1 |
|
2 |
/* $Id$ */ |
3 |
|
4 |
/******************************************************* |
5 |
* |
6 |
* Copyright 2003-2007 by ACceSS MNRF |
7 |
* Copyright 2007 by University of Queensland |
8 |
* |
9 |
* http://esscc.uq.edu.au |
10 |
* Primary Business: Queensland, Australia |
11 |
* Licensed under the Open Software License version 3.0 |
12 |
* http://www.opensource.org/licenses/osl-3.0.php |
13 |
* |
14 |
*******************************************************/ |
15 |
|
16 |
/* PCG iterations */ |
17 |
|
18 |
#include "SystemMatrix.h" |
19 |
#include "Paso.h" |
20 |
#include "Solver.h" |
21 |
|
22 |
#ifdef _OPENMP |
23 |
#include <omp.h> |
24 |
#endif |
25 |
|
26 |
#ifdef PASO_MPI |
27 |
#include <mpi.h> |
28 |
#endif |
29 |
|
30 |
/* |
31 |
* |
32 |
* Purpose |
33 |
* ======= |
34 |
* |
35 |
* PCG solves the linear system A*x = b using the |
36 |
* preconditioned conjugate gradient method plus a smoother |
37 |
* A has to be symmetric. |
38 |
* |
39 |
* Convergence test: norm( b - A*x )< TOL. |
40 |
* For other measures, see the above reference. |
41 |
* |
42 |
* Arguments |
43 |
* ========= |
44 |
* |
45 |
* r (input) DOUBLE PRECISION array, dimension N. |
46 |
* On entry, residual of inital guess x |
47 |
* |
48 |
* x (input/output) DOUBLE PRECISION array, dimension N. |
49 |
* On input, the initial guess. |
50 |
* |
51 |
* ITER (input/output) INT |
52 |
* On input, the maximum iterations to be performed. |
53 |
* On output, actual number of iterations performed. |
54 |
* |
55 |
* INFO (output) INT |
56 |
* |
57 |
* = SOLVER_NO_ERROR: Successful exit. Iterated approximate solution returned. |
58 |
* = SOLVEr_MAXITER_REACHED |
59 |
* = SOLVER_INPUT_ERROR Illegal parameter: |
60 |
* = SOLVEr_BREAKDOWN: If parameters rHO or OMEGA become smaller |
61 |
* = SOLVER_MEMORY_ERROR : If parameters rHO or OMEGA become smaller |
62 |
* |
63 |
* ============================================================== |
64 |
*/ |
65 |
|
66 |
err_t Paso_Solver_PCG( |
67 |
Paso_SystemMatrix * A, |
68 |
double * r, |
69 |
double * x, |
70 |
dim_t *iter, |
71 |
double * tolerance, |
72 |
Paso_Performance* pp) { |
73 |
|
74 |
|
75 |
/* Local variables */ |
76 |
dim_t num_iter=0,maxit,num_iter_global; |
77 |
dim_t i0; |
78 |
bool_t breakFlag=FALSE, maxIterFlag=FALSE, convergeFlag=FALSE; |
79 |
err_t status = SOLVER_NO_ERROR; |
80 |
dim_t n = Paso_SystemMatrix_getTotalNumRows(A); |
81 |
double *resid = tolerance, *rs=NULL, *p=NULL, *v=NULL, *x2=NULL ; |
82 |
double tau_old,tau,beta,delta,gamma_1,gamma_2,alpha,sum_1,sum_2,sum_3,sum_4,sum_5,tol; |
83 |
#ifdef PASO_MPI |
84 |
double loc_sum[2], sum[2]; |
85 |
#endif |
86 |
double norm_of_residual,norm_of_residual_global; |
87 |
register double d; |
88 |
|
89 |
/* */ |
90 |
/*-----------------------------------------------------------------*/ |
91 |
/* */ |
92 |
/* Start of Calculation : */ |
93 |
/* --------------------- */ |
94 |
/* */ |
95 |
/* */ |
96 |
rs=TMPMEMALLOC(n,double); |
97 |
p=TMPMEMALLOC(n,double); |
98 |
v=TMPMEMALLOC(n,double); |
99 |
x2=TMPMEMALLOC(n,double); |
100 |
|
101 |
/* Test the input parameters. */ |
102 |
|
103 |
if (n < 0) { |
104 |
status = SOLVER_INPUT_ERROR; |
105 |
} else if (rs==NULL || p==NULL || v==NULL || x2==NULL) { |
106 |
status = SOLVER_MEMORY_ERROR; |
107 |
} else { |
108 |
maxit = *iter; |
109 |
tol = *resid; |
110 |
#pragma omp parallel firstprivate(maxit,tol,convergeFlag,maxIterFlag,breakFlag) \ |
111 |
private(tau_old,tau,beta,delta,gamma_1,gamma_2,alpha,norm_of_residual,num_iter) |
112 |
{ |
113 |
Performance_startMonitor(pp,PERFORMANCE_SOLVER); |
114 |
/* initialize data */ |
115 |
#pragma omp for private(i0) schedule(static) |
116 |
for (i0=0;i0<n;i0++) { |
117 |
rs[i0]=r[i0]; |
118 |
x2[i0]=x[i0]; |
119 |
} |
120 |
#pragma omp for private(i0) schedule(static) |
121 |
for (i0=0;i0<n;i0++) { |
122 |
p[i0]=0; |
123 |
v[i0]=0; |
124 |
} |
125 |
num_iter=0; |
126 |
tau = 0; |
127 |
/* start of iteration */ |
128 |
while (!(convergeFlag || maxIterFlag || breakFlag)) { |
129 |
++(num_iter); |
130 |
#pragma omp barrier |
131 |
#pragma omp master |
132 |
{ |
133 |
sum_1 = 0; |
134 |
sum_2 = 0; |
135 |
sum_3 = 0; |
136 |
sum_4 = 0; |
137 |
sum_5 = 0; |
138 |
} |
139 |
/* v=prec(r) */ |
140 |
Performance_stopMonitor(pp,PERFORMANCE_SOLVER); |
141 |
Performance_startMonitor(pp,PERFORMANCE_PRECONDITIONER); |
142 |
Paso_Solver_solvePreconditioner(A,v,r); |
143 |
Performance_stopMonitor(pp,PERFORMANCE_PRECONDITIONER); |
144 |
Performance_startMonitor(pp,PERFORMANCE_SOLVER); |
145 |
/* tau=v*r */ |
146 |
#pragma omp for private(i0) reduction(+:sum_1) schedule(static) |
147 |
for (i0=0;i0<n;i0++) sum_1+=v[i0]*r[i0]; /* Limit to local values of v[] and r[] */ |
148 |
#ifdef PASO_MPI |
149 |
/* In case we have many MPI processes, each of which may have several OMP threads: |
150 |
OMP master participates in an MPI reduction to get global sum_1 */ |
151 |
#pragma omp master |
152 |
{ |
153 |
loc_sum[0] = sum_1; |
154 |
MPI_Allreduce(loc_sum, &sum_1, 1, MPI_DOUBLE, MPI_SUM, A->mpi_info->comm); |
155 |
} |
156 |
#endif |
157 |
tau_old=tau; |
158 |
tau=sum_1; |
159 |
/* p=v+beta*p */ |
160 |
if (num_iter==1) { |
161 |
#pragma omp for private(i0) schedule(static) |
162 |
for (i0=0;i0<n;i0++) p[i0]=v[i0]; |
163 |
} else { |
164 |
beta=tau/tau_old; |
165 |
#pragma omp for private(i0) schedule(static) |
166 |
for (i0=0;i0<n;i0++) p[i0]=v[i0]+beta*p[i0]; |
167 |
} |
168 |
/* v=A*p */ |
169 |
Performance_stopMonitor(pp,PERFORMANCE_SOLVER); |
170 |
Performance_startMonitor(pp,PERFORMANCE_MVM); |
171 |
Paso_SystemMatrix_MatrixVector_CSR_OFFSET0(ONE, A, p,ZERO,v); |
172 |
Paso_SystemMatrix_MatrixVector_CSR_OFFSET0(ONE, A, p,ZERO,v); |
173 |
Performance_stopMonitor(pp,PERFORMANCE_MVM); |
174 |
Performance_startMonitor(pp,PERFORMANCE_SOLVER); |
175 |
/* delta=p*v */ |
176 |
#pragma omp for private(i0) reduction(+:sum_2) schedule(static) |
177 |
for (i0=0;i0<n;i0++) sum_2+=v[i0]*p[i0]; |
178 |
#ifdef PASO_MPI |
179 |
#pragma omp master |
180 |
{ |
181 |
loc_sum[0] = sum_2; |
182 |
MPI_Allreduce(loc_sum, &sum_2, 1, MPI_DOUBLE, MPI_SUM, A->mpi_info->comm); |
183 |
} |
184 |
#endif |
185 |
delta=sum_2; |
186 |
|
187 |
|
188 |
if (! (breakFlag = (ABS(delta) <= TOLERANCE_FOR_SCALARS))) { |
189 |
alpha=tau/delta; |
190 |
/* smoother */ |
191 |
#pragma omp for private(i0) schedule(static) |
192 |
for (i0=0;i0<n;i0++) r[i0]-=alpha*v[i0]; |
193 |
#pragma omp for private(i0,d) reduction(+:sum_3,sum_4) schedule(static) |
194 |
for (i0=0;i0<n;i0++) { |
195 |
d=r[i0]-rs[i0]; |
196 |
sum_3+=d*d; |
197 |
sum_4+=d*rs[i0]; |
198 |
} |
199 |
#ifdef PASO_MPI |
200 |
#pragma omp master |
201 |
{ |
202 |
loc_sum[0] = sum_3; |
203 |
loc_sum[1] = sum_4; |
204 |
MPI_Allreduce(loc_sum, sum, 2, MPI_DOUBLE, MPI_SUM, A->mpi_info->comm); |
205 |
sum_3=sum[0]; |
206 |
sum_4=sum[1]; |
207 |
} |
208 |
#endif |
209 |
gamma_1= ( (ABS(sum_3)<= ZERO) ? 0 : -sum_4/sum_3) ; |
210 |
gamma_2= ONE-gamma_1; |
211 |
#pragma omp for private(i0) schedule(static) |
212 |
for (i0=0;i0<n;++i0) { |
213 |
rs[i0]=gamma_2*rs[i0]+gamma_1*r[i0]; |
214 |
x2[i0]+=alpha*p[i0]; |
215 |
x[i0]=gamma_2*x[i0]+gamma_1*x2[i0]; |
216 |
} |
217 |
#pragma omp for private(i0) reduction(+:sum_5) schedule(static) |
218 |
for (i0=0;i0<n;++i0) sum_5+=rs[i0]*rs[i0]; |
219 |
#ifdef PASO_MPI |
220 |
#pragma omp master |
221 |
{ |
222 |
loc_sum[0] = sum_5; |
223 |
MPI_Allreduce(loc_sum, &sum_5, 1, MPI_DOUBLE, MPI_SUM, A->mpi_info->comm); |
224 |
} |
225 |
#endif |
226 |
norm_of_residual=sqrt(sum_5); |
227 |
convergeFlag = norm_of_residual <= tol; |
228 |
maxIterFlag = num_iter == maxit; |
229 |
breakFlag = (ABS(tau) <= TOLERANCE_FOR_SCALARS); |
230 |
} |
231 |
} |
232 |
/* end of iteration */ |
233 |
#pragma omp master |
234 |
{ |
235 |
num_iter_global=num_iter; |
236 |
norm_of_residual_global=norm_of_residual; |
237 |
if (maxIterFlag) { |
238 |
status = SOLVER_MAXITER_REACHED; |
239 |
} else if (breakFlag) { |
240 |
status = SOLVER_BREAKDOWN; |
241 |
} |
242 |
} |
243 |
Performance_stopMonitor(pp,PERFORMANCE_SOLVER); |
244 |
} /* end of parallel region */ |
245 |
TMPMEMFREE(rs); |
246 |
TMPMEMFREE(x2); |
247 |
TMPMEMFREE(v); |
248 |
TMPMEMFREE(p); |
249 |
*iter=num_iter_global; |
250 |
*resid=norm_of_residual_global; |
251 |
} |
252 |
/* End of PCG */ |
253 |
return status; |
254 |
} |