1 |
# -*- coding: utf-8 -*- |
2 |
|
3 |
######################################################## |
4 |
# |
5 |
# Copyright (c) 2003-2010 by University of Queensland |
6 |
# Earth Systems Science Computational Center (ESSCC) |
7 |
# http://www.uq.edu.au/esscc |
8 |
# |
9 |
# Primary Business: Queensland, Australia |
10 |
# Licensed under the Open Software License version 3.0 |
11 |
# http://www.opensource.org/licenses/osl-3.0.php |
12 |
# |
13 |
######################################################## |
14 |
|
15 |
__copyright__="""Copyright (c) 2003-2010 by University of Queensland |
16 |
Earth Systems Science Computational Center (ESSCC) |
17 |
http://www.uq.edu.au/esscc |
18 |
Primary Business: Queensland, Australia""" |
19 |
__license__="""Licensed under the Open Software License version 3.0 |
20 |
http://www.opensource.org/licenses/osl-3.0.php""" |
21 |
__url__="https://launchpad.net/escript-finley" |
22 |
|
23 |
""" |
24 |
Geometrical Primitives |
25 |
|
26 |
the concept is inspired by gmsh and very much focused on the fact that |
27 |
the classes are used to wrk with gmsh. |
28 |
|
29 |
:var __author__: name of author |
30 |
:var __copyright__: copyrights |
31 |
:var __license__: licence agreement |
32 |
:var __url__: url entry point on documentation |
33 |
:var __version__: version |
34 |
:var __date__: date of the version |
35 |
""" |
36 |
|
37 |
__author__="Lutz Gross, l.gross@uq.edu.au" |
38 |
|
39 |
try: |
40 |
import numpy |
41 |
numpyImported=True |
42 |
except: |
43 |
numpyImported=False |
44 |
|
45 |
import numpy |
46 |
from transformations import _TYPE, Translation, Dilation, Transformation, DEG |
47 |
import math |
48 |
|
49 |
|
50 |
def resetGlobalPrimitiveIdCounter(): |
51 |
""" |
52 |
Initializes the global primitive ID counter. |
53 |
""" |
54 |
global global_primitive_id_counter |
55 |
global_primitive_id_counter=1 |
56 |
|
57 |
def setToleranceForColocation(tol=1.e-11): |
58 |
""" |
59 |
Sets the global tolerance for colocation checks to ``tol``. |
60 |
""" |
61 |
global global_tolerance_for_colocation |
62 |
global_tolerance_for_colocation=tol |
63 |
|
64 |
def getToleranceForColocation(): |
65 |
""" |
66 |
Returns the global tolerance for colocation checks. |
67 |
""" |
68 |
return global_tolerance_for_colocation |
69 |
|
70 |
resetGlobalPrimitiveIdCounter() |
71 |
setToleranceForColocation() |
72 |
|
73 |
|
74 |
class PrimitiveBase(object): |
75 |
""" |
76 |
Template for a set of primitives. |
77 |
""" |
78 |
def __init__(self): |
79 |
""" |
80 |
Initializes the PrimitiveBase instance object. |
81 |
""" |
82 |
pass |
83 |
|
84 |
def __cmp__(self,other): |
85 |
""" |
86 |
Compares object with other by comparing the absolute value of the ID. |
87 |
""" |
88 |
if isinstance(other, PrimitiveBase): |
89 |
return cmp(self.getID(),other.getID()) |
90 |
else: |
91 |
return -1 |
92 |
|
93 |
def getConstructionPoints(self): |
94 |
""" |
95 |
Returns the points used to construct the primitive. |
96 |
""" |
97 |
out=[] |
98 |
for i in self.getPrimitives(): |
99 |
if isinstance(i,Point): out.append(i) |
100 |
return out |
101 |
|
102 |
def getPrimitives(self): |
103 |
""" |
104 |
Returns a list of primitives used to construct the primitive with no |
105 |
double entries. |
106 |
""" |
107 |
out=[] |
108 |
for p in self.collectPrimitiveBases(): |
109 |
if not p in out: out.append(p) |
110 |
return out |
111 |
|
112 |
def copy(self): |
113 |
""" |
114 |
Returns a deep copy of the object. |
115 |
""" |
116 |
return self.substitute({}) |
117 |
|
118 |
def modifyBy(self,transformation): |
119 |
""" |
120 |
Modifies the coordinates by applying a transformation. |
121 |
""" |
122 |
for p in self.getConstructionPoints(): p.modifyBy(transformation) |
123 |
|
124 |
def __add__(self,other): |
125 |
""" |
126 |
Returns a new object shifted by ``other``. |
127 |
""" |
128 |
return self.apply(Translation(numpy.array(other,_TYPE))) |
129 |
|
130 |
def __sub__(self,other): |
131 |
""" |
132 |
Returns a new object shifted by ``-other``. |
133 |
""" |
134 |
return self.apply(Translation(-numpy.array(other,_TYPE))) |
135 |
|
136 |
def __iadd__(self,other): |
137 |
""" |
138 |
Shifts the point inplace by ``other``. |
139 |
""" |
140 |
self.modifyBy(Translation(numpy.array(other,_TYPE))) |
141 |
return self |
142 |
|
143 |
def __isub__(self,other): |
144 |
""" |
145 |
Shifts the point inplace by ``-other``. |
146 |
""" |
147 |
self.modifyBy(Translation(-numpy.array(other,_TYPE))) |
148 |
return self |
149 |
|
150 |
def __imul__(self,other): |
151 |
""" |
152 |
Modifies object by applying `Transformation` ``other``. If ``other`` |
153 |
is not a `Transformation` it is first tried to be converted. |
154 |
""" |
155 |
if isinstance(other,int) or isinstance(other,float): |
156 |
trafo=Dilation(other) |
157 |
elif isinstance(other,numpy.ndarray): |
158 |
trafo=Translation(other) |
159 |
elif isinstance(other,Transformation): |
160 |
trafo=other |
161 |
else: |
162 |
raise TypeError, "cannot convert argument to a Transformation class object." |
163 |
self.modifyBy(trafo) |
164 |
return self |
165 |
|
166 |
def __rmul__(self,other): |
167 |
""" |
168 |
Applies `Transformation` ``other`` to object. If ``other`` is not a |
169 |
`Transformation` it is first tried to be converted. |
170 |
""" |
171 |
if isinstance(other,int) or isinstance(other,float): |
172 |
trafo=Dilation(other) |
173 |
elif isinstance(other,numpy.ndarray): |
174 |
trafo=Translation(other) |
175 |
elif isinstance(other,Transformation): |
176 |
trafo=other |
177 |
else: |
178 |
raise TypeError, "cannot convert argument to Transformation class object." |
179 |
return self.apply(trafo) |
180 |
|
181 |
|
182 |
def setLocalScale(self,factor=1.): |
183 |
""" |
184 |
Sets the local refinement factor. |
185 |
""" |
186 |
for p in self.getConstructionPoints(): p.setLocalScale(factor) |
187 |
|
188 |
def apply(self,transformation): |
189 |
""" |
190 |
Returns a new object by applying the transformation. |
191 |
""" |
192 |
out=self.copy() |
193 |
out.modifyBy(transformation) |
194 |
return out |
195 |
|
196 |
|
197 |
class Primitive(object): |
198 |
""" |
199 |
Class that represents a general primitive. |
200 |
""" |
201 |
def __init__(self): |
202 |
""" |
203 |
Initializes the Primitive instance object with a unique ID. |
204 |
""" |
205 |
global global_primitive_id_counter |
206 |
self.__ID=global_primitive_id_counter |
207 |
global_primitive_id_counter+=1 |
208 |
|
209 |
def getID(self): |
210 |
""" |
211 |
Returns the primitive ID. |
212 |
""" |
213 |
return self.__ID |
214 |
|
215 |
def getDirectedID(self): |
216 |
""" |
217 |
Returns the primitive ID where a negative sign means that reversed |
218 |
ordering is used. |
219 |
""" |
220 |
return self.getID() |
221 |
|
222 |
def __repr__(self): |
223 |
return "%s(%s)"%(self.__class__.__name__,self.getID()) |
224 |
|
225 |
def getUnderlyingPrimitive(self): |
226 |
""" |
227 |
Returns the underlying primitive. |
228 |
""" |
229 |
return self |
230 |
|
231 |
def hasSameOrientation(self,other): |
232 |
""" |
233 |
Returns True if ``other`` is the same primitive and has the same |
234 |
orientation, False otherwise. |
235 |
""" |
236 |
return self == other and isinstance(other,Primitive) |
237 |
|
238 |
def __neg__(self): |
239 |
""" |
240 |
Returns a view onto the curve with reversed ordering. |
241 |
|
242 |
:note: This method is overwritten by subclasses. |
243 |
""" |
244 |
raise NotImplementedError("__neg__ is not implemented.") |
245 |
|
246 |
def substitute(self,sub_dict): |
247 |
""" |
248 |
Returns a copy of self with substitutes for the primitives used to |
249 |
construct it given by the dictionary ``sub_dict``. If a substitute for |
250 |
the object is given by ``sub_dict`` the value is returned, otherwise a |
251 |
new instance with substituted arguments is returned. |
252 |
|
253 |
:note: This method is overwritten by subclasses. |
254 |
""" |
255 |
raise NotImplementedError("substitute is not implemented.") |
256 |
|
257 |
def collectPrimitiveBases(self): |
258 |
""" |
259 |
Returns a list of primitives used to construct the primitive. It may |
260 |
contain primitives twice. |
261 |
|
262 |
:note: This method is overwritten by subclasses. |
263 |
""" |
264 |
raise NotImplementedError("collectPrimitiveBases is not implemented.") |
265 |
|
266 |
def isColocated(self,primitive): |
267 |
""" |
268 |
Rreturns True if the two primitives are located at the same position. |
269 |
|
270 |
:note: This method is overwritten by subclasses. |
271 |
""" |
272 |
raise NotImplementedError("isColocated is not implemented.") |
273 |
def isReversed(self): |
274 |
""" |
275 |
returns True is the primitive is a reversed primitive. |
276 |
""" |
277 |
return False |
278 |
|
279 |
|
280 |
class ReversePrimitive(object): |
281 |
""" |
282 |
A view onto a primitive creating a reverse orientation. |
283 |
""" |
284 |
def __init__(self,primitive): |
285 |
""" |
286 |
Instantiates a view onto ``primitive``. |
287 |
""" |
288 |
if not isinstance(primitive, Primitive): |
289 |
raise ValueError("argument needs to be a Primitive class object.") |
290 |
self.__primitive=primitive |
291 |
|
292 |
def getID(self): |
293 |
""" |
294 |
Returns the primitive ID. |
295 |
""" |
296 |
return self.__primitive.getID() |
297 |
|
298 |
def getUnderlyingPrimitive(self): |
299 |
""" |
300 |
Returns the underlying primitive. |
301 |
""" |
302 |
return self.__primitive |
303 |
|
304 |
def hasSameOrientation(self,other): |
305 |
""" |
306 |
Returns True if ``other`` is the same primitive and has the same |
307 |
orientation as self. |
308 |
""" |
309 |
return self == other and isinstance(other, ReversePrimitive) |
310 |
|
311 |
def __repr__(self): |
312 |
return "-%s(%s)"%(self.__primitive.__class__.__name__,self.getID()) |
313 |
|
314 |
def getDirectedID(self): |
315 |
""" |
316 |
Returns the primitive ID where a negative signs means that reversed |
317 |
ordering is used. |
318 |
""" |
319 |
return -self.__primitive.getID() |
320 |
|
321 |
def substitute(self,sub_dict): |
322 |
""" |
323 |
Returns a copy of self with substitutes for the primitives used to |
324 |
construct it given by the dictionary ``sub_dict``. If a substitute for |
325 |
the object is given by ``sub_dict`` the value is returned, otherwise a |
326 |
new instance with substituted arguments is returned. |
327 |
""" |
328 |
if not sub_dict.has_key(self): |
329 |
sub_dict[self]=-self.getUnderlyingPrimitive().substitute(sub_dict) |
330 |
return sub_dict[self] |
331 |
|
332 |
def __neg__(self): |
333 |
""" |
334 |
Returns a view onto the curve with reversed ordering. |
335 |
""" |
336 |
return self.__primitive |
337 |
|
338 |
def collectPrimitiveBases(self): |
339 |
""" |
340 |
Returns a list of primitives used to construct the primitive. It may |
341 |
contain primitives twice. |
342 |
""" |
343 |
return self.__primitive.collectPrimitiveBases() |
344 |
|
345 |
def isColocated(self,primitive): |
346 |
""" |
347 |
Returns True if the two primitives are located at the same position. |
348 |
|
349 |
:note: This method is overwritten by subclasses. |
350 |
""" |
351 |
return self.__primitive.isColocated(primitive) |
352 |
|
353 |
def isReversed(self): |
354 |
""" |
355 |
returns True is the primitive is a reversed primitive. |
356 |
""" |
357 |
return True |
358 |
|
359 |
class Point(Primitive, PrimitiveBase): |
360 |
""" |
361 |
A three-dimensional point. |
362 |
""" |
363 |
def __init__(self,x=0.,y=0.,z=0.,local_scale=1.): |
364 |
""" |
365 |
Creates a point with coordinates ``x``, ``y``, ``z`` with the local |
366 |
refinement factor ``local_scale``. If ``x`` is a list or similar it needs to have |
367 |
length less or equal 3. In this case ``y`` and ``z`` are overwritten by |
368 |
``x[1]`` and ``x[2]``. |
369 |
""" |
370 |
PrimitiveBase.__init__(self) |
371 |
Primitive.__init__(self) |
372 |
try: |
373 |
l=len(x) |
374 |
if l>3: |
375 |
raise ValueError,"x has a lanegth bigger than 3." |
376 |
if l>1: |
377 |
y=x[1] |
378 |
else: |
379 |
y=0. |
380 |
if l>2: |
381 |
z=x[2] |
382 |
else: |
383 |
z=0. |
384 |
if l>0: |
385 |
x=x[0] |
386 |
else: |
387 |
x=0. |
388 |
except TypeError: |
389 |
pass |
390 |
a=numpy.array([x,y,z], _TYPE) |
391 |
self.setCoordinates(a) |
392 |
self.setLocalScale(local_scale) |
393 |
|
394 |
def setLocalScale(self,factor=1.): |
395 |
""" |
396 |
Sets the local refinement factor. |
397 |
""" |
398 |
if factor<=0.: |
399 |
raise ValueError("scaling factor must be positive.") |
400 |
self.__local_scale=factor |
401 |
|
402 |
def getLocalScale(self): |
403 |
""" |
404 |
Returns the local refinement factor. |
405 |
""" |
406 |
return self.__local_scale |
407 |
|
408 |
def getCoordinates(self): |
409 |
""" |
410 |
Returns the coodinates of the point as a ``numpy.ndarray`` object. |
411 |
""" |
412 |
return self._x |
413 |
|
414 |
def setCoordinates(self,x): |
415 |
""" |
416 |
Sets the coodinates of the point from a ``numpy.ndarray`` object ``x``. |
417 |
""" |
418 |
if not isinstance(x, numpy.ndarray): |
419 |
self._x=numpy.array(x,_TYPE) |
420 |
else: |
421 |
self._x=x |
422 |
|
423 |
def collectPrimitiveBases(self): |
424 |
""" |
425 |
Returns primitives used to construct the primitive. |
426 |
""" |
427 |
return [self] |
428 |
|
429 |
def isColocated(self,primitive): |
430 |
""" |
431 |
Returns True if the `Point` ``primitive`` is colocated (has the same |
432 |
coordinates) with self. That is, if |
433 |
*|self - primitive| <= tol * max(\|self\|,|primitive|)*. |
434 |
""" |
435 |
if isinstance(primitive,Point): |
436 |
primitive=primitive.getCoordinates() |
437 |
c=self.getCoordinates() |
438 |
d=c-primitive |
439 |
if numpyImported: |
440 |
return numpy.dot(d,d)<=getToleranceForColocation()**2*max(numpy.dot(c,c),numpy.dot(primitive,primitive)) |
441 |
else: |
442 |
return numpy.dot(d,d)<=getToleranceForColocation()**2*max(numpy.dot(c,c),numpy.dot(primitive,primitive)) |
443 |
else: |
444 |
return False |
445 |
|
446 |
def substitute(self,sub_dict): |
447 |
""" |
448 |
Returns a copy of self with substitutes for the primitives used to |
449 |
construct it given by the dictionary ``sub_dict``. If a substitute for |
450 |
the object is given by ``sub_dict`` the value is returned, otherwise a |
451 |
new instance with substituted arguments is returned. |
452 |
""" |
453 |
if not sub_dict.has_key(self): |
454 |
c=self.getCoordinates() |
455 |
sub_dict[self]=Point(c[0],c[1],c[2],local_scale=self.getLocalScale()) |
456 |
return sub_dict[self] |
457 |
|
458 |
def modifyBy(self,transformation): |
459 |
""" |
460 |
Modifies the coordinates by applying the given transformation. |
461 |
""" |
462 |
self.setCoordinates(transformation(self.getCoordinates())) |
463 |
|
464 |
def __neg__(self): |
465 |
""" |
466 |
Returns a view of the object with reverse orientation. As a point has |
467 |
no direction the object itself is returned. |
468 |
""" |
469 |
return self |
470 |
|
471 |
class Manifold1D(PrimitiveBase): |
472 |
""" |
473 |
General one-dimensional manifold in 1D defined by a start and end point. |
474 |
""" |
475 |
def __init__(self): |
476 |
""" |
477 |
Initializes the one-dimensional manifold. |
478 |
""" |
479 |
PrimitiveBase.__init__(self) |
480 |
self.__apply_elements=False |
481 |
|
482 |
def getStartPoint(self): |
483 |
""" |
484 |
Returns the start point. |
485 |
""" |
486 |
raise NotImplementedError() |
487 |
|
488 |
def getEndPoint(self): |
489 |
""" |
490 |
Returns the end point. |
491 |
""" |
492 |
raise NotImplementedError() |
493 |
|
494 |
def getBoundary(self): |
495 |
""" |
496 |
Returns a list of the zero-dimensional manifolds forming the boundary |
497 |
of the curve. |
498 |
""" |
499 |
return [ self.getStartPoint(), self.getEndPoint()] |
500 |
|
501 |
|
502 |
def setElementDistribution(self,n,progression=1,createBump=False): |
503 |
""" |
504 |
Defines the number of elements on the line. If set it overwrites the local length setting which would be applied. |
505 |
The progression factor ``progression`` defines the change of element size between naighboured elements. If ``createBump`` is set |
506 |
progression is applied towards the center of the line. |
507 |
|
508 |
:param n: number of elements on the line |
509 |
:type n: ``int`` |
510 |
:param progression: a positive progression factor |
511 |
:type progression: positive ``float`` |
512 |
:param createBump: of elements on the line |
513 |
:type createBump: ``bool`` |
514 |
""" |
515 |
if isinstance(self, ReversePrimitive): |
516 |
self.getUnderlyingPrimitive().setElementDistribution(n,progression,createBump) |
517 |
else: |
518 |
if n<1: |
519 |
raise ValueError,"number of elements must be positive." |
520 |
if progression<=0: |
521 |
raise ValueError,"progression factor must be positive." |
522 |
self.__apply_elements=True |
523 |
self.__n=n |
524 |
self.__progression_factor=progression |
525 |
self.__createBump=createBump |
526 |
|
527 |
def resetElementDistribution(self): |
528 |
""" |
529 |
removes the a previously set element distribution from the line. |
530 |
""" |
531 |
if isinstance(self, ReversePrimitive): |
532 |
self.getUnderlyingPrimitive().resetElementDistribution() |
533 |
else: |
534 |
self.__apply_elements=False |
535 |
|
536 |
def getElementDistribution(self): |
537 |
""" |
538 |
Returns the element distribution. |
539 |
|
540 |
:return: the tuple of the number of elements, the progression factor and the bump flag. If no element distribution is set ``None`` is returned |
541 |
:rtype: ``tuple`` |
542 |
""" |
543 |
if isinstance(self, ReversePrimitive): |
544 |
return self.getUnderlyingPrimitive().getElementDistribution() |
545 |
else: |
546 |
if self.__apply_elements: |
547 |
return (self.__n, self.__progression_factor, self.__createBump) |
548 |
else: |
549 |
return None |
550 |
|
551 |
class CurveBase(Manifold1D): |
552 |
""" |
553 |
Base class for curves. A Curve is defined by a set of control points. |
554 |
""" |
555 |
def __init__(self): |
556 |
""" |
557 |
Initializes the curve. |
558 |
""" |
559 |
Manifold1D.__init__(self) |
560 |
|
561 |
def __len__(self): |
562 |
""" |
563 |
Returns the number of control points. |
564 |
""" |
565 |
return len(self.getControlPoints()) |
566 |
|
567 |
def getStartPoint(self): |
568 |
""" |
569 |
Returns the start point. |
570 |
""" |
571 |
return self.getControlPoints()[0] |
572 |
|
573 |
def getEndPoint(self): |
574 |
""" |
575 |
Returns the end point. |
576 |
""" |
577 |
return self.getControlPoints()[-1] |
578 |
|
579 |
def getControlPoints(self): |
580 |
""" |
581 |
Returns a list of the points. |
582 |
""" |
583 |
raise NotImplementedError() |
584 |
|
585 |
class Curve(CurveBase, Primitive): |
586 |
""" |
587 |
A curve defined through a list of control points. |
588 |
""" |
589 |
def __init__(self,*points): |
590 |
""" |
591 |
Defines a curve from control points given by ``points``. |
592 |
""" |
593 |
if len(points)==1: |
594 |
points=points[0] |
595 |
if not hasattr(points,'__iter__'): raise ValueError("Curve needs at least two points") |
596 |
if len(points)<2: |
597 |
raise ValueError("Curve needs at least two points") |
598 |
i=0 |
599 |
for p in points: |
600 |
i+=1 |
601 |
if not isinstance(p,Point): raise TypeError("%s-th argument is not a Point object."%i) |
602 |
self.__points=points |
603 |
CurveBase.__init__(self) |
604 |
Primitive.__init__(self) |
605 |
|
606 |
def getControlPoints(self): |
607 |
""" |
608 |
Returns a list of the points. |
609 |
""" |
610 |
return self.__points |
611 |
|
612 |
def __neg__(self): |
613 |
""" |
614 |
Returns a view onto the curve with reversed ordering. |
615 |
""" |
616 |
return ReverseCurve(self) |
617 |
|
618 |
def substitute(self,sub_dict): |
619 |
""" |
620 |
Returns a copy of self with substitutes for the primitives used to |
621 |
construct it given by the dictionary ``sub_dict``. If a substitute for |
622 |
the object is given by ``sub_dict`` the value is returned, otherwise a |
623 |
new instance with substituted arguments is returned. |
624 |
""" |
625 |
if not sub_dict.has_key(self): |
626 |
new_p=[] |
627 |
for p in self.getControlPoints(): new_p.append(p.substitute(sub_dict)) |
628 |
sub_dict[self]=self.__class__(*tuple(new_p)) |
629 |
return sub_dict[self] |
630 |
|
631 |
def collectPrimitiveBases(self): |
632 |
""" |
633 |
Returns the primitives used to construct the curve. |
634 |
""" |
635 |
out=[self] |
636 |
for p in self.getControlPoints(): out+=p.collectPrimitiveBases() |
637 |
return out |
638 |
|
639 |
def isColocated(self,primitive): |
640 |
""" |
641 |
Returns True if curves are at the same position. |
642 |
""" |
643 |
if hasattr(primitive,"getUnderlyingPrimitive"): |
644 |
if isinstance(primitive.getUnderlyingPrimitive(),self.__class__): |
645 |
if len(primitive) == len(self): |
646 |
cp0=self.getControlPoints() |
647 |
cp1=primitive.getControlPoints() |
648 |
match=True |
649 |
for i in range(len(cp0)): |
650 |
if not cp0[i].isColocated(cp1[i]): |
651 |
match=False |
652 |
break |
653 |
if not match: |
654 |
for i in range(len(cp0)): |
655 |
if not cp0[i].isColocated(cp1[len(cp0)-1-i]): |
656 |
return False |
657 |
return True |
658 |
return False |
659 |
|
660 |
class ReverseCurve(CurveBase, ReversePrimitive): |
661 |
""" |
662 |
A curve defined through a list of control points. |
663 |
""" |
664 |
def __init__(self,curve): |
665 |
""" |
666 |
Defines a curve from control points. |
667 |
""" |
668 |
if not isinstance(curve, Curve): |
669 |
raise TypeError("ReverseCurve needs to be an instance of Curve") |
670 |
CurveBase.__init__(self) |
671 |
ReversePrimitive.__init__(self,curve) |
672 |
|
673 |
def getControlPoints(self): |
674 |
""" |
675 |
Returns a list of the points. |
676 |
""" |
677 |
out=[p for p in self.getUnderlyingPrimitive().getControlPoints()] |
678 |
out.reverse() |
679 |
return tuple(out) |
680 |
|
681 |
class Spline(Curve): |
682 |
""" |
683 |
A spline curve defined through a list of control points. |
684 |
""" |
685 |
pass |
686 |
|
687 |
class BezierCurve(Curve): |
688 |
""" |
689 |
A Bezier curve. |
690 |
""" |
691 |
pass |
692 |
|
693 |
class BSpline(Curve): |
694 |
""" |
695 |
A BSpline curve. Control points may be repeated. |
696 |
""" |
697 |
pass |
698 |
|
699 |
class Line(Curve): |
700 |
""" |
701 |
A line is defined by two points. |
702 |
""" |
703 |
def __init__(self,*points): |
704 |
""" |
705 |
Defines a line with start and end point. |
706 |
""" |
707 |
if len(points)!=2: |
708 |
raise TypeError("Line needs two points") |
709 |
Curve.__init__(self,*points) |
710 |
|
711 |
class ArcBase(Manifold1D): |
712 |
""" |
713 |
Base class for arcs. |
714 |
""" |
715 |
def __init__(self): |
716 |
""" |
717 |
Initializes the arc. |
718 |
""" |
719 |
Manifold1D.__init__(self) |
720 |
|
721 |
def collectPrimitiveBases(self): |
722 |
""" |
723 |
Returns the primitives used to construct the Arc. |
724 |
""" |
725 |
out=[self] |
726 |
out+=self.getStartPoint().collectPrimitiveBases() |
727 |
out+=self.getEndPoint().collectPrimitiveBases() |
728 |
out+=self.getCenterPoint().collectPrimitiveBases() |
729 |
return out |
730 |
|
731 |
def getCenterPoint(self): |
732 |
""" |
733 |
Returns the center. |
734 |
""" |
735 |
raise NotImplementedError() |
736 |
|
737 |
class Arc(ArcBase, Primitive): |
738 |
""" |
739 |
Defines an arc which is strictly smaller than pi. |
740 |
""" |
741 |
def __init__(self,center,start,end): |
742 |
""" |
743 |
Creates an arc defined by the start point, end point and center. |
744 |
""" |
745 |
if not isinstance(center,Point): raise TypeError("center needs to be a Point object.") |
746 |
if not isinstance(end,Point): raise TypeError("end needs to be a Point object.") |
747 |
if not isinstance(start,Point): raise TypeError("start needs to be a Point object.") |
748 |
if center.isColocated(end): raise TypeError("center and start point are colocated.") |
749 |
if center.isColocated(start): raise TypeError("center end end point are colocated.") |
750 |
if start.isColocated(end): raise TypeError("start and end are colocated.") |
751 |
# TODO: check length of circle. |
752 |
ArcBase.__init__(self) |
753 |
Primitive.__init__(self) |
754 |
self.__center=center |
755 |
self.__start=start |
756 |
self.__end=end |
757 |
|
758 |
def __neg__(self): |
759 |
""" |
760 |
Returns a view onto the curve with reversed ordering. |
761 |
""" |
762 |
return ReverseArc(self) |
763 |
|
764 |
def getStartPoint(self): |
765 |
""" |
766 |
Returns the start point. |
767 |
""" |
768 |
return self.__start |
769 |
|
770 |
def getEndPoint(self): |
771 |
""" |
772 |
Returns the end point. |
773 |
""" |
774 |
return self.__end |
775 |
|
776 |
def getCenterPoint(self): |
777 |
""" |
778 |
Returns the center point. |
779 |
""" |
780 |
return self.__center |
781 |
|
782 |
def substitute(self,sub_dict): |
783 |
""" |
784 |
Returns a copy of self with substitutes for the primitives used to |
785 |
construct it given by the dictionary ``sub_dict``. If a substitute for |
786 |
the object is given by ``sub_dict`` the value is returned, otherwise a |
787 |
new instance with substituted arguments is returned. |
788 |
""" |
789 |
if not sub_dict.has_key(self): |
790 |
sub_dict[self]=Arc(self.getCenterPoint().substitute(sub_dict),self.getStartPoint().substitute(sub_dict),self.getEndPoint().substitute(sub_dict)) |
791 |
return sub_dict[self] |
792 |
|
793 |
def isColocated(self,primitive): |
794 |
""" |
795 |
Returns True if curves are at the same position. |
796 |
""" |
797 |
if hasattr(primitive,"getUnderlyingPrimitive"): |
798 |
if isinstance(primitive.getUnderlyingPrimitive(),Arc): |
799 |
return (self.getCenterPoint().isColocated(primitive.getCenterPoint())) and ( \ |
800 |
(self.getEndPoint().isColocated(primitive.getEndPoint()) and self.getStartPoint().isColocated(primitive.getStartPoint()) ) \ |
801 |
or (self.getEndPoint().isColocated(primitive.getStartPoint()) and self.getStartPoint().isColocated(primitive.getEndPoint()) ) ) |
802 |
return False |
803 |
|
804 |
class ReverseArc(ArcBase, ReversePrimitive): |
805 |
""" |
806 |
Defines an arc which is strictly smaller than pi. |
807 |
""" |
808 |
def __init__(self,arc): |
809 |
""" |
810 |
Creates an arc defined by the start point, end point and center. |
811 |
""" |
812 |
if not isinstance(arc, Arc): |
813 |
raise TypeError("ReverseCurve needs to be an instance of Arc") |
814 |
ArcBase.__init__(self) |
815 |
ReversePrimitive.__init__(self,arc) |
816 |
|
817 |
def getStartPoint(self): |
818 |
""" |
819 |
Returns the start point. |
820 |
""" |
821 |
return self.getUnderlyingPrimitive().getEndPoint() |
822 |
|
823 |
def getEndPoint(self): |
824 |
""" |
825 |
Returns the end point. |
826 |
""" |
827 |
return self.getUnderlyingPrimitive().getStartPoint() |
828 |
|
829 |
def getCenterPoint(self): |
830 |
""" |
831 |
Returns the center point. |
832 |
""" |
833 |
return self.getUnderlyingPrimitive().getCenterPoint() |
834 |
|
835 |
class EllipseBase(Manifold1D): |
836 |
""" |
837 |
Base class for ellipses. |
838 |
""" |
839 |
def __init__(self): |
840 |
""" |
841 |
Initializes the ellipse. |
842 |
""" |
843 |
Manifold1D.__init__(self) |
844 |
|
845 |
def collectPrimitiveBases(self): |
846 |
""" |
847 |
Returns the primitives used to construct the ellipse. |
848 |
""" |
849 |
out=[self] |
850 |
out+=self.getStartPoint().collectPrimitiveBases() |
851 |
out+=self.getEndPoint().collectPrimitiveBases() |
852 |
out+=self.getCenterPoint().collectPrimitiveBases() |
853 |
out+=self.getPointOnMainAxis().collectPrimitiveBases() |
854 |
return out |
855 |
|
856 |
class Ellipse(EllipseBase, Primitive): |
857 |
""" |
858 |
Defines an ellipse which is strictly smaller than pi. |
859 |
""" |
860 |
def __init__(self,center,point_on_main_axis,start,end): |
861 |
""" |
862 |
Creates an ellipse defined by the start point, end point, the center |
863 |
and a point on the main axis. |
864 |
""" |
865 |
if not isinstance(center,Point): raise TypeError("center needs to be a Point object.") |
866 |
if not isinstance(end,Point): raise TypeError("end needs to be a Point object.") |
867 |
if not isinstance(start,Point): raise TypeError("start needs to be a Point object.") |
868 |
if not isinstance(point_on_main_axis,Point): raise TypeError("point on main axis needs to be a Point object.") |
869 |
if center.isColocated(end): raise TypeError("center and start point are colocated.") |
870 |
if center.isColocated(start): raise TypeError("center end end point are colocated.") |
871 |
if center.isColocated(point_on_main_axis): raise TypeError("center and point on main axis are colocated.") |
872 |
if start.isColocated(end): raise TypeError("start and end point are colocated.") |
873 |
# TODO: check length of circle. |
874 |
EllipseBase.__init__(self) |
875 |
Primitive.__init__(self) |
876 |
self.__center=center |
877 |
self.__start=start |
878 |
self.__end=end |
879 |
self.__point_on_main_axis=point_on_main_axis |
880 |
|
881 |
def __neg__(self): |
882 |
""" |
883 |
Returns a view onto the curve with reversed ordering. |
884 |
""" |
885 |
return ReverseEllipse(self) |
886 |
|
887 |
def getStartPoint(self): |
888 |
""" |
889 |
Returns the start point. |
890 |
""" |
891 |
return self.__start |
892 |
|
893 |
def getEndPoint(self): |
894 |
""" |
895 |
Returns the end point. |
896 |
""" |
897 |
return self.__end |
898 |
|
899 |
def getCenterPoint(self): |
900 |
""" |
901 |
Returns the center. |
902 |
""" |
903 |
return self.__center |
904 |
|
905 |
def getPointOnMainAxis(self): |
906 |
""" |
907 |
Returns a point on the main axis. |
908 |
""" |
909 |
return self.__point_on_main_axis |
910 |
|
911 |
def substitute(self,sub_dict): |
912 |
""" |
913 |
Returns a copy of self with substitutes for the primitives used to |
914 |
construct it given by the dictionary ``sub_dict``. If a substitute for |
915 |
the object is given by ``sub_dict`` the value is returned, otherwise a |
916 |
new instance with substituted arguments is returned. |
917 |
""" |
918 |
if not sub_dict.has_key(self): |
919 |
sub_dict[self]=Ellipse(self.getCenterPoint().substitute(sub_dict), |
920 |
self.getPointOnMainAxis().substitute(sub_dict), |
921 |
self.getStartPoint().substitute(sub_dict), |
922 |
self.getEndPoint().substitute(sub_dict)) |
923 |
return sub_dict[self] |
924 |
|
925 |
|
926 |
def isColocated(self,primitive): |
927 |
""" |
928 |
Returns True if curves are at the same position. |
929 |
""" |
930 |
if hasattr(primitive,"getUnderlyingPrimitive"): |
931 |
if isinstance(primitive.getUnderlyingPrimitive(),Ellipse): |
932 |
self_c=self.getCenterPoint().getCoordinates() |
933 |
p=self.getPointOnMainAxis().getCoordinates()-self_c |
934 |
q=primitive.getPointOnMainAxis().getCoordinates()-self_c |
935 |
# are p and q orthogonal or collinear? |
936 |
len_p=math.sqrt(p[0]**2+p[1]**2+p[2]**2) |
937 |
len_q=math.sqrt(q[0]**2+q[1]**2+q[2]**2) |
938 |
p_q= abs(p[0]*q[0]+p[1]*q[1]+p[2]*q[2]) |
939 |
return ((p_q <= getToleranceForColocation() * len_q * p_q) or \ |
940 |
(abs(p_q - len_q * p_q) <= getToleranceForColocation())) and \ |
941 |
self.getCenterPoint().isColocated(primitive.getCenterPoint()) and \ |
942 |
( \ |
943 |
(self.getEndPoint().isColocated(primitive.getEndPoint()) and \ |
944 |
self.getStartPoint().isColocated(primitive.getStartPoint()) ) \ |
945 |
or \ |
946 |
(self.getEndPoint().isColocated(primitive.getStartPoint()) and \ |
947 |
self.getStartPoint().isColocated(primitive.getEndPoint())) \ |
948 |
) |
949 |
return False |
950 |
|
951 |
class ReverseEllipse(EllipseBase, ReversePrimitive): |
952 |
""" |
953 |
Defines an ellipse which is strictly smaller than pi. |
954 |
""" |
955 |
def __init__(self,arc): |
956 |
""" |
957 |
Creates an instance of a reverse view to an ellipse. |
958 |
""" |
959 |
if not isinstance(arc, Ellipse): |
960 |
raise TypeError("ReverseCurve needs to be an instance of Ellipse") |
961 |
EllipseBase.__init__(self) |
962 |
ReversePrimitive.__init__(self,arc) |
963 |
|
964 |
def getStartPoint(self): |
965 |
""" |
966 |
Returns the start point. |
967 |
""" |
968 |
return self.getUnderlyingPrimitive().getEndPoint() |
969 |
|
970 |
def getEndPoint(self): |
971 |
""" |
972 |
Returns the end point. |
973 |
""" |
974 |
return self.getUnderlyingPrimitive().getStartPoint() |
975 |
|
976 |
def getCenterPoint(self): |
977 |
""" |
978 |
Returns the center point. |
979 |
""" |
980 |
return self.getUnderlyingPrimitive().getCenterPoint() |
981 |
|
982 |
def getPointOnMainAxis(self): |
983 |
""" |
984 |
Returns a point on the main axis. |
985 |
""" |
986 |
return self.getUnderlyingPrimitive().getPointOnMainAxis() |
987 |
|
988 |
|
989 |
class CurveLoop(Primitive, PrimitiveBase): |
990 |
""" |
991 |
An oriented loop of one-dimensional manifolds (= curves and arcs). |
992 |
|
993 |
The loop must be closed and the `Manifold1D` s should be oriented |
994 |
consistently. |
995 |
""" |
996 |
def __init__(self,*curves): |
997 |
""" |
998 |
Creates a polygon from a list of line curves. The curves must form a |
999 |
closed loop. |
1000 |
""" |
1001 |
if len(curves)==1: |
1002 |
curves=curves[0] |
1003 |
if not hasattr(curves,'__iter__'): raise ValueError("CurveLoop needs at least two points") |
1004 |
if len(curves)<2: |
1005 |
raise ValueError("At least two curves have to be given.") |
1006 |
for i in range(len(curves)): |
1007 |
if not isinstance(curves[i],Manifold1D): |
1008 |
raise TypeError("%s-th argument is not a Manifold1D object."%i) |
1009 |
# for the curves a loop: |
1010 |
#used=[ False for i in curves] |
1011 |
self.__curves=[] |
1012 |
for c in curves: |
1013 |
if not c in self.__curves: self.__curves.append(c) |
1014 |
Primitive.__init__(self) |
1015 |
PrimitiveBase.__init__(self) |
1016 |
|
1017 |
|
1018 |
def getCurves(self): |
1019 |
""" |
1020 |
Returns the curves defining the CurveLoop. |
1021 |
""" |
1022 |
return self.__curves |
1023 |
|
1024 |
def __neg__(self): |
1025 |
""" |
1026 |
Returns a view onto the curve with reversed ordering. |
1027 |
""" |
1028 |
return ReverseCurveLoop(self) |
1029 |
|
1030 |
def __len__(self): |
1031 |
""" |
1032 |
Returns the number of curves in the CurveLoop. |
1033 |
""" |
1034 |
return len(self.getCurves()) |
1035 |
|
1036 |
def collectPrimitiveBases(self): |
1037 |
""" |
1038 |
Returns primitives used to construct the CurveLoop. |
1039 |
""" |
1040 |
out=[self] |
1041 |
for c in self.getCurves(): out+=c.collectPrimitiveBases() |
1042 |
return out |
1043 |
|
1044 |
def substitute(self,sub_dict): |
1045 |
""" |
1046 |
Returns a copy of self with substitutes for the primitives used to |
1047 |
construct it given by the dictionary ``sub_dict``. If a substitute for |
1048 |
the object is given by ``sub_dict`` the value is returned, otherwise a |
1049 |
new instance with substituted arguments is returned. |
1050 |
""" |
1051 |
if not sub_dict.has_key(self): |
1052 |
new_c=[] |
1053 |
for c in self.getCurves(): new_c.append(c.substitute(sub_dict)) |
1054 |
sub_dict[self]=CurveLoop(*tuple(new_c)) |
1055 |
return sub_dict[self] |
1056 |
|
1057 |
def isColocated(self,primitive): |
1058 |
""" |
1059 |
Returns True if each curve is colocated with a curve in ``primitive``. |
1060 |
""" |
1061 |
if hasattr(primitive,"getUnderlyingPrimitive"): |
1062 |
if isinstance(primitive.getUnderlyingPrimitive(),CurveLoop): |
1063 |
if len(primitive) == len(self): |
1064 |
cp0=self.getCurves() |
1065 |
cp1=primitive.getCurves() |
1066 |
for c0 in cp0: |
1067 |
colocated = False |
1068 |
for c1 in cp1: |
1069 |
colocated = colocated or c0.isColocated(c1) |
1070 |
if not colocated: return False |
1071 |
return True |
1072 |
return False |
1073 |
|
1074 |
|
1075 |
|
1076 |
|
1077 |
class ReverseCurveLoop(ReversePrimitive, PrimitiveBase): |
1078 |
""" |
1079 |
An oriented loop of one-dimensional manifolds (= curves and arcs). |
1080 |
|
1081 |
The loop must be closed and the one-dimensional manifolds should be |
1082 |
oriented consistently. |
1083 |
""" |
1084 |
def __init__(self,curve_loop): |
1085 |
""" |
1086 |
Creates a polygon from a list of line curves. The curves must form a |
1087 |
closed loop. |
1088 |
""" |
1089 |
if not isinstance(curve_loop, CurveLoop): |
1090 |
raise TypeError("arguments need to be an instance of CurveLoop.") |
1091 |
ReversePrimitive.__init__(self, curve_loop) |
1092 |
PrimitiveBase.__init__(self) |
1093 |
|
1094 |
def getCurves(self): |
1095 |
""" |
1096 |
Returns the curves defining the CurveLoop. |
1097 |
""" |
1098 |
return [ -c for c in self.getUnderlyingPrimitive().getCurves() ] |
1099 |
|
1100 |
def __len__(self): |
1101 |
return len(self.getUnderlyingPrimitive()) |
1102 |
#= |
1103 |
class Manifold2D(PrimitiveBase): |
1104 |
""" |
1105 |
General two-dimensional manifold. |
1106 |
|
1107 |
:ivar LEFT: left element orientation when meshing with transifinite meshing |
1108 |
:ivar RIGHT: right element orientation when meshing with transifinite meshing |
1109 |
:ivar ALTERNATE: alternate element orientation when meshing with transifinite meshing |
1110 |
""" |
1111 |
LEFT="Left" |
1112 |
RIGHT="Right" |
1113 |
ALTERNATE="Alternate" |
1114 |
def __init__(self): |
1115 |
""" |
1116 |
Creates a two-dimensional manifold. |
1117 |
""" |
1118 |
PrimitiveBase.__init__(self) |
1119 |
self.__transfinitemeshing=False |
1120 |
self.__recombination_angle=None |
1121 |
|
1122 |
def getBoundary(self): |
1123 |
""" |
1124 |
Returns a list of the one-dimensional manifolds forming the boundary |
1125 |
of the surface (including holes). |
1126 |
""" |
1127 |
raise NotImplementedError() |
1128 |
|
1129 |
def hasHole(self): |
1130 |
""" |
1131 |
Returns True if a hole is present. |
1132 |
""" |
1133 |
raise NotImplementedError() |
1134 |
|
1135 |
def setElementDistribution(self,n,progression=1,createBump=False): |
1136 |
""" |
1137 |
Defines the number of elements on the lines |
1138 |
|
1139 |
:param n: number of elements on the line |
1140 |
:type n: ``int`` |
1141 |
:param progression: a positive progression factor |
1142 |
:type progression: positive ``float`` |
1143 |
:param createBump: of elements on the line |
1144 |
:type createBump: ``bool`` |
1145 |
""" |
1146 |
for i in self.getBoundary(): i.setElementDistribution(n,progression,createBump) |
1147 |
|
1148 |
def getPoints(self): |
1149 |
""" |
1150 |
returns a list of points used to define the boundary |
1151 |
|
1152 |
:return: list of points used to define the boundary |
1153 |
:rtype: ``list`` of `Point` s |
1154 |
""" |
1155 |
out=[] |
1156 |
boundary=self.getBoundary() |
1157 |
for l in boundary: |
1158 |
for p in l.getBoundary(): |
1159 |
if not p in out: out.append(p) |
1160 |
return out |
1161 |
|
1162 |
def setRecombination(self, max_deviation=45*DEG): |
1163 |
""" |
1164 |
Recombines triangular meshes on the surface into mixed triangular/quadrangular meshes. |
1165 |
``max_deviation`` specifies the maximum derivation of the largest angle in the quadrangle |
1166 |
from the right angle. Use ``max_deviation``==``None`` to switch off recombination. |
1167 |
|
1168 |
:param max_deviation: maximum derivation of the largest angle in the quadrangle from the right angle. |
1169 |
:type max_deviation: ``float`` or ``None``. |
1170 |
""" |
1171 |
if isinstance(self, ReversePrimitive): |
1172 |
self.getUnderlyingPrimitive().setRecombination(max_deviation) |
1173 |
else: |
1174 |
if not max_deviation==None: |
1175 |
if max_deviation<=0: |
1176 |
raise ValueError, "max_deviation must be positive." |
1177 |
if max_deviation/DEG>=90: |
1178 |
raise ValueError, "max_deviation must be smaller than 90 DEG" |
1179 |
self.__recombination_angle=max_deviation |
1180 |
|
1181 |
def getRecombination(self): |
1182 |
""" |
1183 |
returns max deviation from right angle in the recombination algorithm |
1184 |
|
1185 |
:return: max deviation from right angle in the recombination algorithm. If recombination is switched off, ``None`` is returned. |
1186 |
:rtype: ``float`` or ``None`` |
1187 |
""" |
1188 |
if isinstance(self, ReversePrimitive): |
1189 |
return self.getUnderlyingPrimitive().getRecombination() |
1190 |
else: |
1191 |
return self.__recombination_angle |
1192 |
|
1193 |
def setTransfiniteMeshing(self,orientation="Left"): |
1194 |
""" |
1195 |
applies 2D transfinite meshing to the surface. |
1196 |
|
1197 |
:param orientation: sets the orientation of the triangles. It is only relevant if recombination is not used. |
1198 |
:type orientation: `Manifold2D.LEFT`, `Manifold2D.RIGHT`, `Manifold2D.ALTERNATE` |
1199 |
:note: Transfinite meshing can not be applied if holes are present. |
1200 |
""" |
1201 |
if isinstance(self, ReversePrimitive): |
1202 |
return self.getUnderlyingPrimitive().setTransfiniteMeshing(orientation) |
1203 |
else: |
1204 |
if not orientation in [ Manifold2D.LEFT, Manifold2D.RIGHT, Manifold2D.ALTERNATE]: |
1205 |
raise ValueError,"invalid orientation %s."%orientation |
1206 |
if self.hasHole(): |
1207 |
raise ValueError,"transfinite meshing cannot be appled to surfaces with a hole." |
1208 |
b=self.getBoundary() |
1209 |
if len(b)>4 or len(b)<3: |
1210 |
raise ValueError,"transfinite meshing permits 3 or 4 boundary lines only." |
1211 |
for l in b: |
1212 |
if l.getElementDistribution() == None: raise ValueError,"transfinite meshing requires element distribution on all boundary lines." |
1213 |
start=b[0] |
1214 |
opposite=None |
1215 |
top=None |
1216 |
bottom=None |
1217 |
for l in b[1:]: |
1218 |
if l.getEndPoint() == start.getStartPoint(): |
1219 |
bottom=l |
1220 |
elif l.getStartPoint() == start.getEndPoint(): |
1221 |
top=l |
1222 |
else: |
1223 |
opposite=l |
1224 |
if top==None or bottom == None: |
1225 |
raise ValueError,"transfinite meshing cannot be applied to boundary is not closed. Most likely the orientation of some boundray segments is wrong." |
1226 |
if opposite == None: # three sides only |
1227 |
if not top.getElementDistribution()[0] == bottom.getElementDistribution()[0]: start, top, bottom= bottom, start, top |
1228 |
if not top.getElementDistribution() == bottom.getElementDistribution(): |
1229 |
raise ValueError,"transfinite meshing requires opposite faces to be have the same element distribution." |
1230 |
if not opposite == None: |
1231 |
if not start.getElementDistribution()[0] == opposite.getElementDistribution()[0]: |
1232 |
raise ValueError,"transfinite meshing requires oposite faces to be have the same element distribution." |
1233 |
if opposite == None: |
1234 |
if bottom.getEndPoint == top.getStartPoint(): |
1235 |
raise ValueError,"cannot identify corner proints for transfinite meshing." |
1236 |
else: |
1237 |
points=[ bottom.getStartPoint(), bottom.getEndPoint(), top.getStartPoint() ] |
1238 |
else: |
1239 |
points=[ bottom.getStartPoint(), bottom.getEndPoint(), top.getStartPoint(), top.getEndPoint() ] |
1240 |
self.__points=points |
1241 |
self.__orientation=orientation |
1242 |
self.__transfinitemeshing=True |
1243 |
|
1244 |
def resetTransfiniteMeshing(self): |
1245 |
""" |
1246 |
removes the transfinite meshing from the surface |
1247 |
""" |
1248 |
if isinstance(self, ReversePrimitive): |
1249 |
self.getUnderlyingPrimitive().resetTransfiniteMeshing() |
1250 |
else: |
1251 |
self.__transfinitemeshing=False |
1252 |
|
1253 |
def getTransfiniteMeshing(self): |
1254 |
""" |
1255 |
returns the transfinite meshing setings. If transfinite meshing is not set, ``None`` is returned. |
1256 |
|
1257 |
:return: a tuple of the tuple of points used to define the transfinite meshing and the orientation. If no points are set the points tuple is returned as ``None``. If no transfinite meshing is not set, ``None`` is returned. |
1258 |
:rtype: ``tuple`` of a ``tuple`` of `Point` s (or ``None``) and the orientation which is one of the values `Manifold2D.LEFT` , `Manifold2D.RIGHT` , `Manifold2D.ALTERNATE` |
1259 |
""" |
1260 |
if isinstance(self, ReversePrimitive): |
1261 |
return self.getUnderlyingPrimitive().getTransfiniteMeshing() |
1262 |
else: |
1263 |
if self.__transfinitemeshing: |
1264 |
return (self.__points, self.__orientation) |
1265 |
else: |
1266 |
return None |
1267 |
def getPolygon(self): |
1268 |
""" |
1269 |
Returns a list of start/end points of the 1D mainfold form the loop. If not closed and exception is thrown. |
1270 |
""" |
1271 |
curves=self.getBoundary() |
1272 |
s=[curves[0].getStartPoint(), curves[0].getEndPoint()] |
1273 |
found= [ curves[0] ] |
1274 |
restart=True |
1275 |
while restart: |
1276 |
restart=False |
1277 |
for k in curves: |
1278 |
if not k in found: |
1279 |
if k.getStartPoint() == s[-1]: |
1280 |
found.append(k) |
1281 |
if k.getEndPoint() == s[0]: |
1282 |
if len(found) == len(curves): |
1283 |
return s |
1284 |
else: |
1285 |
raise ValueError,"loop %s is not closed."%self.getID() |
1286 |
s.append(k.getEndPoint()) |
1287 |
restart=True |
1288 |
break |
1289 |
if not restart: |
1290 |
raise ValueError,"loop %s is not closed."%self.getID() |
1291 |
class RuledSurface(Primitive, Manifold2D): |
1292 |
""" |
1293 |
A ruled surface, i.e. a surface that can be interpolated using transfinite |
1294 |
interpolation. |
1295 |
""" |
1296 |
def __init__(self,loop): |
1297 |
""" |
1298 |
Creates a ruled surface with boundary ``loop``. |
1299 |
|
1300 |
:param loop: `CurveLoop` defining the boundary of the surface. |
1301 |
""" |
1302 |
if not isinstance(loop.getUnderlyingPrimitive(),CurveLoop): |
1303 |
raise TypeError("argument loop needs to be a CurveLoop object.") |
1304 |
if len(loop)<2: |
1305 |
raise ValueError("the loop must contain at least two Curves.") |
1306 |
if len(loop)>4: |
1307 |
raise ValueError("the loop must contain at most four Curves.") |
1308 |
Primitive.__init__(self) |
1309 |
Manifold2D.__init__(self) |
1310 |
self.__loop=loop |
1311 |
|
1312 |
def hasHole(self): |
1313 |
""" |
1314 |
Returns True if a hole is present. |
1315 |
""" |
1316 |
return False |
1317 |
|
1318 |
def __neg__(self): |
1319 |
""" |
1320 |
Returns a view onto the suface with reversed ordering. |
1321 |
""" |
1322 |
return ReverseRuledSurface(self) |
1323 |
|
1324 |
def getBoundaryLoop(self): |
1325 |
""" |
1326 |
Returns the loop defining the outer boundary. |
1327 |
""" |
1328 |
return self.__loop |
1329 |
|
1330 |
def getBoundary(self): |
1331 |
""" |
1332 |
Returns a list of the one-dimensional manifolds forming the boundary |
1333 |
of the Surface (including holes). |
1334 |
""" |
1335 |
return self.getBoundaryLoop().getCurves() |
1336 |
|
1337 |
def substitute(self,sub_dict): |
1338 |
""" |
1339 |
Returns a copy of self with substitutes for the primitives used to |
1340 |
construct it given by the dictionary ``sub_dict``. If a substitute for |
1341 |
the object is given by ``sub_dict`` the value is returned, otherwise a |
1342 |
new instance with substituted arguments is returned. |
1343 |
""" |
1344 |
if not sub_dict.has_key(self): |
1345 |
sub_dict[self]=RuledSurface(self.getBoundaryLoop().substitute(sub_dict)) |
1346 |
return sub_dict[self] |
1347 |
|
1348 |
def isColocated(self,primitive): |
1349 |
""" |
1350 |
Returns True if each curve is colocated with a curve in ``primitive``. |
1351 |
""" |
1352 |
if hasattr(primitive,"getUnderlyingPrimitive"): |
1353 |
if isinstance(primitive.getUnderlyingPrimitive(),RuledSurface): |
1354 |
return self.getBoundaryLoop().isColocated(primitive.getBoundaryLoop()) |
1355 |
return False |
1356 |
|
1357 |
def collectPrimitiveBases(self): |
1358 |
""" |
1359 |
Returns primitives used to construct the Surface. |
1360 |
""" |
1361 |
return [self] + self.getBoundaryLoop().collectPrimitiveBases() |
1362 |
|
1363 |
def createRuledSurface(*curves): |
1364 |
""" |
1365 |
An easier way to create a `RuledSurface` from given curves. |
1366 |
""" |
1367 |
return RuledSurface(CurveLoop(*curves)) |
1368 |
|
1369 |
|
1370 |
class ReverseRuledSurface(ReversePrimitive, Manifold2D): |
1371 |
""" |
1372 |
Creates a view onto a `RuledSurface` but with reverse orientation. |
1373 |
""" |
1374 |
def __init__(self,surface): |
1375 |
""" |
1376 |
Creates a polygon from a list of line curves. The curves must form a |
1377 |
closed loop. |
1378 |
""" |
1379 |
if not isinstance(surface, RuledSurface): |
1380 |
raise TypeError("arguments need to be an instance of CurveLoop.") |
1381 |
ReversePrimitive.__init__(self, surface) |
1382 |
Manifold2D.__init__(self) |
1383 |
|
1384 |
def getBoundaryLoop(self): |
1385 |
""" |
1386 |
Returns the CurveLoop defining the ReverseRuledSurface. |
1387 |
""" |
1388 |
return -self.getUnderlyingPrimitive().getBoundaryLoop() |
1389 |
|
1390 |
def getBoundary(self): |
1391 |
""" |
1392 |
Returns a list of the one-dimensional manifolds forming the boundary |
1393 |
of the Surface (including holes). |
1394 |
""" |
1395 |
return self.getBoundaryLoop().getCurves() |
1396 |
|
1397 |
def hasHole(self): |
1398 |
""" |
1399 |
Returns True if a hole is present. |
1400 |
""" |
1401 |
return False |
1402 |
|
1403 |
#============================== |
1404 |
class PlaneSurface(Primitive, Manifold2D): |
1405 |
""" |
1406 |
A plane surface with holes. |
1407 |
""" |
1408 |
def __init__(self,loop,holes=[]): |
1409 |
""" |
1410 |
Creates a plane surface with holes. |
1411 |
|
1412 |
:param loop: `CurveLoop` defining the boundary of the surface |
1413 |
:param holes: list of `CurveLoop` s defining holes in the surface |
1414 |
:note: A CurveLoop defining a hole should not have any lines in common |
1415 |
with the exterior CurveLoop. |
1416 |
:note: A CurveLoop defining a hole should not have any lines in common |
1417 |
with another CurveLoop defining a hole in the same surface. |
1418 |
""" |
1419 |
if not isinstance(loop.getUnderlyingPrimitive(),CurveLoop): |
1420 |
raise TypeError("argument loop needs to be a CurveLoop object.") |
1421 |
for i in range(len(holes)): |
1422 |
if not isinstance(holes[i].getUnderlyingPrimitive(), CurveLoop): |
1423 |
raise TypeError("%i-th hole needs to be a CurveLoop object.") |
1424 |
#TODO: check if lines and holes are in a plane |
1425 |
#TODO: are holes really holes? |
1426 |
Primitive.__init__(self) |
1427 |
Manifold2D.__init__(self) |
1428 |
self.__loop=loop |
1429 |
self.__holes=holes |
1430 |
|
1431 |
def hasHole(self): |
1432 |
""" |
1433 |
Returns True if a hole is present. |
1434 |
""" |
1435 |
return len(self.getHoles())>0 |
1436 |
|
1437 |
def getHoles(self): |
1438 |
""" |
1439 |
Returns the holes. |
1440 |
""" |
1441 |
return self.__holes |
1442 |
|
1443 |
def getBoundaryLoop(self): |
1444 |
""" |
1445 |
Returns the loop defining the boundary. |
1446 |
""" |
1447 |
return self.__loop |
1448 |
|
1449 |
def substitute(self,sub_dict): |
1450 |
""" |
1451 |
Returns a copy of self with substitutes for the primitives used to |
1452 |
construct it given by the dictionary ``sub_dict``. If a substitute for |
1453 |
the object is given by ``sub_dict`` the value is returned, otherwise a |
1454 |
new instance with substituted arguments is returned. |
1455 |
""" |
1456 |
if not sub_dict.has_key(self): |
1457 |
sub_dict[self]=PlaneSurface(self.getBoundaryLoop().substitute(sub_dict),[ h.substitute(sub_dict) for h in self.getHoles()]) |
1458 |
return sub_dict[self] |
1459 |
|
1460 |
def isColocated(self,primitive): |
1461 |
""" |
1462 |
Returns True if each curve is colocated with a curve in ``primitive``. |
1463 |
""" |
1464 |
if hasattr(primitive,"getUnderlyingPrimitive"): |
1465 |
if isinstance(primitive.getUnderlyingPrimitive(),PlaneSurface): |
1466 |
if self.getBoundaryLoop().isColocated(primitive.getBoundaryLoop()): |
1467 |
hs0=self.getHoles() |
1468 |
hs1=primitive.getHoles() |
1469 |
if len(hs0) == len(hs1): |
1470 |
for h0 in hs0: |
1471 |
colocated = False |
1472 |
for h1 in hs1: |
1473 |
colocated = colocated or h0.isColocated(h1) |
1474 |
if not colocated: return False |
1475 |
return True |
1476 |
return False |
1477 |
|
1478 |
def collectPrimitiveBases(self): |
1479 |
""" |
1480 |
Returns primitives used to construct the Surface. |
1481 |
""" |
1482 |
out=[self] + self.getBoundaryLoop().collectPrimitiveBases() |
1483 |
for i in self.getHoles(): out+=i.collectPrimitiveBases() |
1484 |
return out |
1485 |
|
1486 |
def __neg__(self): |
1487 |
""" |
1488 |
Returns a view onto the curve with reversed ordering. |
1489 |
""" |
1490 |
return ReversePlaneSurface(self) |
1491 |
|
1492 |
def getBoundary(self): |
1493 |
""" |
1494 |
Returns a list of the one-dimensional manifolds forming the boundary |
1495 |
of the Surface (including holes). |
1496 |
""" |
1497 |
out = []+ self.getBoundaryLoop().getCurves() |
1498 |
for h in self.getHoles(): out+=h.getCurves() |
1499 |
return out |
1500 |
|
1501 |
class ReversePlaneSurface(ReversePrimitive, Manifold2D): |
1502 |
""" |
1503 |
Creates a view onto a `PlaneSurface` but with reverse orientation. |
1504 |
""" |
1505 |
def __init__(self,surface): |
1506 |
""" |
1507 |
Creates a polygon from a `PlaneSurface`. |
1508 |
""" |
1509 |
if not isinstance(surface, PlaneSurface): |
1510 |
raise TypeError("arguments need to be an instance of PlaneSurface.") |
1511 |
ReversePrimitive.__init__(self, surface) |
1512 |
Manifold2D.__init__(self) |
1513 |
|
1514 |
def getBoundaryLoop(self): |
1515 |
""" |
1516 |
Returns the CurveLoop defining the ReversePlaneSurface. |
1517 |
""" |
1518 |
return -self.getUnderlyingPrimitive().getBoundaryLoop() |
1519 |
|
1520 |
def getHoles(self): |
1521 |
""" |
1522 |
Returns the holes. |
1523 |
""" |
1524 |
return [ -h for h in self.getUnderlyingPrimitive().getHoles() ] |
1525 |
|
1526 |
def getBoundary(self): |
1527 |
""" |
1528 |
Returns a list of the one-dimensional manifolds forming the boundary |
1529 |
of the Surface (including holes). |
1530 |
""" |
1531 |
out = [] + self.getBoundaryLoop().getCurves() |
1532 |
for h in self.getHoles(): out+=h.getCurves() |
1533 |
return out |
1534 |
|
1535 |
def hasHole(self): |
1536 |
""" |
1537 |
Returns True if a hole is present. |
1538 |
""" |
1539 |
return len(self.getHoles())>0 |
1540 |
|
1541 |
#========================================================================= |
1542 |
class SurfaceLoop(Primitive, PrimitiveBase): |
1543 |
""" |
1544 |
A loop of 2D primitives which defines the shell of a volume. |
1545 |
|
1546 |
The loop must represent a closed shell, and the primitives should be |
1547 |
oriented consistently. |
1548 |
""" |
1549 |
def __init__(self,*surfaces): |
1550 |
""" |
1551 |
Creates a surface loop. |
1552 |
""" |
1553 |
if len(surfaces)==1: |
1554 |
surfaces=surfaces[0] |
1555 |
if not hasattr(surfaces,'__iter__'): raise ValueError("SurfaceLoop needs at least two points") |
1556 |
if len(surfaces)<2: |
1557 |
raise ValueError("at least two surfaces have to be given.") |
1558 |
for i in range(len(surfaces)): |
1559 |
if not isinstance(surfaces[i].getUnderlyingPrimitive(),Manifold2D): |
1560 |
raise TypeError("%s-th argument is not a Manifold2D object."%i) |
1561 |
self.__surfaces=list(surfaces) |
1562 |
Primitive.__init__(self) |
1563 |
PrimitiveBase.__init__(self) |
1564 |
|
1565 |
def __len__(self): |
1566 |
""" |
1567 |
Returns the number of curves in the SurfaceLoop. |
1568 |
""" |
1569 |
return len(self.__surfaces) |
1570 |
|
1571 |
def __neg__(self): |
1572 |
""" |
1573 |
Returns a view onto the curve with reversed ordering. |
1574 |
""" |
1575 |
return ReverseSurfaceLoop(self) |
1576 |
|
1577 |
def getSurfaces(self): |
1578 |
""" |
1579 |
Returns the surfaces defining the SurfaceLoop. |
1580 |
""" |
1581 |
return self.__surfaces |
1582 |
|
1583 |
def collectPrimitiveBases(self): |
1584 |
""" |
1585 |
Returns primitives used to construct the SurfaceLoop. |
1586 |
""" |
1587 |
out=[self] |
1588 |
for c in self.getSurfaces(): out+=c.collectPrimitiveBases() |
1589 |
return out |
1590 |
|
1591 |
def substitute(self,sub_dict): |
1592 |
""" |
1593 |
Returns a copy of self with substitutes for the primitives used to |
1594 |
construct it given by the dictionary ``sub_dict``. If a substitute for |
1595 |
the object is given by ``sub_dict`` the value is returned, otherwise a |
1596 |
new instance with substituted arguments is returned. |
1597 |
""" |
1598 |
if not sub_dict.has_key(self): |
1599 |
new_s=[] |
1600 |
for s in self.getSurfaces(): new_s.append(s.substitute(sub_dict)) |
1601 |
sub_dict[self]=SurfaceLoop(*tuple(new_s)) |
1602 |
return sub_dict[self] |
1603 |
|
1604 |
def isColocated(self,primitive): |
1605 |
""" |
1606 |
Returns True if each surface is colocated with a curve in ``primitive`` |
1607 |
and vice versa. |
1608 |
""" |
1609 |
if hasattr(primitive,"getUnderlyingPrimitive"): |
1610 |
if isinstance(primitive.getUnderlyingPrimitive(),SurfaceLoop): |
1611 |
if len(primitive) == len(self): |
1612 |
sp0=self.getSurfaces() |
1613 |
sp1=primitive.getSurfaces() |
1614 |
for s0 in sp0: |
1615 |
colocated = False |
1616 |
for s1 in sp1: |
1617 |
colocated = colocated or s0.isColocated(s1) |
1618 |
if not colocated: return False |
1619 |
return True |
1620 |
return False |
1621 |
|
1622 |
class ReverseSurfaceLoop(ReversePrimitive, PrimitiveBase): |
1623 |
""" |
1624 |
A view of a SurfaceLoop with reverse orientation. |
1625 |
|
1626 |
The loop must represent a closed shell and the primitives should be |
1627 |
oriented consistently. |
1628 |
""" |
1629 |
def __init__(self,surface_loop): |
1630 |
""" |
1631 |
Creates a polygon from a list of line surfaces. The curves must form |
1632 |
a closed loop. |
1633 |
""" |
1634 |
if not isinstance(surface_loop, SurfaceLoop): |
1635 |
raise TypeError("arguments need to be an instance of SurfaceLoop.") |
1636 |
ReversePrimitive.__init__(self, surface_loop) |
1637 |
PrimitiveBase.__init__(self) |
1638 |
|
1639 |
def getSurfaces(self): |
1640 |
""" |
1641 |
Returns the surfaces defining the SurfaceLoop. |
1642 |
""" |
1643 |
return [ -s for s in self.getUnderlyingPrimitive().getSurfaces() ] |
1644 |
|
1645 |
def __len__(self): |
1646 |
return len(self.getUnderlyingPrimitive()) |
1647 |
|
1648 |
#============================== |
1649 |
class Manifold3D(PrimitiveBase): |
1650 |
""" |
1651 |
General three-dimensional manifold. |
1652 |
""" |
1653 |
def __init__(self): |
1654 |
""" |
1655 |
Creates a three-dimensional manifold. |
1656 |
""" |
1657 |
PrimitiveBase.__init__(self) |
1658 |
self.__transfinitemeshing=False |
1659 |
|
1660 |
def getBoundary(self): |
1661 |
""" |
1662 |
Returns a list of the 2-dimensional manifolds forming the boundary |
1663 |
of the volume (including holes). |
1664 |
""" |
1665 |
raise NotImplementedError() |
1666 |
|
1667 |
def setElementDistribution(self,n,progression=1,createBump=False): |
1668 |
""" |
1669 |
Defines the number of elements on the lines and surfaces |
1670 |
|
1671 |
:param n: number of elements on the line |
1672 |
:type n: ``int`` |
1673 |
:param progression: a positive progression factor |
1674 |
:type progression: positive ``float`` |
1675 |
:param createBump: of elements on the line |
1676 |
:type createBump: ``bool`` |
1677 |
""" |
1678 |
for i in self.getBoundary(): i.setElementDistribution(n,progression,createBump) |
1679 |
|
1680 |
def setRecombination(self, max_deviation=45*DEG): |
1681 |
""" |
1682 |
Recombines triangular meshes on all surface into mixed triangular/quadrangular meshes. These meshes |
1683 |
are then used to generate the volume mesh if possible. Recombination requires 3D transfinite meshing. |
1684 |
|
1685 |
``max_deviation`` specifies the maximum derivation of the largest angle in the quadrangle |
1686 |
from the right angle. Use ``max_deviation``==``None`` to switch off recombination. |
1687 |
|
1688 |
:param max_deviation: maximum derivation of the largest angle in the quadrangle from the right angle. |
1689 |
:type max_deviation: ``float`` or ``None``. |
1690 |
""" |
1691 |
if not max_deviation==None: |
1692 |
if max_deviation<=0: |
1693 |
raise ValueError, "max_deviation must be positive." |
1694 |
if max_deviation/DEG>=90: |
1695 |
raise ValueError, "max_deviation must be smaller than 90 DEG" |
1696 |
for i in self.getBoundary(): i.setRecombination(max_deviation) |
1697 |
self.setTransfiniteMeshing() |
1698 |
|
1699 |
def setTransfiniteMeshing(self,orientation="Left"): |
1700 |
""" |
1701 |
applies 3D transfinite meshing to the volume and all surface. It requires transfinite meshing on all faces which will be enforced (except |
1702 |
if ``orientation`` is equal to ``None``. |
1703 |
|
1704 |
:param orientation: sets the orientation of the triangles on the surfaces. It is only relevant if recombination is not used. |
1705 |
If orientation is equal to ``None``, the transinite meshing is not applied to the surfaces but must be set by the user. |
1706 |
:type orientation: `Manifold2D.LEFT`, `Manifold2D.RIGHT`, `Manifold2D.ALTERNATE` |
1707 |
:note: Transfinite meshing can not be applied if holes are present. |
1708 |
:note: only five or six surfaces may be used. |
1709 |
:warning: The functionality of transfinite meshing without recombination is not entirely clear in `gmsh`. So please apply this method with care. |
1710 |
""" |
1711 |
if isinstance(self, ReversePrimitive): |
1712 |
return self.getUnderlyingPrimitive().setTransfiniteMeshing(orientation) |
1713 |
else: |
1714 |
if not orientation == None: |
1715 |
if not orientation in [ Manifold2D.LEFT, Manifold2D.RIGHT, Manifold2D.ALTERNATE]: |
1716 |
raise ValueError,"invalid orientation %s."%orientation |
1717 |
|
1718 |
if self.hasHole(): |
1719 |
raise ValueError,"transfinite meshing cannot be appled to surfaces with a hole." |
1720 |
b=self.getBoundary() |
1721 |
# find a face with 3/4 Points: |
1722 |
if len(b) == 6 : |
1723 |
des_len=4 |
1724 |
elif len(b) == 5: |
1725 |
des_len=3 |
1726 |
else: |
1727 |
raise ValueError,"transfinite meshing permits 5 or 6 surface only." |
1728 |
# start_b=None |
1729 |
# for l in b: |
1730 |
# if len(l.getPolygon()) == des_len: |
1731 |
# start_b = l |
1732 |
# break |
1733 |
# if start_b == None: |
1734 |
# raise ValueError,"Expect face with %s points."%des_len |
1735 |
# start_poly=start_b.getPolygon() |
1736 |
# now we need to find the opposite face: |
1737 |
# opposite = None |
1738 |
# for l in b: |
1739 |
# if all( [ not k in start_poly for k in l.getPolygon() ]): |
1740 |
# opposite = l |
1741 |
# break |
1742 |
# if opposite == None: |
1743 |
# raise ValueError,"Unable to find face for transfinite interpolation." |
1744 |
# opposite_poly=opposite.getPolygon() |
1745 |
# if not len(opposite_poly) == des_len: |
1746 |
# raise ValueError,"Unable to find face for transfinite interpolation." |
1747 |
# this needs more work to find the points!!!! |
1748 |
points = [] |
1749 |
self.__points=points |
1750 |
if not orientation == None: |
1751 |
for i in b: i.setTransfiniteMeshing(orientation) |
1752 |
self.__transfinitemeshing=True |
1753 |
|
1754 |
def resetTransfiniteMeshing(self): |
1755 |
""" |
1756 |
removes the transfinite meshing from the volume but not from the surfaces |
1757 |
""" |
1758 |
if isinstance(self, ReversePrimitive): |
1759 |
self.getUnderlyingPrimitive().resetTransfiniteMeshing() |
1760 |
else: |
1761 |
self.__transfinitemeshing=False |
1762 |
|
1763 |
def getTransfiniteMeshing(self): |
1764 |
""" |
1765 |
returns the transfinite meshing setings. If transfinite meshing is not set, ``None`` is returned. |
1766 |
|
1767 |
:return: a tuple of the tuple of points used to define the transfinite meshing and the orientation. If no points are set the points tuple is returned as ``None``. If no transfinite meshing is not set, ``None`` is returned. |
1768 |
:rtype: ``tuple`` of a ``tuple`` of `Point` s (or ``None``) and the orientation which is one of the values `Manifold2D.LEFT` , `Manifold2D.RIGHT` , `Manifold2D.ALTERNATE` |
1769 |
""" |
1770 |
if isinstance(self, ReversePrimitive): |
1771 |
return self.getUnderlyingPrimitive().getTransfiniteMeshing() |
1772 |
else: |
1773 |
if self.__transfinitemeshing: |
1774 |
return self.__points |
1775 |
else: |
1776 |
return None |
1777 |
|
1778 |
class Volume(Manifold3D, Primitive): |
1779 |
""" |
1780 |
A volume with holes. |
1781 |
""" |
1782 |
def __init__(self,loop,holes=[]): |
1783 |
""" |
1784 |
Creates a volume with holes. |
1785 |
|
1786 |
:param loop: `SurfaceLoop` defining the boundary of the surface |
1787 |
:param holes: list of `SurfaceLoop` defining holes in the surface |
1788 |
:note: A SurfaceLoop defining a hole should not have any surfaces in |
1789 |
common with the exterior SurfaceLoop. |
1790 |
:note: A SurfaceLoop defining a hole should not have any surfaces in |
1791 |
common with another SurfaceLoop defining a hole in the same |
1792 |
volume. |
1793 |
""" |
1794 |
if not isinstance(loop.getUnderlyingPrimitive(), SurfaceLoop): |
1795 |
raise TypeError("argument loop needs to be a SurfaceLoop object.") |
1796 |
for i in range(len(holes)): |
1797 |
if not isinstance(holes[i].getUnderlyingPrimitive(), SurfaceLoop): |
1798 |
raise TypeError("%i th hole needs to be a SurfaceLoop object.") |
1799 |
Primitive.__init__(self) |
1800 |
Manifold3D.__init__(self) |
1801 |
self.__loop=loop |
1802 |
self.__holes=holes |
1803 |
self.__transfinitemeshing=False |
1804 |
|
1805 |
def getHoles(self): |
1806 |
""" |
1807 |
Returns the holes in the volume. |
1808 |
""" |
1809 |
return self.__holes |
1810 |
|
1811 |
def getSurfaceLoop(self): |
1812 |
""" |
1813 |
Returns the loop forming the surface. |
1814 |
""" |
1815 |
return self.__loop |
1816 |
|
1817 |
def substitute(self,sub_dict): |
1818 |
""" |
1819 |
Returns a copy of self with substitutes for the primitives used to |
1820 |
construct it given by the dictionary ``sub_dict``. If a substitute for |
1821 |
the object is given by ``sub_dict`` the value is returned, otherwise a |
1822 |
new instance with substituted arguments is returned. |
1823 |
""" |
1824 |
if not sub_dict.has_key(self): |
1825 |
sub_dict[self]=Volume(self.getSurfaceLoop().substitute(sub_dict),[ h.substitute(sub_dict) for h in self.getHoles()]) |
1826 |
return sub_dict[self] |
1827 |
|
1828 |
def isColocated(self,primitive): |
1829 |
""" |
1830 |
Returns True if each curve is colocated with a curve in ``primitive``. |
1831 |
""" |
1832 |
if hasattr(primitive,"getUnderlyingPrimitive"): |
1833 |
if isinstance(primitive.getUnderlyingPrimitive(),Volume): |
1834 |
if self.getSurfaceLoop().isColocated(primitive.getSurfaceLoop()): |
1835 |
hs0=self.getHoles() |
1836 |
hs1=primitive.getHoles() |
1837 |
if len(hs0) == len(hs1): |
1838 |
for h0 in hs0: |
1839 |
colocated = False |
1840 |
for h1 in hs1: |
1841 |
colocated = colocated or h0.isColocated(h1) |
1842 |
if not colocated: return False |
1843 |
return True |
1844 |
return False |
1845 |
|
1846 |
def collectPrimitiveBases(self): |
1847 |
""" |
1848 |
Returns primitives used to construct the surface. |
1849 |
""" |
1850 |
out=[self] + self.getSurfaceLoop().collectPrimitiveBases() |
1851 |
for i in self.getHoles(): out+=i.collectPrimitiveBases() |
1852 |
return out |
1853 |
|
1854 |
def getBoundary(self): |
1855 |
""" |
1856 |
Returns a list of the 2-dimensional manifolds forming the surface of the Volume (including holes). |
1857 |
""" |
1858 |
out = []+ self.getSurfaceLoop().getSurfaces() |
1859 |
for h in self.getHoles(): out+=h.getSurfaces() |
1860 |
return out |
1861 |
|
1862 |
def hasHole(self): |
1863 |
""" |
1864 |
Returns True if a hole is present. |
1865 |
""" |
1866 |
return len(self.getHoles())>0 |
1867 |
class PropertySet(Primitive, PrimitiveBase): |
1868 |
""" |
1869 |
Defines a group of `Primitive` s which can be accessed through a name. |
1870 |
""" |
1871 |
def __init__(self,name,*items): |
1872 |
Primitive.__init__(self) |
1873 |
self.__dim=None |
1874 |
self.clearItems() |
1875 |
self.addItem(*items) |
1876 |
self.setName(name) |
1877 |
|
1878 |
def getDim(self): |
1879 |
""" |
1880 |
Returns the dimensionality of the items. |
1881 |
""" |
1882 |
if self.__dim == None: |
1883 |
items=self.getItems() |
1884 |
if len(items)>0: |
1885 |
if isinstance(items[0] ,Manifold1D): |
1886 |
self.__dim=1 |
1887 |
elif isinstance(items[0] ,Manifold2D): |
1888 |
self.__dim=2 |
1889 |
elif isinstance(items[0] ,Manifold3D): |
1890 |
self.__dim=3 |
1891 |
else: |
1892 |
self.__dim=0 |
1893 |
return self.__dim |
1894 |
|
1895 |
def __repr__(self): |
1896 |
""" |
1897 |
Returns a string representation. |
1898 |
""" |
1899 |
return "%s(%s)"%(self.getName(),self.getID()) |
1900 |
|
1901 |
def getManifoldClass(self): |
1902 |
""" |
1903 |
Returns the manifold class expected from items. |
1904 |
""" |
1905 |
d=self.getDim() |
1906 |
if d == None: |
1907 |
raise ValueError("undefined spatial diemnsion.") |
1908 |
else: |
1909 |
if d==0: |
1910 |
return Point |
1911 |
elif d==1: |
1912 |
return Manifold1D |
1913 |
elif d==2: |
1914 |
return Manifold2D |
1915 |
else: |
1916 |
return Manifold3D |
1917 |
|
1918 |
def getName(self): |
1919 |
""" |
1920 |
Returns the name of the set. |
1921 |
""" |
1922 |
return self.__name |
1923 |
|
1924 |
def setName(self,name): |
1925 |
""" |
1926 |
Sets the name. |
1927 |
""" |
1928 |
self.__name=str(name) |
1929 |
|
1930 |
def addItems(self,*items): |
1931 |
""" |
1932 |
Adds items. An item my be any `Primitive` but no `PropertySet`. |
1933 |
""" |
1934 |
self.addItem(*items) |
1935 |
|
1936 |
def addItem(self,*items): |
1937 |
""" |
1938 |
Adds items. An item my be any `Primitive` but no `PropertySet`. |
1939 |
""" |
1940 |
for i in items: |
1941 |
if not (isinstance(i, Manifold1D) or isinstance(i, Manifold2D) or isinstance(i, Manifold3D) ): |
1942 |
raise TypeError, "Illegal argument type %s added to PropertySet."%(i.__class__) |
1943 |
for i in items: |
1944 |
if not i in self.__items: |
1945 |
if len(self.__items)>0: |
1946 |
m=self.getManifoldClass() |
1947 |
if not isinstance(i, m): |
1948 |
raise TypeError("argument %s is not a %s class object."%(i, m.__name__)) |
1949 |
self.__items.append(i) |
1950 |
|
1951 |
def getNumItems(self): |
1952 |
""" |
1953 |
Returns the number of items in the property set. |
1954 |
""" |
1955 |
return len(self.__items) |
1956 |
|
1957 |
def getItems(self): |
1958 |
""" |
1959 |
Returns the list of items. |
1960 |
""" |
1961 |
return self.__items |
1962 |
|
1963 |
def clearItems(self): |
1964 |
""" |
1965 |
Clears the list of items. |
1966 |
""" |
1967 |
self.__items=[] |
1968 |
|
1969 |
def collectPrimitiveBases(self): |
1970 |
""" |
1971 |
Returns primitives used to construct the PropertySet. |
1972 |
""" |
1973 |
out=[self] |
1974 |
for i in self.getItems(): out+=i.collectPrimitiveBases() |
1975 |
return out |
1976 |
|
1977 |
def getTag(self): |
1978 |
""" |
1979 |
Returns the tag used for this property set. |
1980 |
""" |
1981 |
return self.getID() |
1982 |
|