_0 < numDataPointsPerSample_0; dataPointNo_0++) { |
2734 |
int offset_0 = tmp_0->getPointOffset(sampleNo_0,dataPointNo_0); |
2735 |
int offset_2 = tmp_2->getPointOffset(sampleNo_0,dataPointNo_0); |
2736 |
double *ptr_0 = &(arg_0_Z.getDataAtOffset(offset_0)); |
2737 |
double *ptr_2 = &(res.getDataAtOffset(offset_2)); |
2738 |
tensor_binary_operation(size0, ptr_0, ptr_1[0], ptr_2, operation); |
2739 |
} |
2740 |
} |
2741 |
|
2742 |
} |
2743 |
else if (arg_0_Z.isExpanded() && arg_1_Z.isExpanded()) { |
2744 |
|
2745 |
// After finding a common function space above the two inputs have the same numSamples and num DPPS |
2746 |
res = Data(0.0, shape0, arg_1_Z.getFunctionSpace(),true); // DataExpanded output |
2747 |
DataExpanded* tmp_0=dynamic_cast<DataExpanded*>(arg_0_Z.borrowData()); |
2748 |
DataExpanded* tmp_1=dynamic_cast<DataExpanded*>(arg_1_Z.borrowData()); |
2749 |
DataExpanded* tmp_2=dynamic_cast<DataExpanded*>(res.borrowData()); |
2750 |
|
2751 |
int sampleNo_0,dataPointNo_0; |
2752 |
int numSamples_0 = arg_0_Z.getNumSamples(); |
2753 |
int numDataPointsPerSample_0 = arg_0_Z.getNumDataPointsPerSample(); |
2754 |
#pragma omp parallel for private(sampleNo_0,dataPointNo_0) schedule(static) |
2755 |
for (sampleNo_0 = 0; sampleNo_0 < numSamples_0; sampleNo_0++) { |
2756 |
for (dataPointNo_0 = 0; dataPointNo_0 < numDataPointsPerSample_0; dataPointNo_0++) { |
2757 |
int offset_0 = tmp_0->getPointOffset(sampleNo_0,dataPointNo_0); |
2758 |
int offset_1 = tmp_1->getPointOffset(sampleNo_0,dataPointNo_0); |
2759 |
int offset_2 = tmp_2->getPointOffset(sampleNo_0,dataPointNo_0); |
2760 |
double *ptr_0 = &(arg_0_Z.getDataAtOffset(offset_0)); |
2761 |
double *ptr_1 = &(arg_1_Z.getDataAtOffset(offset_1)); |
2762 |
double *ptr_2 = &(res.getDataAtOffset(offset_2)); |
2763 |
tensor_binary_operation(size0, ptr_0, ptr_1[0], ptr_2, operation); |
2764 |
} |
2765 |
} |
2766 |
|
2767 |
} |
2768 |
else { |
2769 |
throw DataException("Error - C_TensorBinaryOperation: unknown combination of inputs"); |
2770 |
} |
2771 |
|
2772 |
} else { |
2773 |
throw DataException("Error - C_TensorBinaryOperation: arguments have incompatible shapes"); |
2774 |
} |
2775 |
|
2776 |
return res; |
2777 |
} |
2778 |
|
2779 |
template <typename UnaryFunction> |
2780 |
Data |
2781 |
C_TensorUnaryOperation(Data const &arg_0, |
2782 |
UnaryFunction operation) |
2783 |
{ |
2784 |
if (arg_0.isEmpty()) // do this before we attempt to interpolate |
2785 |
{ |
2786 |
throw DataException("Error - Operations not permitted on instances of DataEmpty."); |
2787 |
} |
2788 |
if (arg_0.isLazy()) |
2789 |
{ |
2790 |
throw DataException("Error - Operations not permitted on lazy data."); |
2791 |
} |
2792 |
// Interpolate if necessary and find an appropriate function space |
2793 |
Data arg_0_Z = Data(arg_0); |
2794 |
|
2795 |
// Get rank and shape of inputs |
2796 |
int rank0 = arg_0_Z.getDataPointRank(); |
2797 |
const DataTypes::ShapeType& shape0 = arg_0_Z.getDataPointShape(); |
2798 |
int size0 = arg_0_Z.getDataPointSize(); |
2799 |
|
2800 |
// Declare output Data object |
2801 |
Data res; |
2802 |
|
2803 |
if (arg_0_Z.isConstant()) { |
2804 |
res = Data(0.0, shape0, arg_0_Z.getFunctionSpace()); // DataConstant output |
2805 |
// double *ptr_0 = &((arg_0_Z.getPointDataView().getData())[0]); |
2806 |
// double *ptr_2 = &((res.getPointDataView().getData())[0]); |
2807 |
double *ptr_0 = &(arg_0_Z.getDataAtOffset(0)); |
2808 |
double *ptr_2 = &(res.getDataAtOffset(0)); |
2809 |
tensor_unary_operation(size0, ptr_0, ptr_2, operation); |
2810 |
} |
2811 |
else if (arg_0_Z.isTagged()) { |
2812 |
|
2813 |
// Borrow DataTagged input from Data object |
2814 |
DataTagged* tmp_0=dynamic_cast<DataTagged*>(arg_0_Z.borrowData()); |
2815 |
|
2816 |
// Prepare a DataTagged output 2 |
2817 |
res = Data(0.0, shape0, arg_0_Z.getFunctionSpace()); // DataTagged output |
2818 |
res.tag(); |
2819 |
DataTagged* tmp_2=dynamic_cast<DataTagged*>(res.borrowData()); |
2820 |
|
2821 |
// // Get the views |
2822 |
// DataArrayView view_0 = tmp_0->getDefaultValue(); |
2823 |
// DataArrayView view_2 = tmp_2->getDefaultValue(); |
2824 |
// // Get the pointers to the actual data |
2825 |
// double *ptr_0 = &((view_0.getData())[0]); |
2826 |
// double *ptr_2 = &((view_2.getData())[0]); |
2827 |
// Get the pointers to the actual data |
2828 |
double *ptr_0 = &(tmp_0->getDefaultValue(0)); |
2829 |
double *ptr_2 = &(tmp_2->getDefaultValue(0)); |
2830 |
// Compute a result for the default |
2831 |
tensor_unary_operation(size0, ptr_0, ptr_2, operation); |
2832 |
// Compute a result for each tag |
2833 |
const DataTagged::DataMapType& lookup_0=tmp_0->getTagLookup(); |
2834 |
DataTagged::DataMapType::const_iterator i; // i->first is a tag, i->second is an offset into memory |
2835 |
for (i=lookup_0.begin();i!=lookup_0.end();i++) { |
2836 |
tmp_2->addTag(i->first); |
2837 |
// DataArrayView view_0 = tmp_0->getDataPointByTag(i->first); |
2838 |
// DataArrayView view_2 = tmp_2->getDataPointByTag(i->first); |
2839 |
// double *ptr_0 = &view_0.getData(0); |
2840 |
// double *ptr_2 = &view_2.getData(0); |
2841 |
double *ptr_0 = &(tmp_0->getDataByTag(i->first,0)); |
2842 |
double *ptr_2 = &(tmp_2->getDataByTag(i->first,0)); |
2843 |
tensor_unary_operation(size0, ptr_0, ptr_2, operation); |
2844 |
} |
2845 |
|
2846 |
} |
2847 |
else if (arg_0_Z.isExpanded()) { |
2848 |
|
2849 |
res = Data(0.0, shape0, arg_0_Z.getFunctionSpace(),true); // DataExpanded output |
2850 |
DataExpanded* tmp_0=dynamic_cast<DataExpanded*>(arg_0_Z.borrowData()); |
2851 |
DataExpanded* tmp_2=dynamic_cast<DataExpanded*>(res.borrowData()); |
2852 |
|
2853 |
int sampleNo_0,dataPointNo_0; |
2854 |
int numSamples_0 = arg_0_Z.getNumSamples(); |
2855 |
int numDataPointsPerSample_0 = arg_0_Z.getNumDataPointsPerSample(); |
2856 |
#pragma omp parallel for private(sampleNo_0,dataPointNo_0) schedule(static) |
2857 |
for (sampleNo_0 = 0; sampleNo_0 < numSamples_0; sampleNo_0++) { |
2858 |
for (dataPointNo_0 = 0; dataPointNo_0 < numDataPointsPerSample_0; dataPointNo_0++) { |
2859 |
// int offset_0 = tmp_0->getPointOffset(sampleNo_0,dataPointNo_0); |
2860 |
// int offset_2 = tmp_2->getPointOffset(sampleNo_0,dataPointNo_0); |
2861 |
// double *ptr_0 = &((arg_0_Z.getPointDataView().getData())[offset_0]); |
2862 |
// double *ptr_2 = &((res.getPointDataView().getData())[offset_2]); |
2863 |
int offset_0 = tmp_0->getPointOffset(sampleNo_0,dataPointNo_0); |
2864 |
int offset_2 = tmp_2->getPointOffset(sampleNo_0,dataPointNo_0); |
2865 |
double *ptr_0 = &(arg_0_Z.getDataAtOffset(offset_0)); |
2866 |
double *ptr_2 = &(res.getDataAtOffset(offset_2)); |
2867 |
tensor_unary_operation(size0, ptr_0, ptr_2, operation); |
2868 |
} |
2869 |
} |
2870 |
} |
2871 |
else { |
2872 |
throw DataException("Error - C_TensorUnaryOperation: unknown combination of inputs"); |
2873 |
} |
2874 |
|
2875 |
return res; |
2876 |
} |
2877 |
|
2878 |
} |
2879 |
#endif |