1 |
# |
2 |
# $Id$ |
3 |
# |
4 |
####################################################### |
5 |
# |
6 |
# Copyright 2003-2007 by ACceSS MNRF |
7 |
# Copyright 2007 by University of Queensland |
8 |
# |
9 |
# http://esscc.uq.edu.au |
10 |
# Primary Business: Queensland, Australia |
11 |
# Licensed under the Open Software License version 3.0 |
12 |
# http://www.opensource.org/licenses/osl-3.0.php |
13 |
# |
14 |
####################################################### |
15 |
# |
16 |
|
17 |
__copyright__=""" Copyright (c) 2006 by ACcESS MNRF |
18 |
http://www.access.edu.au |
19 |
Primary Business: Queensland, Australia""" |
20 |
__license__="""Licensed under the Open Software License version 3.0 |
21 |
http://www.opensource.org/licenses/osl-3.0.php""" |
22 |
|
23 |
from esys.escript import * |
24 |
from esys.escript.modelframe import Model,IterationDivergenceError |
25 |
from esys.escript.linearPDEs import LinearPDE |
26 |
import numarray |
27 |
|
28 |
|
29 |
class TemperatureAdvection(Model): |
30 |
""" |
31 |
|
32 |
The conservation of internal heat energy is given by |
33 |
|
34 |
M{S{rho} c_p ( dT/dt+v[j]*grad(T)[j])-grad(\kappa grad(T)_{,i}=Q} |
35 |
|
36 |
M{n_i\kappa T_{,i}=0} |
37 |
|
38 |
it is assummed that M{\rho c_p} is constant in time. |
39 |
|
40 |
solved by Taylor Galerkin method |
41 |
|
42 |
""" |
43 |
def __init__(self,**kwargs): |
44 |
super(TemperatureAdvection, self).__init__(**kwargs) |
45 |
self.declareParameter(domain=None, \ |
46 |
temperature=1., \ |
47 |
velocity=numarray.zeros([3]), |
48 |
density=1., \ |
49 |
heat_capacity=1., \ |
50 |
thermal_permabilty=1., \ |
51 |
# reference_temperature=0., \ |
52 |
# radiation_coefficient=0., \ |
53 |
thermal_source=0., \ |
54 |
fixed_temperature=0., |
55 |
location_fixed_temperature=Data(), |
56 |
safety_factor=0.1) |
57 |
|
58 |
def doInitialization(self): |
59 |
self.__pde=LinearPDE(self.domain) |
60 |
self.__pde.setSymmetryOn() |
61 |
self.__pde.setReducedOrderOn() |
62 |
self.__pde.setSolverMethod(self.__pde.LUMPING) |
63 |
self.__pde.setValue(D=self.heat_capacity*self.density) |
64 |
|
65 |
def getSafeTimeStepSize(self,dt): |
66 |
""" |
67 |
returns new step size |
68 |
""" |
69 |
h=self.domain.getSize() |
70 |
return self.safety_factor*inf(h**2/(h*abs(self.heat_capacity*self.density)*length(self.velocity)+self.thermal_permabilty)) |
71 |
|
72 |
def G(self,T,alpha): |
73 |
""" |
74 |
tangential operator for taylor galerikin |
75 |
""" |
76 |
g=grad(T) |
77 |
self.__pde.setValue(X=-self.thermal_permabilty*g, \ |
78 |
Y=self.thermal_source-self.__rhocp*inner(self.velocity,g), \ |
79 |
r=(self.__fixed_T-self.temperature)*alpha,\ |
80 |
q=self.location_fixed_temperature) |
81 |
return self.__pde.getSolution() |
82 |
|
83 |
|
84 |
def doStepPostprocessing(self,dt): |
85 |
""" |
86 |
perform taylor galerkin step |
87 |
""" |
88 |
T=self.temperature |
89 |
self.__rhocp=self.heat_capacity*self.density |
90 |
self.__fixed_T=self.fixed_temperature |
91 |
self.temperature=dt*self.G(dt/2*self.G(T,1./dt)+T,1./dt)+T |
92 |
self.trace("Temperature range is %e %e"%(inf(self.temperature),sup(self.temperature))) |