1 |
|
2 |
/******************************************************* |
3 |
* |
4 |
* Copyright (c) 2003-2008 by University of Queensland |
5 |
* Earth Systems Science Computational Center (ESSCC) |
6 |
* http://www.uq.edu.au/esscc |
7 |
* |
8 |
* Primary Business: Queensland, Australia |
9 |
* Licensed under the Open Software License version 3.0 |
10 |
* http://www.opensource.org/licenses/osl-3.0.php |
11 |
* |
12 |
*******************************************************/ |
13 |
|
14 |
|
15 |
#include "DataLazy.h" |
16 |
#ifdef USE_NETCDF |
17 |
#include <netcdfcpp.h> |
18 |
#endif |
19 |
#ifdef PASO_MPI |
20 |
#include <mpi.h> |
21 |
#endif |
22 |
#ifdef _OPENMP |
23 |
#include <omp.h> |
24 |
#endif |
25 |
#include "FunctionSpace.h" |
26 |
#include "DataTypes.h" |
27 |
#include "Data.h" |
28 |
#include "UnaryFuncs.h" // for escript::fsign |
29 |
#include "Utils.h" |
30 |
|
31 |
/* |
32 |
How does DataLazy work? |
33 |
~~~~~~~~~~~~~~~~~~~~~~~ |
34 |
|
35 |
Each instance represents a single operation on one or two other DataLazy instances. These arguments are normally |
36 |
denoted left and right. |
37 |
|
38 |
A special operation, IDENTITY, stores an instance of DataReady in the m_id member. |
39 |
This means that all "internal" nodes in the structure are instances of DataLazy. |
40 |
|
41 |
Each operation has a string representation as well as an opgroup - eg G_IDENTITY, G_BINARY, ... |
42 |
Note that IDENITY is not considered a unary operation. |
43 |
|
44 |
I am avoiding calling the structure formed a tree because it is not guaranteed to be one (eg c=a+a). |
45 |
It must however form a DAG (directed acyclic graph). |
46 |
I will refer to individual DataLazy objects with the structure as nodes. |
47 |
|
48 |
Each node also stores: |
49 |
- m_readytype \in {'E','T','C','?'} ~ indicates what sort of DataReady would be produced if the expression was |
50 |
evaluated. |
51 |
- m_length ~ how many values would be stored in the answer if the expression was evaluated. |
52 |
- m_buffsrequired ~ the larged number of samples which would need to be kept simultaneously in order to |
53 |
evaluate the expression. |
54 |
- m_samplesize ~ the number of doubles stored in a sample. |
55 |
|
56 |
When a new node is created, the above values are computed based on the values in the child nodes. |
57 |
Eg: if left requires 4 samples and right requires 6 then left+right requires 7 samples. |
58 |
|
59 |
The resolve method, which produces a DataReady from a DataLazy, does the following: |
60 |
1) Create a DataReady to hold the new result. |
61 |
2) Allocate a vector (v) big enough to hold m_buffsrequired samples. |
62 |
3) For each sample, call resolveSample with v, to get its values and copy them into the result object. |
63 |
|
64 |
(In the case of OMP, multiple samples are resolved in parallel so the vector needs to be larger.) |
65 |
|
66 |
resolveSample returns a Vector* and an offset within that vector where the result is stored. |
67 |
Normally, this would be v, but for identity nodes their internal vector is returned instead. |
68 |
|
69 |
The convention that I use, is that the resolve methods should store their results starting at the offset they are passed. |
70 |
|
71 |
For expressions which evaluate to Constant or Tagged, there is a different evaluation method. |
72 |
The collapse method invokes the (non-lazy) operations on the Data class to evaluate the expression. |
73 |
*/ |
74 |
|
75 |
|
76 |
using namespace std; |
77 |
using namespace boost; |
78 |
|
79 |
namespace escript |
80 |
{ |
81 |
|
82 |
namespace |
83 |
{ |
84 |
|
85 |
enum ES_opgroup |
86 |
{ |
87 |
G_UNKNOWN, |
88 |
G_IDENTITY, |
89 |
G_BINARY, // pointwise operations with two arguments |
90 |
G_UNARY // pointwise operations with one argument |
91 |
}; |
92 |
|
93 |
|
94 |
|
95 |
|
96 |
string ES_opstrings[]={"UNKNOWN","IDENTITY","+","-","*","/","^", |
97 |
"sin","cos","tan", |
98 |
"asin","acos","atan","sinh","cosh","tanh","erf", |
99 |
"asinh","acosh","atanh", |
100 |
"log10","log","sign","abs","neg","pos","exp","sqrt", |
101 |
"1/","where>0","where<0","where>=0","where<=0"}; |
102 |
int ES_opcount=33; |
103 |
ES_opgroup opgroups[]={G_UNKNOWN,G_IDENTITY,G_BINARY,G_BINARY,G_BINARY,G_BINARY, G_BINARY, |
104 |
G_UNARY,G_UNARY,G_UNARY, //10 |
105 |
G_UNARY,G_UNARY,G_UNARY,G_UNARY,G_UNARY,G_UNARY,G_UNARY, // 17 |
106 |
G_UNARY,G_UNARY,G_UNARY, // 20 |
107 |
G_UNARY,G_UNARY,G_UNARY,G_UNARY,G_UNARY,G_UNARY,G_UNARY,G_UNARY, // 28 |
108 |
G_UNARY,G_UNARY,G_UNARY,G_UNARY,G_UNARY}; |
109 |
inline |
110 |
ES_opgroup |
111 |
getOpgroup(ES_optype op) |
112 |
{ |
113 |
return opgroups[op]; |
114 |
} |
115 |
|
116 |
// return the FunctionSpace of the result of "left op right" |
117 |
FunctionSpace |
118 |
resultFS(DataAbstract_ptr left, DataAbstract_ptr right, ES_optype op) |
119 |
{ |
120 |
// perhaps this should call interpolate and throw or something? |
121 |
// maybe we need an interpolate node - |
122 |
// that way, if interpolate is required in any other op we can just throw a |
123 |
// programming error exception. |
124 |
|
125 |
FunctionSpace l=left->getFunctionSpace(); |
126 |
FunctionSpace r=right->getFunctionSpace(); |
127 |
if (l!=r) |
128 |
{ |
129 |
if (r.probeInterpolation(l)) |
130 |
{ |
131 |
return l; |
132 |
} |
133 |
if (l.probeInterpolation(r)) |
134 |
{ |
135 |
return r; |
136 |
} |
137 |
throw DataException("Cannot interpolate between the FunctionSpaces given for operation "+opToString(op)+"."); |
138 |
} |
139 |
return l; |
140 |
} |
141 |
|
142 |
// return the shape of the result of "left op right" |
143 |
DataTypes::ShapeType |
144 |
resultShape(DataAbstract_ptr left, DataAbstract_ptr right, ES_optype op) |
145 |
{ |
146 |
if (left->getShape()!=right->getShape()) |
147 |
{ |
148 |
if (getOpgroup(op)!=G_BINARY) |
149 |
{ |
150 |
throw DataException("Shapes not the name - shapes must match for (point)binary operations."); |
151 |
} |
152 |
if (left->getRank()==0) // we need to allow scalar * anything |
153 |
{ |
154 |
return right->getShape(); |
155 |
} |
156 |
if (right->getRank()==0) |
157 |
{ |
158 |
return left->getShape(); |
159 |
} |
160 |
throw DataException("Shapes not the same - arguments must have matching shapes (or be scalars) for (point)binary operations on lazy data."); |
161 |
} |
162 |
return left->getShape(); |
163 |
} |
164 |
|
165 |
// determine the number of points in the result of "left op right" |
166 |
size_t |
167 |
resultLength(DataAbstract_ptr left, DataAbstract_ptr right, ES_optype op) |
168 |
{ |
169 |
switch (getOpgroup(op)) |
170 |
{ |
171 |
case G_BINARY: return left->getLength(); |
172 |
case G_UNARY: return left->getLength(); |
173 |
default: |
174 |
throw DataException("Programmer Error - attempt to getLength() for operator "+opToString(op)+"."); |
175 |
} |
176 |
} |
177 |
|
178 |
// determine the number of samples requires to evaluate an expression combining left and right |
179 |
int |
180 |
calcBuffs(const DataLazy_ptr& left, const DataLazy_ptr& right, ES_optype op) |
181 |
{ |
182 |
switch(getOpgroup(op)) |
183 |
{ |
184 |
case G_IDENTITY: return 1; |
185 |
case G_BINARY: return max(left->getBuffsRequired(),right->getBuffsRequired()+1); |
186 |
case G_UNARY: return max(left->getBuffsRequired(),1); |
187 |
default: |
188 |
throw DataException("Programmer Error - attempt to calcBuffs() for operator "+opToString(op)+"."); |
189 |
} |
190 |
} |
191 |
|
192 |
|
193 |
} // end anonymous namespace |
194 |
|
195 |
|
196 |
|
197 |
// Return a string representing the operation |
198 |
const std::string& |
199 |
opToString(ES_optype op) |
200 |
{ |
201 |
if (op<0 || op>=ES_opcount) |
202 |
{ |
203 |
op=UNKNOWNOP; |
204 |
} |
205 |
return ES_opstrings[op]; |
206 |
} |
207 |
|
208 |
|
209 |
DataLazy::DataLazy(DataAbstract_ptr p) |
210 |
: parent(p->getFunctionSpace(),p->getShape()), |
211 |
m_op(IDENTITY) |
212 |
{ |
213 |
if (p->isLazy()) |
214 |
{ |
215 |
// I don't want identity of Lazy. |
216 |
// Question: Why would that be so bad? |
217 |
// Answer: We assume that the child of ID is something we can call getVector on |
218 |
throw DataException("Programmer error - attempt to create identity from a DataLazy."); |
219 |
} |
220 |
else |
221 |
{ |
222 |
m_id=dynamic_pointer_cast<DataReady>(p); |
223 |
if(p->isConstant()) {m_readytype='C';} |
224 |
else if(p->isExpanded()) {m_readytype='E';} |
225 |
else if (p->isTagged()) {m_readytype='T';} |
226 |
else {throw DataException("Unknown DataReady instance in DataLazy constructor.");} |
227 |
} |
228 |
m_length=p->getLength(); |
229 |
m_buffsRequired=1; |
230 |
m_samplesize=getNumDPPSample()*getNoValues(); |
231 |
cout << "(1)Lazy created with " << m_samplesize << endl; |
232 |
} |
233 |
|
234 |
|
235 |
|
236 |
|
237 |
DataLazy::DataLazy(DataAbstract_ptr left, ES_optype op) |
238 |
: parent(left->getFunctionSpace(),left->getShape()), |
239 |
m_op(op) |
240 |
{ |
241 |
if (getOpgroup(op)!=G_UNARY) |
242 |
{ |
243 |
throw DataException("Programmer error - constructor DataLazy(left, op) will only process UNARY operations."); |
244 |
} |
245 |
DataLazy_ptr lleft; |
246 |
if (!left->isLazy()) |
247 |
{ |
248 |
lleft=DataLazy_ptr(new DataLazy(left)); |
249 |
} |
250 |
else |
251 |
{ |
252 |
lleft=dynamic_pointer_cast<DataLazy>(left); |
253 |
} |
254 |
m_readytype=lleft->m_readytype; |
255 |
m_length=left->getLength(); |
256 |
m_left=lleft; |
257 |
m_buffsRequired=1; |
258 |
m_samplesize=getNumDPPSample()*getNoValues(); |
259 |
} |
260 |
|
261 |
|
262 |
// In this constructor we need to consider interpolation |
263 |
DataLazy::DataLazy(DataAbstract_ptr left, DataAbstract_ptr right, ES_optype op) |
264 |
: parent(resultFS(left,right,op), resultShape(left,right,op)), |
265 |
m_op(op) |
266 |
{ |
267 |
if (getOpgroup(op)!=G_BINARY) |
268 |
{ |
269 |
throw DataException("Programmer error - constructor DataLazy(left, right, op) will only process BINARY operations."); |
270 |
} |
271 |
|
272 |
if (getFunctionSpace()!=left->getFunctionSpace()) // left needs to be interpolated |
273 |
{ |
274 |
FunctionSpace fs=getFunctionSpace(); |
275 |
Data ltemp(left); |
276 |
Data tmp(ltemp,fs); |
277 |
left=tmp.borrowDataPtr(); |
278 |
} |
279 |
if (getFunctionSpace()!=right->getFunctionSpace()) // left needs to be interpolated |
280 |
{ |
281 |
Data tmp(Data(right),getFunctionSpace()); |
282 |
right=tmp.borrowDataPtr(); |
283 |
} |
284 |
left->operandCheck(*right); |
285 |
|
286 |
if (left->isLazy()) // the children need to be DataLazy. Wrap them in IDENTITY if required |
287 |
{ |
288 |
m_left=dynamic_pointer_cast<DataLazy>(left); |
289 |
} |
290 |
else |
291 |
{ |
292 |
m_left=DataLazy_ptr(new DataLazy(left)); |
293 |
} |
294 |
if (right->isLazy()) |
295 |
{ |
296 |
m_right=dynamic_pointer_cast<DataLazy>(right); |
297 |
} |
298 |
else |
299 |
{ |
300 |
m_right=DataLazy_ptr(new DataLazy(right)); |
301 |
} |
302 |
char lt=m_left->m_readytype; |
303 |
char rt=m_right->m_readytype; |
304 |
if (lt=='E' || rt=='E') |
305 |
{ |
306 |
m_readytype='E'; |
307 |
} |
308 |
else if (lt=='T' || rt=='T') |
309 |
{ |
310 |
m_readytype='T'; |
311 |
} |
312 |
else |
313 |
{ |
314 |
m_readytype='C'; |
315 |
} |
316 |
m_length=resultLength(m_left,m_right,m_op); |
317 |
m_samplesize=getNumDPPSample()*getNoValues(); |
318 |
m_buffsRequired=calcBuffs(m_left, m_right,m_op); |
319 |
cout << "(3)Lazy created with " << m_samplesize << endl; |
320 |
} |
321 |
|
322 |
|
323 |
DataLazy::~DataLazy() |
324 |
{ |
325 |
} |
326 |
|
327 |
|
328 |
int |
329 |
DataLazy::getBuffsRequired() const |
330 |
{ |
331 |
return m_buffsRequired; |
332 |
} |
333 |
|
334 |
|
335 |
/* |
336 |
\brief Evaluates the expression using methods on Data. |
337 |
This does the work for the collapse method. |
338 |
For reasons of efficiency do not call this method on DataExpanded nodes. |
339 |
*/ |
340 |
DataReady_ptr |
341 |
DataLazy::collapseToReady() |
342 |
{ |
343 |
if (m_readytype=='E') |
344 |
{ // this is more an efficiency concern than anything else |
345 |
throw DataException("Programmer Error - do not use collapse on Expanded data."); |
346 |
} |
347 |
if (m_op==IDENTITY) |
348 |
{ |
349 |
return m_id; |
350 |
} |
351 |
DataReady_ptr pleft=m_left->collapseToReady(); |
352 |
Data left(pleft); |
353 |
Data right; |
354 |
if (getOpgroup(m_op)==G_BINARY) |
355 |
{ |
356 |
right=Data(m_right->collapseToReady()); |
357 |
} |
358 |
Data result; |
359 |
switch(m_op) |
360 |
{ |
361 |
case ADD: |
362 |
result=left+right; |
363 |
break; |
364 |
case SUB: |
365 |
result=left-right; |
366 |
break; |
367 |
case MUL: |
368 |
result=left*right; |
369 |
break; |
370 |
case DIV: |
371 |
result=left/right; |
372 |
break; |
373 |
case SIN: |
374 |
result=left.sin(); |
375 |
break; |
376 |
case COS: |
377 |
result=left.cos(); |
378 |
break; |
379 |
case TAN: |
380 |
result=left.tan(); |
381 |
break; |
382 |
case ASIN: |
383 |
result=left.asin(); |
384 |
break; |
385 |
case ACOS: |
386 |
result=left.acos(); |
387 |
break; |
388 |
case ATAN: |
389 |
result=left.atan(); |
390 |
break; |
391 |
case SINH: |
392 |
result=left.sinh(); |
393 |
break; |
394 |
case COSH: |
395 |
result=left.cosh(); |
396 |
break; |
397 |
case TANH: |
398 |
result=left.tanh(); |
399 |
break; |
400 |
case ERF: |
401 |
result=left.erf(); |
402 |
break; |
403 |
case ASINH: |
404 |
result=left.asinh(); |
405 |
break; |
406 |
case ACOSH: |
407 |
result=left.acosh(); |
408 |
break; |
409 |
case ATANH: |
410 |
result=left.atanh(); |
411 |
break; |
412 |
case LOG10: |
413 |
result=left.log10(); |
414 |
break; |
415 |
case LOG: |
416 |
result=left.log(); |
417 |
break; |
418 |
case SIGN: |
419 |
result=left.sign(); |
420 |
break; |
421 |
case ABS: |
422 |
result=left.abs(); |
423 |
break; |
424 |
case NEG: |
425 |
result=left.neg(); |
426 |
break; |
427 |
case POS: |
428 |
// it doesn't mean anything for delayed. |
429 |
// it will just trigger a deep copy of the lazy object |
430 |
throw DataException("Programmer error - POS not supported for lazy data."); |
431 |
break; |
432 |
case EXP: |
433 |
result=left.exp(); |
434 |
break; |
435 |
case SQRT: |
436 |
result=left.sqrt(); |
437 |
break; |
438 |
case RECIP: |
439 |
result=left.oneOver(); |
440 |
break; |
441 |
case GZ: |
442 |
result=left.wherePositive(); |
443 |
break; |
444 |
case LZ: |
445 |
result=left.whereNegative(); |
446 |
break; |
447 |
case GEZ: |
448 |
result=left.whereNonNegative(); |
449 |
break; |
450 |
case LEZ: |
451 |
result=left.whereNonPositive(); |
452 |
break; |
453 |
default: |
454 |
throw DataException("Programmer error - do not know how to resolve operator "+opToString(m_op)+"."); |
455 |
} |
456 |
return result.borrowReadyPtr(); |
457 |
} |
458 |
|
459 |
/* |
460 |
\brief Converts the DataLazy into an IDENTITY storing the value of the expression. |
461 |
This method uses the original methods on the Data class to evaluate the expressions. |
462 |
For this reason, it should not be used on DataExpanded instances. (To do so would defeat |
463 |
the purpose of using DataLazy in the first place). |
464 |
*/ |
465 |
void |
466 |
DataLazy::collapse() |
467 |
{ |
468 |
if (m_op==IDENTITY) |
469 |
{ |
470 |
return; |
471 |
} |
472 |
if (m_readytype=='E') |
473 |
{ // this is more an efficiency concern than anything else |
474 |
throw DataException("Programmer Error - do not use collapse on Expanded data."); |
475 |
} |
476 |
m_id=collapseToReady(); |
477 |
m_op=IDENTITY; |
478 |
} |
479 |
|
480 |
/* |
481 |
\brief Compute the value of the expression (binary operation) for the given sample. |
482 |
\return Vector which stores the value of the subexpression for the given sample. |
483 |
\param v A vector to store intermediate results. |
484 |
\param offset Index in v to begin storing results. |
485 |
\param sampleNo Sample number to evaluate. |
486 |
\param roffset (output parameter) the offset in the return vector where the result begins. |
487 |
|
488 |
The return value will be an existing vector so do not deallocate it. |
489 |
If the result is stored in v it should be stored at the offset given. |
490 |
Everything from offset to the end of v should be considered available for this method to use. |
491 |
*/ |
492 |
DataTypes::ValueType* |
493 |
DataLazy::resolveUnary(ValueType& v, size_t offset, int sampleNo, size_t& roffset) const |
494 |
{ |
495 |
// we assume that any collapsing has been done before we get here |
496 |
// since we only have one argument we don't need to think about only |
497 |
// processing single points. |
498 |
if (m_readytype!='E') |
499 |
{ |
500 |
throw DataException("Programmer error - resolveUnary should only be called on expanded Data."); |
501 |
} |
502 |
const ValueType* vleft=m_left->resolveSample(v,offset,sampleNo,roffset); |
503 |
const double* left=&((*vleft)[roffset]); |
504 |
double* result=&(v[offset]); |
505 |
roffset=offset; |
506 |
switch (m_op) |
507 |
{ |
508 |
case SIN: |
509 |
tensor_unary_operation<double (*)(double)>(m_samplesize, left, result, ::sin); |
510 |
break; |
511 |
case COS: |
512 |
tensor_unary_operation<double (*)(double)>(m_samplesize, left, result, ::cos); |
513 |
break; |
514 |
case TAN: |
515 |
tensor_unary_operation<double (*)(double)>(m_samplesize, left, result, ::tan); |
516 |
break; |
517 |
case ASIN: |
518 |
tensor_unary_operation<double (*)(double)>(m_samplesize, left, result, ::asin); |
519 |
break; |
520 |
case ACOS: |
521 |
tensor_unary_operation<double (*)(double)>(m_samplesize, left, result, ::acos); |
522 |
break; |
523 |
case ATAN: |
524 |
tensor_unary_operation<double (*)(double)>(m_samplesize, left, result, ::atan); |
525 |
break; |
526 |
case SINH: |
527 |
tensor_unary_operation<double (*)(double)>(m_samplesize, left, result, ::sinh); |
528 |
break; |
529 |
case COSH: |
530 |
tensor_unary_operation<double (*)(double)>(m_samplesize, left, result, ::cosh); |
531 |
break; |
532 |
case TANH: |
533 |
tensor_unary_operation<double (*)(double)>(m_samplesize, left, result, ::tanh); |
534 |
break; |
535 |
case ERF: |
536 |
#ifdef _WIN32 |
537 |
throw DataException("Error - Data:: erf function is not supported on _WIN32 platforms."); |
538 |
#else |
539 |
tensor_unary_operation(m_samplesize, left, result, ::erf); |
540 |
break; |
541 |
#endif |
542 |
case ASINH: |
543 |
#ifdef _WIN32 |
544 |
tensor_unary_operation(m_samplesize, left, result, escript::asinh_substitute); |
545 |
#else |
546 |
tensor_unary_operation(m_samplesize, left, result, ::asinh); |
547 |
#endif |
548 |
break; |
549 |
case ACOSH: |
550 |
#ifdef _WIN32 |
551 |
tensor_unary_operation(m_samplesize, left, result, escript::acosh_substitute); |
552 |
#else |
553 |
tensor_unary_operation(m_samplesize, left, result, ::acosh); |
554 |
#endif |
555 |
break; |
556 |
case ATANH: |
557 |
#ifdef _WIN32 |
558 |
tensor_unary_operation(m_samplesize, left, result, escript::atanh_substitute); |
559 |
#else |
560 |
tensor_unary_operation(m_samplesize, left, result, ::atanh); |
561 |
#endif |
562 |
break; |
563 |
case LOG10: |
564 |
tensor_unary_operation<double (*)(double)>(m_samplesize, left, result, ::log10); |
565 |
break; |
566 |
case LOG: |
567 |
tensor_unary_operation<double (*)(double)>(m_samplesize, left, result, ::log); |
568 |
break; |
569 |
case SIGN: |
570 |
tensor_unary_operation(m_samplesize, left, result, escript::fsign); |
571 |
break; |
572 |
case ABS: |
573 |
tensor_unary_operation<double (*)(double)>(m_samplesize, left, result, ::fabs); |
574 |
break; |
575 |
case NEG: |
576 |
tensor_unary_operation(m_samplesize, left, result, negate<double>()); |
577 |
break; |
578 |
case POS: |
579 |
// it doesn't mean anything for delayed. |
580 |
// it will just trigger a deep copy of the lazy object |
581 |
throw DataException("Programmer error - POS not supported for lazy data."); |
582 |
break; |
583 |
case EXP: |
584 |
tensor_unary_operation<double (*)(double)>(m_samplesize, left, result, ::exp); |
585 |
break; |
586 |
case SQRT: |
587 |
tensor_unary_operation<double (*)(double)>(m_samplesize, left, result, ::sqrt); |
588 |
break; |
589 |
case RECIP: |
590 |
tensor_unary_operation(m_samplesize, left, result, bind1st(divides<double>(),1.)); |
591 |
break; |
592 |
case GZ: |
593 |
tensor_unary_operation(m_samplesize, left, result, bind2nd(greater<double>(),0.0)); |
594 |
break; |
595 |
case LZ: |
596 |
tensor_unary_operation(m_samplesize, left, result, bind2nd(less<double>(),0.0)); |
597 |
break; |
598 |
case GEZ: |
599 |
tensor_unary_operation(m_samplesize, left, result, bind2nd(greater_equal<double>(),0.0)); |
600 |
break; |
601 |
case LEZ: |
602 |
tensor_unary_operation(m_samplesize, left, result, bind2nd(less_equal<double>(),0.0)); |
603 |
break; |
604 |
|
605 |
default: |
606 |
throw DataException("Programmer error - resolveUnary can not resolve operator "+opToString(m_op)+"."); |
607 |
} |
608 |
return &v; |
609 |
} |
610 |
|
611 |
|
612 |
|
613 |
|
614 |
|
615 |
#define PROC_OP(TYPE,X) \ |
616 |
for (int i=0;i<steps;++i,resultp+=resultStep) \ |
617 |
{ \ |
618 |
tensor_binary_operation##TYPE(chunksize, &((*left)[lroffset]), &((*right)[rroffset]), resultp, X); \ |
619 |
lroffset+=leftStep; \ |
620 |
rroffset+=rightStep; \ |
621 |
} |
622 |
|
623 |
/* |
624 |
\brief Compute the value of the expression (binary operation) for the given sample. |
625 |
\return Vector which stores the value of the subexpression for the given sample. |
626 |
\param v A vector to store intermediate results. |
627 |
\param offset Index in v to begin storing results. |
628 |
\param sampleNo Sample number to evaluate. |
629 |
\param roffset (output parameter) the offset in the return vector where the result begins. |
630 |
|
631 |
The return value will be an existing vector so do not deallocate it. |
632 |
If the result is stored in v it should be stored at the offset given. |
633 |
Everything from offset to the end of v should be considered available for this method to use. |
634 |
*/ |
635 |
// This method assumes that any subexpressions which evaluate to Constant or Tagged Data |
636 |
// have already been collapsed to IDENTITY. So we must have at least one expanded child. |
637 |
// If both children are expanded, then we can process them in a single operation (we treat |
638 |
// the whole sample as one big datapoint. |
639 |
// If one of the children is not expanded, then we need to treat each point in the sample |
640 |
// individually. |
641 |
// There is an additional complication when scalar operations are considered. |
642 |
// For example, 2+Vector. |
643 |
// In this case each double within the point is treated individually |
644 |
DataTypes::ValueType* |
645 |
DataLazy::resolveBinary(ValueType& v, size_t offset, int sampleNo, size_t& roffset) const |
646 |
{ |
647 |
cout << "Resolve binary: " << toString() << endl; |
648 |
|
649 |
size_t lroffset=0, rroffset=0; // offsets in the left and right result vectors |
650 |
// first work out which of the children are expanded |
651 |
bool leftExp=(m_left->m_readytype=='E'); |
652 |
bool rightExp=(m_right->m_readytype=='E'); |
653 |
bool bigloops=((leftExp && rightExp) || (!leftExp && !rightExp)); // is processing in single step? |
654 |
int steps=(bigloops?1:getNumDPPSample()); |
655 |
size_t chunksize=(bigloops? m_samplesize : getNoValues()); // if bigloops, pretend the whole sample is a datapoint |
656 |
if (m_left->getRank()!=m_right->getRank()) // need to deal with scalar * ? ops |
657 |
{ |
658 |
EsysAssert((m_left->getRank()==0) || (m_right->getRank()==0), "Error - Ranks must match unless one is 0."); |
659 |
steps=getNumDPPSample()*max(m_left->getNoValues(),m_right->getNoValues()); |
660 |
chunksize=1; // for scalar |
661 |
} |
662 |
int leftStep=((leftExp && !rightExp)? m_right->getNoValues() : 0); |
663 |
int rightStep=((rightExp && !leftExp)? m_left->getNoValues() : 0); |
664 |
int resultStep=max(leftStep,rightStep); // only one (at most) should be !=0 |
665 |
// Get the values of sub-expressions |
666 |
const ValueType* left=m_left->resolveSample(v,offset,sampleNo,lroffset); |
667 |
const ValueType* right=m_right->resolveSample(v,offset+m_samplesize,sampleNo,rroffset); // Note |
668 |
// the right child starts further along. |
669 |
double* resultp=&(v[offset]); // results are stored at the vector offset we recieved |
670 |
switch(m_op) |
671 |
{ |
672 |
case ADD: |
673 |
PROC_OP(/**/,plus<double>()); |
674 |
break; |
675 |
case SUB: |
676 |
PROC_OP(/**/,minus<double>()); |
677 |
break; |
678 |
case MUL: |
679 |
PROC_OP(/**/,multiplies<double>()); |
680 |
break; |
681 |
case DIV: |
682 |
PROC_OP(/**/,divides<double>()); |
683 |
break; |
684 |
case POW: |
685 |
PROC_OP(<double (double,double)>,::pow); |
686 |
break; |
687 |
default: |
688 |
throw DataException("Programmer error - resolveBinary can not resolve operator "+opToString(m_op)+"."); |
689 |
} |
690 |
roffset=offset; |
691 |
return &v; |
692 |
} |
693 |
|
694 |
|
695 |
|
696 |
/* |
697 |
\brief Compute the value of the expression for the given sample. |
698 |
\return Vector which stores the value of the subexpression for the given sample. |
699 |
\param v A vector to store intermediate results. |
700 |
\param offset Index in v to begin storing results. |
701 |
\param sampleNo Sample number to evaluate. |
702 |
\param roffset (output parameter) the offset in the return vector where the result begins. |
703 |
|
704 |
The return value will be an existing vector so do not deallocate it. |
705 |
*/ |
706 |
// the vector and the offset are a place where the method could write its data if it wishes |
707 |
// it is not obligated to do so. For example, if it has its own storage already, it can use that. |
708 |
// Hence the return value to indicate where the data is actually stored. |
709 |
// Regardless, the storage should be assumed to be used, even if it isn't. |
710 |
|
711 |
// the roffset is the offset within the returned vector where the data begins |
712 |
const DataTypes::ValueType* |
713 |
DataLazy::resolveSample(ValueType& v, size_t offset, int sampleNo, size_t& roffset) |
714 |
{ |
715 |
cout << "Resolve sample " << toString() << endl; |
716 |
// collapse so we have a 'E' node or an IDENTITY for some other type |
717 |
if (m_readytype!='E' && m_op!=IDENTITY) |
718 |
{ |
719 |
collapse(); |
720 |
} |
721 |
if (m_op==IDENTITY) |
722 |
{ |
723 |
const ValueType& vec=m_id->getVector(); |
724 |
if (m_readytype=='C') |
725 |
{ |
726 |
roffset=0; |
727 |
return &(vec); |
728 |
} |
729 |
roffset=m_id->getPointOffset(sampleNo, 0); |
730 |
return &(vec); |
731 |
} |
732 |
if (m_readytype!='E') |
733 |
{ |
734 |
throw DataException("Programmer Error - Collapse did not produce an expanded node."); |
735 |
} |
736 |
switch (getOpgroup(m_op)) |
737 |
{ |
738 |
case G_UNARY: return resolveUnary(v, offset,sampleNo,roffset); |
739 |
case G_BINARY: return resolveBinary(v, offset,sampleNo,roffset); |
740 |
default: |
741 |
throw DataException("Programmer Error - resolveSample does not know how to process "+opToString(m_op)+"."); |
742 |
} |
743 |
} |
744 |
|
745 |
|
746 |
// To simplify the memory management, all threads operate on one large vector, rather than one each. |
747 |
// Each sample is evaluated independently and copied into the result DataExpanded. |
748 |
DataReady_ptr |
749 |
DataLazy::resolve() |
750 |
{ |
751 |
|
752 |
cout << "Sample size=" << m_samplesize << endl; |
753 |
cout << "Buffers=" << m_buffsRequired << endl; |
754 |
|
755 |
if (m_readytype!='E') // if the whole sub-expression is Constant or Tagged, then evaluate it normally |
756 |
{ |
757 |
collapse(); |
758 |
} |
759 |
if (m_op==IDENTITY) // So a lazy expression of Constant or Tagged data will be returned here. |
760 |
{ |
761 |
return m_id; |
762 |
} |
763 |
// from this point on we must have m_op!=IDENTITY and m_readytype=='E' |
764 |
size_t threadbuffersize=m_samplesize*(max(1,m_buffsRequired)); // Each thread needs to have enough |
765 |
// storage to evaluate its expression |
766 |
int numthreads=1; |
767 |
#ifdef _OPENMP |
768 |
numthreads=getNumberOfThreads(); |
769 |
int threadnum=0; |
770 |
#endif |
771 |
ValueType v(numthreads*threadbuffersize); |
772 |
cout << "Buffer created with size=" << v.size() << endl; |
773 |
DataExpanded* result=new DataExpanded(getFunctionSpace(),getShape(), ValueType(getNoValues())); |
774 |
ValueType& resvec=result->getVector(); |
775 |
DataReady_ptr resptr=DataReady_ptr(result); |
776 |
int sample; |
777 |
size_t outoffset; // offset in the output data |
778 |
int totalsamples=getNumSamples(); |
779 |
const ValueType* res=0; // Vector storing the answer |
780 |
size_t resoffset=0; // where in the vector to find the answer |
781 |
#pragma omp parallel for private(sample,resoffset,outoffset,threadnum,res) schedule(static) |
782 |
for (sample=0;sample<totalsamples;++sample) |
783 |
{ |
784 |
cout << "################################# " << sample << endl; |
785 |
#ifdef _OPENMP |
786 |
res=resolveSample(v,threadbuffersize*omp_get_thread_num(),sample,resoffset); |
787 |
#else |
788 |
res=resolveSample(v,0,sample,resoffset); // res would normally be v, but not if its a single IDENTITY op. |
789 |
#endif |
790 |
cerr << "-------------------------------- " << endl; |
791 |
outoffset=result->getPointOffset(sample,0); |
792 |
cerr << "offset=" << outoffset << endl; |
793 |
for (unsigned int i=0;i<m_samplesize;++i,++outoffset,++resoffset) // copy values into the output vector |
794 |
{ |
795 |
resvec[outoffset]=(*res)[resoffset]; |
796 |
} |
797 |
cerr << "*********************************" << endl; |
798 |
} |
799 |
return resptr; |
800 |
} |
801 |
|
802 |
std::string |
803 |
DataLazy::toString() const |
804 |
{ |
805 |
ostringstream oss; |
806 |
oss << "Lazy Data:"; |
807 |
intoString(oss); |
808 |
return oss.str(); |
809 |
} |
810 |
|
811 |
|
812 |
void |
813 |
DataLazy::intoString(ostringstream& oss) const |
814 |
{ |
815 |
switch (getOpgroup(m_op)) |
816 |
{ |
817 |
case G_IDENTITY: |
818 |
if (m_id->isExpanded()) |
819 |
{ |
820 |
oss << "E"; |
821 |
} |
822 |
else if (m_id->isTagged()) |
823 |
{ |
824 |
oss << "T"; |
825 |
} |
826 |
else if (m_id->isConstant()) |
827 |
{ |
828 |
oss << "C"; |
829 |
} |
830 |
else |
831 |
{ |
832 |
oss << "?"; |
833 |
} |
834 |
oss << '@' << m_id.get(); |
835 |
break; |
836 |
case G_BINARY: |
837 |
oss << '('; |
838 |
m_left->intoString(oss); |
839 |
oss << ' ' << opToString(m_op) << ' '; |
840 |
m_right->intoString(oss); |
841 |
oss << ')'; |
842 |
break; |
843 |
case G_UNARY: |
844 |
oss << opToString(m_op) << '('; |
845 |
m_left->intoString(oss); |
846 |
oss << ')'; |
847 |
break; |
848 |
default: |
849 |
oss << "UNKNOWN"; |
850 |
} |
851 |
} |
852 |
|
853 |
DataAbstract* |
854 |
DataLazy::deepCopy() |
855 |
{ |
856 |
switch (getOpgroup(m_op)) |
857 |
{ |
858 |
case G_IDENTITY: return new DataLazy(m_id->deepCopy()->getPtr()); |
859 |
case G_UNARY: return new DataLazy(m_left->deepCopy()->getPtr(),m_op); |
860 |
case G_BINARY: return new DataLazy(m_left->deepCopy()->getPtr(),m_right->deepCopy()->getPtr(),m_op); |
861 |
default: |
862 |
throw DataException("Programmer error - do not know how to deepcopy operator "+opToString(m_op)+"."); |
863 |
} |
864 |
} |
865 |
|
866 |
|
867 |
DataTypes::ValueType::size_type |
868 |
DataLazy::getLength() const |
869 |
{ |
870 |
return m_length; |
871 |
} |
872 |
|
873 |
|
874 |
DataAbstract* |
875 |
DataLazy::getSlice(const DataTypes::RegionType& region) const |
876 |
{ |
877 |
throw DataException("getSlice - not implemented for Lazy objects."); |
878 |
} |
879 |
|
880 |
|
881 |
// To do this we need to rely on our child nodes |
882 |
DataTypes::ValueType::size_type |
883 |
DataLazy::getPointOffset(int sampleNo, |
884 |
int dataPointNo) |
885 |
{ |
886 |
if (m_op==IDENTITY) |
887 |
{ |
888 |
return m_id->getPointOffset(sampleNo,dataPointNo); |
889 |
} |
890 |
if (m_readytype!='E') |
891 |
{ |
892 |
collapse(); |
893 |
return m_id->getPointOffset(sampleNo,dataPointNo); |
894 |
} |
895 |
// at this point we do not have an identity node and the expression will be Expanded |
896 |
// so we only need to know which child to ask |
897 |
if (m_left->m_readytype=='E') |
898 |
{ |
899 |
return m_left->getPointOffset(sampleNo,dataPointNo); |
900 |
} |
901 |
else |
902 |
{ |
903 |
return m_right->getPointOffset(sampleNo,dataPointNo); |
904 |
} |
905 |
} |
906 |
|
907 |
// To do this we need to rely on our child nodes |
908 |
DataTypes::ValueType::size_type |
909 |
DataLazy::getPointOffset(int sampleNo, |
910 |
int dataPointNo) const |
911 |
{ |
912 |
if (m_op==IDENTITY) |
913 |
{ |
914 |
return m_id->getPointOffset(sampleNo,dataPointNo); |
915 |
} |
916 |
if (m_readytype=='E') |
917 |
{ |
918 |
// at this point we do not have an identity node and the expression will be Expanded |
919 |
// so we only need to know which child to ask |
920 |
if (m_left->m_readytype=='E') |
921 |
{ |
922 |
return m_left->getPointOffset(sampleNo,dataPointNo); |
923 |
} |
924 |
else |
925 |
{ |
926 |
return m_right->getPointOffset(sampleNo,dataPointNo); |
927 |
} |
928 |
} |
929 |
if (m_readytype=='C') |
930 |
{ |
931 |
return m_left->getPointOffset(sampleNo,dataPointNo); // which child doesn't matter |
932 |
} |
933 |
throw DataException("Programmer error - getPointOffset on lazy data may require collapsing (but this object is marked const)."); |
934 |
} |
935 |
|
936 |
// It would seem that DataTagged will need to be treated differently since even after setting all tags |
937 |
// to zero, all the tags from all the DataTags would be in the result. |
938 |
// However since they all have the same value (0) whether they are there or not should not matter. |
939 |
// So I have decided that for all types this method will create a constant 0. |
940 |
// It can be promoted up as required. |
941 |
// A possible efficiency concern might be expanded->constant->expanded which has an extra memory management |
942 |
// but we can deal with that if it arrises. |
943 |
void |
944 |
DataLazy::setToZero() |
945 |
{ |
946 |
DataTypes::ValueType v(getNoValues(),0); |
947 |
m_id=DataReady_ptr(new DataConstant(getFunctionSpace(),getShape(),v)); |
948 |
m_op=IDENTITY; |
949 |
m_right.reset(); |
950 |
m_left.reset(); |
951 |
m_readytype='C'; |
952 |
m_buffsRequired=1; |
953 |
} |
954 |
|
955 |
} // end namespace |