1 |
|
|
2 |
/******************************************************* |
/******************************************************* |
3 |
* |
* |
4 |
* Copyright (c) 2003-2008 by University of Queensland |
* Copyright (c) 2003-2010 by University of Queensland |
5 |
* Earth Systems Science Computational Center (ESSCC) |
* Earth Systems Science Computational Center (ESSCC) |
6 |
* http://www.uq.edu.au/esscc |
* http://www.uq.edu.au/esscc |
7 |
* |
* |
11 |
* |
* |
12 |
*******************************************************/ |
*******************************************************/ |
13 |
|
|
14 |
// |
#include <escriptexport/DataVar.h> |
15 |
// DataVar.cpp |
#include <escriptexport/ElementData.h> |
16 |
// |
#include <escriptexport/FinleyMesh.h> |
17 |
#include <escriptreader/DataVar.h> |
#include <escriptexport/NodeData.h> |
18 |
#include <escriptreader/ElementData.h> |
#ifndef VISIT_PLUGIN |
19 |
#include <escriptreader/MeshWithElements.h> |
#include <escript/Data.h> |
20 |
#include <netcdf.hh> |
#endif |
21 |
#if HAVE_SILO |
|
22 |
|
#if USE_NETCDF |
23 |
|
#include <netcdfcpp.h> |
24 |
|
#endif |
25 |
|
|
26 |
|
#if USE_SILO |
27 |
#include <silo.h> |
#include <silo.h> |
28 |
#endif |
#endif |
29 |
|
|
30 |
using namespace std; |
using namespace std; |
31 |
|
|
32 |
namespace EscriptReader { |
namespace escriptexport { |
33 |
|
|
34 |
enum { |
enum { |
35 |
NODE_CENTERED = 1, |
NODE_CENTERED = 1, |
40 |
// Constructor |
// Constructor |
41 |
// |
// |
42 |
DataVar::DataVar(const string& name) : |
DataVar::DataVar(const string& name) : |
43 |
varName(name), numSamples(0), rank(0), ptsPerSample(0), centering(0), |
initialized(false), varName(name), |
44 |
reorderedNumSamples(0), fullMesh(NULL) |
numSamples(0), rank(0), ptsPerSample(0), centering(0) |
45 |
{ |
{ |
46 |
} |
} |
47 |
|
|
48 |
// |
// |
|
// Destructor |
|
|
// |
|
|
DataVar::~DataVar() |
|
|
{ |
|
|
CoordArray::iterator it; |
|
|
for (it = reorderedData.begin(); it != reorderedData.end(); it++) |
|
|
delete[] *it; |
|
|
for (it = rawData.begin(); it != rawData.end(); it++) |
|
|
delete[] *it; |
|
|
} |
|
|
|
|
|
// |
|
49 |
// Copy constructor |
// Copy constructor |
50 |
// |
// |
51 |
DataVar::DataVar(const DataVar& d) : |
DataVar::DataVar(const DataVar& d) : |
52 |
|
initialized(d.initialized), finleyMesh(d.finleyMesh), |
53 |
varName(d.varName), numSamples(d.numSamples), |
varName(d.varName), numSamples(d.numSamples), |
54 |
rank(d.rank), ptsPerSample(d.ptsPerSample), centering(d.centering), |
rank(d.rank), ptsPerSample(d.ptsPerSample), centering(d.centering), |
55 |
funcSpace(d.funcSpace), shape(d.shape), sampleID(d.sampleID), |
funcSpace(d.funcSpace), shape(d.shape), sampleID(d.sampleID) |
|
reorderedNumSamples(d.reorderedNumSamples), fullMesh(d.fullMesh) |
|
56 |
{ |
{ |
57 |
CoordArray::const_iterator it; |
if (numSamples > 0) { |
58 |
for (it = d.rawData.begin(); it != d.rawData.end(); it++) { |
CoordArray::const_iterator it; |
59 |
float* c = new float[numSamples]; |
for (it = d.dataArray.begin(); it != d.dataArray.end(); it++) { |
60 |
copy(*it, (*it)+numSamples, c); |
float* c = new float[numSamples]; |
61 |
rawData.push_back(c); |
copy(*it, (*it)+numSamples, c); |
62 |
} |
dataArray.push_back(c); |
63 |
for (it = d.reorderedData.begin(); it != d.reorderedData.end(); it++) { |
} |
|
float* c = new float[reorderedNumSamples]; |
|
|
copy(*it, (*it)+reorderedNumSamples, c); |
|
|
reorderedData.push_back(c); |
|
64 |
} |
} |
65 |
} |
} |
66 |
|
|
67 |
// |
// |
68 |
// Special constructor for mesh data |
// Destructor |
69 |
// |
// |
70 |
DataVar::DataVar(const string& name, const IntVec& data, |
DataVar::~DataVar() |
|
MeshWithElements* mesh) : |
|
|
varName(name) |
|
71 |
{ |
{ |
72 |
numSamples = data.size(); |
cleanup(); |
|
|
|
|
float* c = new float[numSamples]; |
|
|
rawData.push_back(c); |
|
|
IntVec::const_iterator it; |
|
|
for (it=data.begin(); it != data.end(); it++) |
|
|
*c++ = static_cast<float>(*it); |
|
|
|
|
|
rank = 0; |
|
|
ptsPerSample = 1; |
|
|
if (name.compare(0, 6, "Nodes_") == 0) { |
|
|
funcSpace = FINLEY_NODES; |
|
|
centering = NODE_CENTERED; |
|
|
sampleID.insert(sampleID.end(), mesh->getNodeIDs().begin(), |
|
|
mesh->getNodeIDs().end()); |
|
|
} else if (name.compare(0, 9, "Elements_") == 0) { |
|
|
funcSpace = FINLEY_ELEMENTS; |
|
|
centering = ZONE_CENTERED; |
|
|
sampleID.insert(sampleID.end(), mesh->getElements()->getIDs().begin(), |
|
|
mesh->getElements()->getIDs().end()); |
|
|
} else if (name.compare(0, 13, "FaceElements_") == 0) { |
|
|
funcSpace = FINLEY_FACE_ELEMENTS; |
|
|
centering = ZONE_CENTERED; |
|
|
sampleID.insert(sampleID.end(), |
|
|
mesh->getFaceElements()->getIDs().begin(), |
|
|
mesh->getFaceElements()->getIDs().end()); |
|
|
} else if (name.compare(0, 16, "ContactElements_") == 0) { |
|
|
funcSpace = FINLEY_CONTACT_ELEMENTS_1; |
|
|
centering = ZONE_CENTERED; |
|
|
sampleID.insert(sampleID.end(), |
|
|
mesh->getContactElements()->getIDs().begin(), |
|
|
mesh->getContactElements()->getIDs().end()); |
|
|
} else if (name.compare(0, 7, "Points_") == 0) { |
|
|
funcSpace = FINLEY_POINTS; |
|
|
centering = NODE_CENTERED; |
|
|
sampleID.insert(sampleID.end(), mesh->getPoints()->getIDs().begin(), |
|
|
mesh->getPoints()->getIDs().end()); |
|
|
} |
|
|
|
|
|
shape.clear(); |
|
|
reorderedNumSamples = 0; |
|
73 |
} |
} |
74 |
|
|
75 |
// |
// |
|
// Appends raw data including IDs from rhs. |
|
76 |
// |
// |
77 |
bool DataVar::append(const DataVar& rhs) |
// |
78 |
|
void DataVar::cleanup() |
79 |
{ |
{ |
|
// check if variables are compatible |
|
|
if (varName != rhs.varName || ptsPerSample != rhs.ptsPerSample || |
|
|
rank != rhs.rank || shape.size() != rhs.shape.size() || |
|
|
centering != rhs.centering) |
|
|
return false; |
|
|
|
|
|
for (size_t i=0; i<shape.size(); i++) |
|
|
if (shape[i] != rhs.shape[i]) |
|
|
return false; |
|
|
|
|
|
sampleID.insert(sampleID.end(), rhs.sampleID.begin(), rhs.sampleID.end()); |
|
|
for (size_t i=0; i<rawData.size(); i++) { |
|
|
float* c = new float[numSamples+rhs.numSamples]; |
|
|
copy(rawData[i], rawData[i]+numSamples, c); |
|
|
copy(rhs.rawData[i], rhs.rawData[i]+rhs.numSamples, c+numSamples); |
|
|
delete[] rawData[i]; |
|
|
rawData[i] = c; |
|
|
} |
|
|
numSamples += rhs.numSamples; |
|
|
|
|
|
// invalidate previously reordered data |
|
80 |
CoordArray::iterator it; |
CoordArray::iterator it; |
81 |
for (it = reorderedData.begin(); it != reorderedData.end(); it++) |
for (it = dataArray.begin(); it != dataArray.end(); it++) |
82 |
delete[] *it; |
delete[] *it; |
83 |
reorderedData.clear(); |
dataArray.clear(); |
84 |
reorderedNumSamples = 0; |
shape.clear(); |
85 |
|
sampleID.clear(); |
86 |
return true; |
numSamples = 0; |
87 |
|
initialized = false; |
88 |
} |
} |
89 |
|
|
90 |
// |
// |
|
// Returns a subset of the src array according to stride parameter. |
|
|
// If samples consist of multiple values they are averaged beforehand. |
|
|
// Used to separate (x0,y0,z0,x1,y1,z1,...) into (x0,x1,...), (y0,y1,...) and |
|
|
// (z0,z1,...) |
|
91 |
// |
// |
92 |
float* DataVar::averageData(const float* src, size_t stride) |
// |
93 |
|
bool DataVar::initFromEscript(escript::Data& escriptData, FinleyMesh_ptr mesh) |
94 |
{ |
{ |
95 |
float* res = new float[numSamples]; |
#ifndef VISIT_PLUGIN |
96 |
|
cleanup(); |
97 |
|
|
98 |
if (ptsPerSample == 1) { |
if (!escriptData.actsExpanded()) { |
99 |
float* dest = res; |
cerr << "WARNING: Only expanded data supported!" << endl; |
100 |
for (int i=0; i<numSamples; i++, src+=stride) |
return false; |
101 |
*dest++ = *src; |
} |
102 |
|
|
103 |
|
finleyMesh = mesh; |
104 |
|
rank = escriptData.getDataPointRank(); |
105 |
|
ptsPerSample = escriptData.getNumDataPointsPerSample(); |
106 |
|
shape = escriptData.getDataPointShape(); |
107 |
|
funcSpace = escriptData.getFunctionSpace().getTypeCode(); |
108 |
|
numSamples = escriptData.getNumSamples(); |
109 |
|
|
110 |
|
if (funcSpace == FINLEY_REDUCED_NODES || funcSpace == FINLEY_NODES) { |
111 |
|
centering = NODE_CENTERED; |
112 |
} else { |
} else { |
113 |
float* dest = res; |
centering = ZONE_CENTERED; |
|
for (int i=0; i<numSamples; i++) { |
|
|
double tmpVal = 0.0; |
|
|
for (int j=0; j<ptsPerSample; j++, src+=stride) |
|
|
tmpVal += *src; |
|
|
*dest++ = (float)(tmpVal / ptsPerSample); |
|
|
} |
|
114 |
} |
} |
|
return res; |
|
|
} |
|
115 |
|
|
116 |
// |
#ifdef _DEBUG |
117 |
// Reads scalar data (rank=0) from NetCDF file and stores the values |
cout << varName << ":\t" << numSamples << " samples, " |
118 |
// after averaging. |
<< ptsPerSample << " pts/s, rank: " << rank << endl; |
119 |
// |
#endif |
|
void DataVar::readRank0Data(NcFile* ncfile) |
|
|
{ |
|
|
shape.clear(); |
|
|
float* tempData = new float[ptsPerSample*numSamples]; |
|
|
NcVar* var = ncfile->get_var("data"); |
|
|
var->get(tempData, ptsPerSample, numSamples); |
|
120 |
|
|
121 |
float* c = averageData(tempData, 1); |
NodeData_ptr nodes = finleyMesh->getMeshForFinleyFS(funcSpace); |
122 |
rawData.push_back(c); |
if (nodes == NULL) |
123 |
|
return false; |
124 |
|
|
125 |
delete[] tempData; |
meshName = nodes->getName(); |
126 |
} |
siloMeshName = nodes->getFullSiloName(); |
127 |
|
initialized = true; |
128 |
|
|
129 |
// |
// no samples? Nothing more to do. |
130 |
// Reads vector data (rank=1) from NetCDF file and stores the components |
if (numSamples == 0) |
131 |
// separately after averaging. |
return true; |
132 |
// |
|
133 |
void DataVar::readRank1Data(NcFile* ncfile) |
const int* iPtr = escriptData.getFunctionSpace().borrowSampleReferenceIDs(); |
134 |
{ |
sampleID.insert(sampleID.end(), numSamples, 0); |
135 |
shape.clear(); |
copy(iPtr, iPtr+numSamples, sampleID.begin()); |
136 |
NcDim* dim = ncfile->get_dim("d0"); |
|
137 |
shape.push_back(dim->size()); |
size_t dimSize = 1; |
138 |
|
if (rank > 0) |
139 |
|
dimSize *= shape[0]; |
140 |
|
if (rank > 1) |
141 |
|
dimSize *= shape[1]; |
142 |
|
if (rank > 2) { |
143 |
|
cerr << "WARNING: Rank " << rank << " data is not supported!\n"; |
144 |
|
initialized = false; |
145 |
|
} |
146 |
|
|
147 |
|
if (initialized) { |
148 |
|
size_t dataSize = dimSize * ptsPerSample; |
149 |
|
float* tempData = new float[dataSize*numSamples]; |
150 |
|
float* destPtr = tempData; |
151 |
|
for (int sampleNo=0; sampleNo<numSamples; sampleNo++) { |
152 |
|
const escript::DataAbstract::ValueType::value_type* values = |
153 |
|
escriptData.getSampleDataRO(sampleNo); |
154 |
|
copy(values, values+dataSize, destPtr); |
155 |
|
destPtr += dataSize; |
156 |
|
} |
157 |
|
|
158 |
float* tempData = new float[shape[0]*ptsPerSample*numSamples]; |
const float* srcPtr = tempData; |
159 |
NcVar* var = ncfile->get_var("data"); |
for (int i=0; i < dimSize; i++, srcPtr++) { |
160 |
var->get(tempData, shape[0], ptsPerSample, numSamples); |
float* c = averageData(srcPtr, dimSize); |
161 |
|
dataArray.push_back(c); |
162 |
|
} |
163 |
|
delete[] tempData; |
164 |
|
|
165 |
for (int i=0; i<shape[0]; i++) { |
initialized = reorderSamples(); |
|
const float* src = tempData; |
|
|
src+=i; |
|
|
float* c = averageData(src, shape[0]); |
|
|
rawData.push_back(c); |
|
166 |
} |
} |
167 |
delete[] tempData; |
|
168 |
|
return initialized; |
169 |
|
|
170 |
|
#else // VISIT_PLUGIN |
171 |
|
return false; |
172 |
|
#endif |
173 |
} |
} |
174 |
|
|
175 |
// |
// |
176 |
// Like readRank1Data() but for tensor data (rank=2). |
// Initialise with mesh data |
177 |
// |
// |
178 |
void DataVar::readRank2Data(NcFile* ncfile) |
bool DataVar::initFromMesh(FinleyMesh_ptr mesh) |
179 |
{ |
{ |
180 |
shape.clear(); |
cleanup(); |
181 |
NcDim* dim = ncfile->get_dim("d0"); |
|
182 |
shape.push_back(dim->size()); |
finleyMesh = mesh; |
183 |
dim = ncfile->get_dim("d1"); |
rank = 0; |
184 |
shape.push_back(dim->size()); |
ptsPerSample = 1; |
185 |
|
NodeData_ptr nodes; |
186 |
float* tempData = new float[shape[0]*shape[1]*ptsPerSample*numSamples]; |
|
187 |
NcVar* var = ncfile->get_var("data"); |
if (varName.find("ContactElements_") != varName.npos) { |
188 |
var->get(tempData, shape[0], shape[1], ptsPerSample, numSamples); |
funcSpace = FINLEY_CONTACT_ELEMENTS_1; |
189 |
|
centering = ZONE_CENTERED; |
190 |
for (int i=0; i<shape[1]; i++) { |
string elementName = varName.substr(0, varName.find('_')); |
191 |
for (int j=0; j<shape[0]; j++) { |
ElementData_ptr elements = mesh->getElementsByName(elementName); |
192 |
const float* src = tempData; |
nodes = elements->getNodeMesh(); |
193 |
src+=i*shape[0]+j; |
sampleID = elements->getIDs(); |
194 |
float* c = averageData(src, shape[0]*shape[1]); |
} else if (varName.find("FaceElements_") != varName.npos) { |
195 |
rawData.push_back(c); |
funcSpace = FINLEY_FACE_ELEMENTS; |
196 |
} |
centering = ZONE_CENTERED; |
197 |
|
string elementName = varName.substr(0, varName.find('_')); |
198 |
|
ElementData_ptr elements = mesh->getElementsByName(elementName); |
199 |
|
nodes = elements->getNodeMesh(); |
200 |
|
sampleID = elements->getIDs(); |
201 |
|
} else if (varName.find("Elements_") != varName.npos) { |
202 |
|
funcSpace = FINLEY_ELEMENTS; |
203 |
|
centering = ZONE_CENTERED; |
204 |
|
string elementName = varName.substr(0, varName.find('_')); |
205 |
|
ElementData_ptr elements = mesh->getElementsByName(elementName); |
206 |
|
nodes = elements->getNodeMesh(); |
207 |
|
sampleID = elements->getIDs(); |
208 |
|
} else if (varName.find("Nodes_") != varName.npos) { |
209 |
|
funcSpace = FINLEY_NODES; |
210 |
|
centering = NODE_CENTERED; |
211 |
|
nodes = mesh->getNodes(); |
212 |
|
sampleID = nodes->getNodeIDs(); |
213 |
|
} else { |
214 |
|
cerr << "WARNING: Unrecognized mesh variable '" << varName << "'\n"; |
215 |
|
return false; |
216 |
} |
} |
217 |
delete[] tempData; |
|
218 |
|
meshName = nodes->getName(); |
219 |
|
siloMeshName = nodes->getFullSiloName(); |
220 |
|
|
221 |
|
const IntVec& data = mesh->getVarDataByName(varName); |
222 |
|
numSamples = data.size(); |
223 |
|
|
224 |
|
if (numSamples > 0) { |
225 |
|
float* c = new float[numSamples]; |
226 |
|
dataArray.push_back(c); |
227 |
|
IntVec::const_iterator it; |
228 |
|
for (it=data.begin(); it != data.end(); it++) |
229 |
|
*c++ = static_cast<float>(*it); |
230 |
|
} |
231 |
|
initialized = true; |
232 |
|
|
233 |
|
return initialized; |
234 |
} |
} |
235 |
|
|
236 |
// |
// |
237 |
// Reads a NetCDF file in escript/finley format. |
// Reads variable data from NetCDF file |
238 |
// |
// |
239 |
bool DataVar::readFromNc(const string& filename) |
bool DataVar::initFromNetCDF(const string& filename, FinleyMesh_ptr mesh) |
240 |
{ |
{ |
241 |
|
cleanup(); |
242 |
|
|
243 |
|
#if USE_NETCDF |
244 |
NcError ncerr(NcError::silent_nonfatal); |
NcError ncerr(NcError::silent_nonfatal); |
245 |
NcFile* input = new NcFile(filename.c_str()); |
NcFile* input = new NcFile(filename.c_str()); |
246 |
if (!input->is_valid()) { |
if (!input->is_valid()) { |
252 |
NcDim* dim; |
NcDim* dim; |
253 |
NcAtt* att; |
NcAtt* att; |
254 |
|
|
|
dim = input->get_dim("num_samples"); |
|
|
numSamples = dim->size(); |
|
|
|
|
|
// if there are no data samples bail out |
|
|
if (numSamples == 0) { |
|
|
delete input; |
|
|
return false; |
|
|
} |
|
|
|
|
255 |
att = input->get_att("type_id"); |
att = input->get_att("type_id"); |
256 |
int typeID = att->as_int(0); |
int typeID = att->as_int(0); |
257 |
if (typeID != 2) { |
if (typeID != 2) { |
258 |
cerr << "WARNING: Only expanded data supported at the moment!" << endl; |
cerr << "WARNING: Only expanded data supported!" << endl; |
259 |
delete input; |
delete input; |
260 |
return false; |
return false; |
261 |
} |
} |
269 |
att = input->get_att("function_space_type"); |
att = input->get_att("function_space_type"); |
270 |
funcSpace = att->as_int(0); |
funcSpace = att->as_int(0); |
271 |
|
|
272 |
|
if (funcSpace == FINLEY_REDUCED_NODES || funcSpace == FINLEY_NODES) { |
273 |
|
centering = NODE_CENTERED; |
274 |
|
} else { |
275 |
|
centering = ZONE_CENTERED; |
276 |
|
} |
277 |
|
|
278 |
|
dim = input->get_dim("num_samples"); |
279 |
|
numSamples = dim->size(); |
280 |
|
|
281 |
#ifdef _DEBUG |
#ifdef _DEBUG |
282 |
cout << varName << ":\t" << numSamples << " samples, " |
cout << varName << ":\t" << numSamples << " samples, " |
283 |
<< ptsPerSample << " pts/s, rank: " << rank << endl; |
<< ptsPerSample << " pts/s, rank: " << rank << endl; |
284 |
#endif |
#endif |
285 |
|
|
286 |
sampleID.clear(); |
finleyMesh = mesh; |
287 |
sampleID.insert(sampleID.end(), numSamples, 0); |
NodeData_ptr nodes = finleyMesh->getMeshForFinleyFS(funcSpace); |
288 |
NcVar* var = input->get_var("id"); |
if (nodes == NULL) { |
289 |
var->get(&sampleID[0], numSamples); |
delete input; |
290 |
|
return false; |
|
switch (rank) { |
|
|
case 0: |
|
|
readRank0Data(input); |
|
|
break; |
|
|
case 1: |
|
|
readRank1Data(input); |
|
|
break; |
|
|
case 2: |
|
|
readRank2Data(input); |
|
|
break; |
|
|
default: |
|
|
cerr << "WARNING: Rank " << rank << " data is not supported!\n"; |
|
|
delete input; |
|
|
return false; |
|
291 |
} |
} |
292 |
|
|
293 |
delete input; |
meshName = nodes->getName(); |
294 |
return true; |
siloMeshName = nodes->getFullSiloName(); |
295 |
} |
initialized = true; |
296 |
|
|
297 |
// |
size_t dimSize = 1; |
298 |
// Returns one of the mesh names provided by mainMesh that matches the |
vector<long> counts; |
299 |
// data variable's function space type and reduced/unreduced state. |
|
300 |
// |
if (rank > 0) { |
301 |
string DataVar::getMeshName(MeshWithElements* mainMesh) const |
dim = input->get_dim("d0"); |
302 |
{ |
int d = dim->size(); |
303 |
string name; |
shape.push_back(d); |
304 |
|
counts.push_back(d); |
305 |
switch (funcSpace) { |
dimSize *= d; |
306 |
case FINLEY_REDUCED_NODES: |
} |
307 |
case FINLEY_REDUCED_DEGREES_OF_FREEDOM: |
if (rank > 1) { |
308 |
case FINLEY_REDUCED_ELEMENTS: |
dim = input->get_dim("d1"); |
309 |
case FINLEY_ELEMENTS: |
int d = dim->size(); |
310 |
if (mainMesh->getElements()->reducedCount > 0) { |
shape.push_back(d); |
311 |
name = mainMesh->getElements()->reducedMesh->getName(); |
counts.push_back(d); |
312 |
} else { |
dimSize *= d; |
313 |
name = mainMesh->getElements()->fullMesh->getName(); |
} |
314 |
} |
if (rank > 2) { |
315 |
break; |
cerr << "WARNING: Rank " << rank << " data is not supported!\n"; |
316 |
|
initialized = false; |
317 |
|
} |
318 |
|
|
319 |
|
if (initialized && numSamples > 0) { |
320 |
|
sampleID.insert(sampleID.end(), numSamples, 0); |
321 |
|
NcVar* var = input->get_var("id"); |
322 |
|
var->get(&sampleID[0], numSamples); |
323 |
|
|
324 |
|
size_t dataSize = dimSize*numSamples*ptsPerSample; |
325 |
|
counts.push_back(ptsPerSample); |
326 |
|
counts.push_back(numSamples); |
327 |
|
float* tempData = new float[dataSize]; |
328 |
|
var = input->get_var("data"); |
329 |
|
var->get(tempData, &counts[0]); |
330 |
|
|
331 |
|
const float* srcPtr = tempData; |
332 |
|
for (int i=0; i < dimSize; i++, srcPtr++) { |
333 |
|
float* c = averageData(srcPtr, dimSize); |
334 |
|
dataArray.push_back(c); |
335 |
|
} |
336 |
|
delete[] tempData; |
337 |
|
|
338 |
case FINLEY_REDUCED_FACE_ELEMENTS: |
initialized = reorderSamples(); |
339 |
case FINLEY_FACE_ELEMENTS: |
} |
|
if (mainMesh->getFaceElements()->reducedCount > 0) { |
|
|
name = mainMesh->getFaceElements()->reducedMesh->getName(); |
|
|
} else { |
|
|
name = mainMesh->getFaceElements()->fullMesh->getName(); |
|
|
} |
|
|
break; |
|
340 |
|
|
341 |
case FINLEY_REDUCED_CONTACT_ELEMENTS_1: |
delete input; |
342 |
case FINLEY_REDUCED_CONTACT_ELEMENTS_2: |
#endif // USE_NETCDF |
|
case FINLEY_CONTACT_ELEMENTS_1: |
|
|
case FINLEY_CONTACT_ELEMENTS_2: |
|
|
if (mainMesh->getContactElements()->reducedCount > 0) { |
|
|
name = mainMesh->getContactElements()->reducedMesh->getName(); |
|
|
} else { |
|
|
name = mainMesh->getContactElements()->fullMesh->getName(); |
|
|
} |
|
|
break; |
|
343 |
|
|
344 |
case FINLEY_NODES: |
return initialized; |
|
case FINLEY_DEGREES_OF_FREEDOM: |
|
|
name = mainMesh->getElements()->fullMesh->getName(); |
|
|
break; |
|
|
|
|
|
case FINLEY_POINTS: |
|
|
name = mainMesh->getPoints()->fullMesh->getName(); |
|
|
break; |
|
|
} |
|
|
return name; |
|
345 |
} |
} |
346 |
|
|
347 |
// |
// |
349 |
// |
// |
350 |
bool DataVar::isNodeCentered() const |
bool DataVar::isNodeCentered() const |
351 |
{ |
{ |
352 |
return (funcSpace == FINLEY_REDUCED_NODES || |
return (centering == NODE_CENTERED); |
|
funcSpace == FINLEY_REDUCED_DEGREES_OF_FREEDOM || |
|
|
funcSpace == FINLEY_NODES || |
|
|
funcSpace == FINLEY_DEGREES_OF_FREEDOM || |
|
|
funcSpace == FINLEY_POINTS); |
|
353 |
} |
} |
354 |
|
|
355 |
// |
// |
356 |
// Filters and reorders the raw sample values according to the IDs provided |
// Returns a subset of the src array according to stride parameter. |
357 |
// in 'requiredIDs'. This is used to have data arrays ordered according to |
// If samples consist of multiple values they are averaged beforehand. |
358 |
// the underlying mesh (i.e. DataID[i]==MeshNodeID[i]) |
// Used to separate (x0,y0,z0,x1,y1,z1,...) into (x0,x1,...), (y0,y1,...) and |
359 |
|
// (z0,z1,...) |
360 |
// |
// |
361 |
void DataVar::reorderSamples(const IndexMap& id2idxMap, |
float* DataVar::averageData(const float* src, size_t stride) |
|
const IntVec& requiredIDs) |
|
362 |
{ |
{ |
363 |
CoordArray::iterator it; |
float* res; |
|
for (it = reorderedData.begin(); it != reorderedData.end(); it++) |
|
|
delete[] *it; |
|
|
reorderedData.clear(); |
|
364 |
|
|
365 |
buildIndexMap(); |
if (ptsPerSample == 1) { |
366 |
for (size_t i=0; i < rawData.size(); i++) { |
res = new float[numSamples]; |
367 |
float* c = new float[reorderedNumSamples]; |
float* dest = res; |
368 |
reorderedData.push_back(c); |
for (int i=0; i<numSamples; i++, src+=stride) |
369 |
const float* src = rawData[i]; |
*dest++ = *src; |
370 |
IntVec::const_iterator idIt = requiredIDs.begin(); |
} else { |
371 |
for (; idIt != requiredIDs.end(); idIt++) { |
ElementData_ptr cells = finleyMesh->getElementsForFinleyFS(funcSpace); |
372 |
size_t srcIdx = sampleID2idx.find(*idIt)->second; |
int cellFactor = cells->getElementFactor(); |
373 |
size_t destIdx = id2idxMap.find(*idIt)->second; |
res = new float[cellFactor * numSamples]; |
374 |
c[destIdx] = src[srcIdx]; |
float* dest = res; |
375 |
|
QuadMaskInfo qmi = cells->getQuadMask(funcSpace); |
376 |
|
if (qmi.mask.size() > 0) { |
377 |
|
const float* tmpSrc = src; |
378 |
|
for (int i=0; i<numSamples; i++, tmpSrc+=stride*ptsPerSample) { |
379 |
|
for (int l=0; l<cellFactor; l++) { |
380 |
|
double tmpVal = 0.0; |
381 |
|
for (int j=0; j<ptsPerSample; j++) { |
382 |
|
if (qmi.mask[l][j] != 0) { |
383 |
|
tmpVal += *(tmpSrc+stride*j); |
384 |
|
} |
385 |
|
} |
386 |
|
*dest++ = (float)(tmpVal / qmi.factor[l]); |
387 |
|
} |
388 |
|
} |
389 |
|
} else { |
390 |
|
for (int i=0; i<numSamples; i++) { |
391 |
|
double tmpVal = 0.0; |
392 |
|
for (int j=0; j<ptsPerSample; j++, src+=stride) { |
393 |
|
tmpVal += *src; |
394 |
|
} |
395 |
|
tmpVal /= ptsPerSample; |
396 |
|
for (int l=0; l<cellFactor; l++) { |
397 |
|
*dest++ = static_cast<float>(tmpVal); |
398 |
|
} |
399 |
|
} |
400 |
} |
} |
401 |
} |
} |
402 |
|
return res; |
403 |
} |
} |
404 |
|
|
405 |
// |
// |
406 |
// For zonal data this method reorders the values according to the indices |
// Filters and reorders the raw sample values according to the node/element |
407 |
// given in reorderArray. This is used to move ghost zones to the end of |
// IDs. This is used to have data arrays ordered according to the underlying |
408 |
// the arrays which conforms to Silo's expected format. |
// mesh (i.e. DataID[i]==MeshNodeID[i]) |
|
// Nodal data is not changed by this method. |
|
|
// |
|
|
void DataVar::handleGhostZones(const IntVec& reorderArray) |
|
|
{ |
|
|
if (centering == NODE_CENTERED) |
|
|
return; |
|
|
|
|
|
vector<float*>::iterator it; |
|
|
for (it = reorderedData.begin(); it!=reorderedData.end(); it++) { |
|
|
float* original = *it; |
|
|
float* reordered = new float[reorderedNumSamples]; |
|
|
float* arrIt = reordered; |
|
|
IntVec::const_iterator idxIt; |
|
|
for (idxIt=reorderArray.begin(); idxIt!=reorderArray.end(); idxIt++) |
|
|
*arrIt++ = original[*idxIt]; |
|
|
|
|
|
delete[] *it; |
|
|
*it = reordered; |
|
|
} |
|
|
} |
|
|
|
|
|
// |
|
|
// Makes the top-level mesh known to this data variable. The mesh is used |
|
|
// to reorder and filter the samples and inquire the number of ghost zones. |
|
409 |
// |
// |
410 |
bool DataVar::setMesh(MeshWithElements* mesh) |
bool DataVar::reorderSamples() |
411 |
{ |
{ |
412 |
if (fullMesh == mesh) |
if (numSamples == 0) |
413 |
return true; |
return true; |
414 |
|
|
415 |
const IndexMap* id2idxMap; |
const IntVec* requiredIDs = NULL; |
416 |
const IntVec* reqIDs; |
int requiredNumSamples = 0; |
417 |
const IntVec* reorderArray = NULL; |
int cellFactor = 1; |
418 |
|
|
419 |
switch (funcSpace) { |
if (centering == NODE_CENTERED) { |
420 |
case FINLEY_REDUCED_NODES: |
NodeData_ptr nodes = finleyMesh->getMeshForFinleyFS(funcSpace); |
421 |
case FINLEY_REDUCED_DEGREES_OF_FREEDOM: |
requiredIDs = &nodes->getNodeIDs(); |
422 |
{ |
requiredNumSamples = nodes->getNumNodes(); |
423 |
centering = NODE_CENTERED; |
} else { |
424 |
ElementData* cells = mesh->getElements(); |
ElementData_ptr cells = finleyMesh->getElementsForFinleyFS(funcSpace); |
425 |
if (cells->reducedCount > 0) { |
if (cells == NULL) |
426 |
if (cells->getReducedGhostCount()) |
return false; |
|
reorderArray = &cells->reducedIndexArray; |
|
|
siloMeshName = cells->reducedMesh->getFullSiloName(); |
|
|
id2idxMap = &cells->reducedMesh->getIndexMap(); |
|
|
reqIDs = &cells->reducedMesh->getNodeIDs(); |
|
|
reorderedNumSamples = cells->reducedMesh->getNumNodes(); |
|
|
} else { |
|
|
if (cells->getGhostCount()) |
|
|
reorderArray = &cells->indexArray; |
|
|
siloMeshName = cells->fullMesh->getFullSiloName(); |
|
|
id2idxMap = &cells->fullMesh->getIndexMap(); |
|
|
reqIDs = &cells->fullMesh->getNodeIDs(); |
|
|
reorderedNumSamples = cells->fullMesh->getNumNodes(); |
|
|
} |
|
|
} |
|
|
break; |
|
427 |
|
|
428 |
case FINLEY_NODES: |
requiredIDs = &cells->getIDs(); |
429 |
case FINLEY_DEGREES_OF_FREEDOM: |
requiredNumSamples = cells->getNumElements(); |
430 |
{ |
cellFactor = cells->getElementFactor(); |
431 |
centering = NODE_CENTERED; |
if (cellFactor > 1) { |
432 |
ElementData* cells = mesh->getElements(); |
numSamples *= cellFactor; |
433 |
if (cells->getGhostCount()) |
// update sample IDs |
434 |
reorderArray = &cells->indexArray; |
IntVec newSampleID(numSamples); |
435 |
siloMeshName = cells->fullMesh->getFullSiloName(); |
IntVec::const_iterator idIt = sampleID.begin(); |
436 |
id2idxMap = &cells->fullMesh->getIndexMap(); |
IntVec::iterator newIDit = newSampleID.begin(); |
437 |
reqIDs = &cells->fullMesh->getNodeIDs(); |
for (; idIt != sampleID.end(); idIt++, newIDit+=cellFactor) { |
438 |
reorderedNumSamples = cells->fullMesh->getNumNodes(); |
fill(newIDit, newIDit+cellFactor, *idIt); |
439 |
} |
} |
440 |
break; |
sampleID.swap(newSampleID); |
441 |
|
} |
442 |
|
} |
443 |
|
|
444 |
case FINLEY_REDUCED_ELEMENTS: |
if (requiredNumSamples > numSamples) { |
445 |
case FINLEY_ELEMENTS: |
cerr << "ERROR: " << varName << " has " << numSamples |
446 |
{ |
<< " instead of " << requiredNumSamples << " samples!" << endl; |
447 |
centering = ZONE_CENTERED; |
return false; |
448 |
ElementData* cells = mesh->getElements(); |
} |
|
id2idxMap = &cells->ID2idx; |
|
|
reqIDs = &cells->getIDs(); |
|
|
if (cells->reducedCount > 0) { |
|
|
if (cells->getReducedGhostCount()) |
|
|
reorderArray = &cells->reducedIndexArray; |
|
|
reorderedNumSamples = cells->reducedCount; |
|
|
siloMeshName = cells->reducedMesh->getFullSiloName(); |
|
|
} else { |
|
|
if (cells->getGhostCount()) |
|
|
reorderArray = &cells->indexArray; |
|
|
reorderedNumSamples = cells->count; |
|
|
siloMeshName = cells->fullMesh->getFullSiloName(); |
|
|
} |
|
|
} |
|
|
break; |
|
449 |
|
|
450 |
case FINLEY_REDUCED_FACE_ELEMENTS: |
IndexMap sampleID2idx = buildIndexMap(); |
451 |
case FINLEY_FACE_ELEMENTS: |
numSamples = requiredNumSamples; |
|
{ |
|
|
centering = ZONE_CENTERED; |
|
|
ElementData* cells = mesh->getFaceElements(); |
|
|
id2idxMap = &cells->ID2idx; |
|
|
reqIDs = &cells->getIDs(); |
|
|
if (cells->reducedCount > 0) { |
|
|
if (cells->getReducedGhostCount()) |
|
|
reorderArray = &cells->reducedIndexArray; |
|
|
reorderedNumSamples = cells->reducedCount; |
|
|
siloMeshName = cells->reducedMesh->getFullSiloName(); |
|
|
} else { |
|
|
if (cells->getGhostCount()) |
|
|
reorderArray = &cells->indexArray; |
|
|
reorderedNumSamples = cells->count; |
|
|
siloMeshName = cells->fullMesh->getFullSiloName(); |
|
|
} |
|
|
} |
|
|
break; |
|
452 |
|
|
453 |
case FINLEY_REDUCED_CONTACT_ELEMENTS_1: |
// now filter the data |
454 |
case FINLEY_REDUCED_CONTACT_ELEMENTS_2: |
for (size_t i=0; i < dataArray.size(); i++) { |
455 |
case FINLEY_CONTACT_ELEMENTS_1: |
float* c = new float[numSamples]; |
456 |
case FINLEY_CONTACT_ELEMENTS_2: |
const float* src = dataArray[i]; |
457 |
{ |
IntVec::const_iterator idIt = requiredIDs->begin(); |
458 |
centering = ZONE_CENTERED; |
size_t destIdx = 0; |
459 |
ElementData* cells = mesh->getContactElements(); |
for (; idIt != requiredIDs->end(); idIt+=cellFactor, destIdx+=cellFactor) { |
460 |
id2idxMap = &cells->ID2idx; |
size_t srcIdx = sampleID2idx.find(*idIt)->second; |
461 |
reqIDs = &cells->getIDs(); |
copy(&src[srcIdx], &src[srcIdx+cellFactor], &c[destIdx]); |
462 |
if (cells->reducedCount > 0) { |
} |
463 |
if (cells->getReducedGhostCount()) |
delete[] dataArray[i]; |
464 |
reorderArray = &cells->reducedIndexArray; |
dataArray[i] = c; |
465 |
reorderedNumSamples = cells->reducedCount; |
} |
|
siloMeshName = cells->reducedMesh->getFullSiloName(); |
|
|
} else { |
|
|
if (cells->getGhostCount()) |
|
|
reorderArray = &cells->indexArray; |
|
|
reorderedNumSamples = cells->count; |
|
|
siloMeshName = cells->fullMesh->getFullSiloName(); |
|
|
} |
|
|
} |
|
|
break; |
|
466 |
|
|
467 |
case FINLEY_POINTS: |
// sample IDs now = mesh node/element IDs |
468 |
{ |
sampleID = *requiredIDs; |
|
centering = NODE_CENTERED; |
|
|
ElementData* cells = mesh->getPoints(); |
|
|
if (cells->getGhostCount()) |
|
|
reorderArray = &cells->indexArray; |
|
|
siloMeshName = cells->fullMesh->getFullSiloName(); |
|
|
id2idxMap = &cells->ID2idx; |
|
|
reqIDs = &cells->getIDs(); |
|
|
reorderedNumSamples = cells->count; |
|
|
} |
|
|
break; |
|
469 |
|
|
470 |
default: |
return true; |
471 |
cerr << "Unknown function space type " << funcSpace << "!\n"; |
} |
|
return false; |
|
|
} |
|
472 |
|
|
473 |
if (reorderedNumSamples > numSamples) { |
// |
474 |
cerr << "WARNING: " << varName << " has " << numSamples |
// |
475 |
<< " instead of " << reorderedNumSamples << " samples!" << endl; |
// |
476 |
return false; |
void DataVar::sampleToStream(ostream& os, int index) |
477 |
|
{ |
478 |
|
if (rank == 0) { |
479 |
|
os << dataArray[0][index]; |
480 |
|
} else if (rank == 1) { |
481 |
|
if (shape[0] < 3) |
482 |
|
os << dataArray[0][index] << " " << dataArray[1][index] |
483 |
|
<< " " << 0.; |
484 |
|
else |
485 |
|
os << dataArray[0][index] << " " << dataArray[1][index] |
486 |
|
<< " " << dataArray[2][index]; |
487 |
|
} else if (rank == 2) { |
488 |
|
if (shape[1] < 3) { |
489 |
|
os << dataArray[0][index] << " " << dataArray[1][index] |
490 |
|
<< " " << 0. << " "; |
491 |
|
os << dataArray[2][index] << " " << dataArray[3][index] |
492 |
|
<< " " << 0. << " "; |
493 |
|
os << 0. << " " << 0. << " " << 0.; |
494 |
|
} else { |
495 |
|
os << dataArray[0][index] << " " << dataArray[1][index] |
496 |
|
<< " " << dataArray[2][index] << " "; |
497 |
|
os << dataArray[3][index] << " " << dataArray[4][index] |
498 |
|
<< " " << dataArray[5][index] << " "; |
499 |
|
os << dataArray[6][index] << " " << dataArray[7][index] |
500 |
|
<< " " << dataArray[8][index]; |
501 |
|
} |
502 |
} |
} |
503 |
|
os << endl; |
504 |
|
} |
505 |
|
|
506 |
fullMesh = mesh; |
// |
507 |
|
// |
508 |
|
// |
509 |
|
void DataVar::writeToVTK(ostream& os, int ownIndex) |
510 |
|
{ |
511 |
|
if (numSamples == 0) |
512 |
|
return; |
513 |
|
|
514 |
reorderSamples(*id2idxMap, *reqIDs); |
if (isNodeCentered()) { |
515 |
if (reorderArray) |
// data was reordered in reorderSamples() but for VTK we write the |
516 |
handleGhostZones(*reorderArray); |
// original node mesh and thus need the original ordering... |
517 |
return true; |
const IntVec& requiredIDs = finleyMesh->getNodes()->getNodeIDs(); |
518 |
|
const IntVec& nodeGNI = finleyMesh->getNodes()->getGlobalNodeIndices(); |
519 |
|
const IntVec& nodeDist = finleyMesh->getNodes()->getNodeDistribution(); |
520 |
|
int firstId = nodeDist[ownIndex]; |
521 |
|
int lastId = nodeDist[ownIndex+1]; |
522 |
|
IndexMap sampleID2idx = buildIndexMap(); |
523 |
|
for (int i=0; i<nodeGNI.size(); i++) { |
524 |
|
if (firstId <= nodeGNI[i] && nodeGNI[i] < lastId) { |
525 |
|
int idx = sampleID2idx[requiredIDs[i]]; |
526 |
|
sampleToStream(os, idx); |
527 |
|
} |
528 |
|
} |
529 |
|
} else { |
530 |
|
// cell data: ghost cells have been removed so do not write ghost |
531 |
|
// samples (which are the last elements in the arrays) |
532 |
|
int toWrite = |
533 |
|
finleyMesh->getElementsByName(meshName)->getNumElements(); |
534 |
|
for (int i=0; i<toWrite; i++) { |
535 |
|
sampleToStream(os, i); |
536 |
|
} |
537 |
|
} |
538 |
} |
} |
539 |
|
|
540 |
/////////////////////////////// |
/////////////////////////////// |
549 |
// |
// |
550 |
string DataVar::getTensorDef() const |
string DataVar::getTensorDef() const |
551 |
{ |
{ |
552 |
if (rank < 2) |
if (rank < 2 || !initialized) |
553 |
return string(); |
return string(); |
554 |
|
|
555 |
/// Format string for Silo 2x2 tensor |
/// Format string for Silo 2x2 tensor |
592 |
// |
// |
593 |
bool DataVar::writeToSilo(DBfile* dbfile, const string& siloPath) |
bool DataVar::writeToSilo(DBfile* dbfile, const string& siloPath) |
594 |
{ |
{ |
595 |
#if HAVE_SILO |
#if USE_SILO |
596 |
|
if (!initialized) |
597 |
|
return false; |
598 |
|
|
599 |
if (numSamples == 0) |
if (numSamples == 0) |
600 |
return true; |
return true; |
601 |
|
|
|
// have to set mesh first |
|
|
if (!fullMesh) |
|
|
return false; |
|
|
|
|
602 |
int ret; |
int ret; |
603 |
|
|
604 |
if (siloPath != "") { |
if (siloPath != "") { |
606 |
if (ret != 0) |
if (ret != 0) |
607 |
return false; |
return false; |
608 |
} |
} |
609 |
|
|
610 |
char* meshName = (char*)siloMeshName.c_str(); |
char* siloMesh = const_cast<char*>(siloMeshName.c_str()); |
611 |
int dcenter = (centering == NODE_CENTERED ? DB_NODECENT : DB_ZONECENT); |
int dcenter = (centering == NODE_CENTERED ? DB_NODECENT : DB_ZONECENT); |
612 |
|
|
613 |
if (rank == 0) { |
if (rank == 0) { |
614 |
ret = DBPutUcdvar1(dbfile, varName.c_str(), meshName, reorderedData[0], |
ret = DBPutUcdvar1(dbfile, varName.c_str(), siloMesh, dataArray[0], |
615 |
reorderedNumSamples, NULL, 0, DB_FLOAT, dcenter, NULL); |
numSamples, NULL, 0, DB_FLOAT, dcenter, NULL); |
616 |
} |
} |
617 |
else if (rank == 1) { |
else if (rank == 1) { |
618 |
const string comps[3] = { |
const string comps[3] = { |
622 |
comps[0].c_str(), comps[1].c_str(), comps[2].c_str() |
comps[0].c_str(), comps[1].c_str(), comps[2].c_str() |
623 |
}; |
}; |
624 |
|
|
625 |
ret = DBPutUcdvar(dbfile, varName.c_str(), meshName, shape[0], |
ret = DBPutUcdvar(dbfile, varName.c_str(), siloMesh, shape[0], |
626 |
(char**)varnames, &reorderedData[0], reorderedNumSamples, NULL, |
(char**)varnames, &dataArray[0], numSamples, NULL, |
627 |
0, DB_FLOAT, dcenter, NULL); |
0, DB_FLOAT, dcenter, NULL); |
628 |
} |
} |
629 |
else { |
else { |
638 |
for (int j=0; j<shape[0]; j++) { |
for (int j=0; j<shape[0]; j++) { |
639 |
ostringstream varname; |
ostringstream varname; |
640 |
varname << tensorDir << "a_" << i << j; |
varname << tensorDir << "a_" << i << j; |
641 |
ret = DBPutUcdvar1(dbfile, varname.str().c_str(), meshName, |
ret = DBPutUcdvar1(dbfile, varname.str().c_str(), siloMesh, |
642 |
reorderedData[i*shape[0]+j], reorderedNumSamples, |
dataArray[i*shape[0]+j], numSamples, |
643 |
NULL, 0, DB_FLOAT, dcenter, optList); |
NULL, 0, DB_FLOAT, dcenter, optList); |
644 |
if (ret != 0) break; |
if (ret != 0) break; |
645 |
} |
} |
652 |
DBSetDir(dbfile, "/"); |
DBSetDir(dbfile, "/"); |
653 |
return (ret == 0); |
return (ret == 0); |
654 |
|
|
655 |
#else // !HAVE_SILO |
#else // !USE_SILO |
656 |
return false; |
return false; |
657 |
#endif |
#endif |
658 |
} |
} |
659 |
|
|
660 |
} // namespace EscriptReader |
} // namespace escriptexport |
661 |
|
|