1 |
|
2 |
/* $Id$ */ |
3 |
|
4 |
/******************************************************* |
5 |
* |
6 |
* Copyright 2003-2007 by ACceSS MNRF |
7 |
* Copyright 2007 by University of Queensland |
8 |
* |
9 |
* http://esscc.uq.edu.au |
10 |
* Primary Business: Queensland, Australia |
11 |
* Licensed under the Open Software License version 3.0 |
12 |
* http://www.opensource.org/licenses/osl-3.0.php |
13 |
* |
14 |
*******************************************************/ |
15 |
|
16 |
/**************************************************************/ |
17 |
|
18 |
/* assembles the mass matrix in lumped form */ |
19 |
|
20 |
/* The coefficient D has to be defined on the integration points or not present. */ |
21 |
|
22 |
/* lumpedMat has to be initialized before the routine is called. */ |
23 |
|
24 |
/**************************************************************/ |
25 |
|
26 |
#include "Assemble.h" |
27 |
#include "Util.h" |
28 |
#ifdef _OPENMP |
29 |
#include <omp.h> |
30 |
#endif |
31 |
|
32 |
|
33 |
/* Disabled until the tests pass */ |
34 |
/* #define NEW_LUMPING */ /* */ |
35 |
|
36 |
/**************************************************************/ |
37 |
|
38 |
void Finley_Assemble_LumpedSystem(Finley_NodeFile* nodes,Finley_ElementFile* elements, escriptDataC* lumpedMat, escriptDataC* D) |
39 |
{ |
40 |
|
41 |
bool_t reducedIntegrationOrder=FALSE, expandedD; |
42 |
char error_msg[LenErrorMsg_MAX]; |
43 |
Assemble_Parameters p; |
44 |
dim_t dimensions[ESCRIPT_MAX_DATA_RANK], k, e, len_EM_lumpedMat, q, s; |
45 |
type_t funcspace; |
46 |
index_t color,*row_index=NULL; |
47 |
double *S=NULL, *EM_lumpedMat=NULL, *Vol=NULL, *D_p=NULL, *lumpedMat_p=NULL; |
48 |
register double rtmp; |
49 |
size_t len_EM_lumpedMat_size; |
50 |
#ifdef NEW_LUMPING /* HRZ lumping */ |
51 |
register double m_t, diagS; |
52 |
#endif |
53 |
|
54 |
Finley_resetError(); |
55 |
|
56 |
if (nodes==NULL || elements==NULL) return; |
57 |
if (isEmpty(lumpedMat) || isEmpty(D)) return; |
58 |
if (isEmpty(lumpedMat) && !isEmpty(D)) { |
59 |
Finley_setError(TYPE_ERROR,"Assemble_LumpedSystem: coefficients are non-zero but no lumped matrix is given."); |
60 |
return; |
61 |
} |
62 |
funcspace=getFunctionSpaceType(D); |
63 |
/* check if all function spaces are the same */ |
64 |
if (funcspace==FINLEY_ELEMENTS) { |
65 |
reducedIntegrationOrder=FALSE; |
66 |
} else if (funcspace==FINLEY_FACE_ELEMENTS) { |
67 |
reducedIntegrationOrder=FALSE; |
68 |
} else if (funcspace==FINLEY_REDUCED_ELEMENTS) { |
69 |
reducedIntegrationOrder=TRUE; |
70 |
} else if (funcspace==FINLEY_REDUCED_FACE_ELEMENTS) { |
71 |
reducedIntegrationOrder=TRUE; |
72 |
} else { |
73 |
Finley_setError(TYPE_ERROR,"Assemble_LumpedSystem: assemblage failed because of illegal function space."); |
74 |
} |
75 |
if (! Finley_noError()) return; |
76 |
|
77 |
/* set all parameters in p*/ |
78 |
Assemble_getAssembleParameters(nodes,elements,NULL,lumpedMat, reducedIntegrationOrder, &p); |
79 |
if (! Finley_noError()) return; |
80 |
|
81 |
/* check if all function spaces are the same */ |
82 |
|
83 |
if (! numSamplesEqual(D,p.numQuad,elements->numElements) ) { |
84 |
sprintf(error_msg,"Assemble_LumpedSystem: sample points of coefficient D don't match (%d,%d)",p.numQuad,elements->numElements); |
85 |
Finley_setError(TYPE_ERROR,error_msg); |
86 |
} |
87 |
|
88 |
/* check the dimensions: */ |
89 |
|
90 |
if (p.numEqu==1) { |
91 |
if (!isEmpty(D)) { |
92 |
if (!isDataPointShapeEqual(D,0,dimensions)) { |
93 |
Finley_setError(TYPE_ERROR,"Assemble_LumpedSystem: coefficient D, rank 0 expected."); |
94 |
} |
95 |
|
96 |
} |
97 |
} else { |
98 |
if (!isEmpty(D)) { |
99 |
dimensions[0]=p.numEqu; |
100 |
if (!isDataPointShapeEqual(D,1,dimensions)) { |
101 |
sprintf(error_msg,"Assemble_LumpedSystem: coefficient D, expected shape (%d,)",dimensions[0]); |
102 |
Finley_setError(TYPE_ERROR,error_msg); |
103 |
} |
104 |
} |
105 |
} |
106 |
|
107 |
if (Finley_noError()) { |
108 |
lumpedMat_p=getSampleData(lumpedMat,0); |
109 |
len_EM_lumpedMat=p.row_NN*p.numEqu; |
110 |
len_EM_lumpedMat_size=len_EM_lumpedMat*sizeof(double); |
111 |
expandedD=isExpanded(D); |
112 |
S=p.row_jac->ReferenceElement->S; |
113 |
|
114 |
#pragma omp parallel private(color, EM_lumpedMat, row_index, Vol, D_p, s, q, k, rtmp, m_t, diagS) |
115 |
{ |
116 |
EM_lumpedMat=THREAD_MEMALLOC(len_EM_lumpedMat,double); |
117 |
row_index=THREAD_MEMALLOC(p.row_NN,index_t); |
118 |
if ( !Finley_checkPtr(EM_lumpedMat) && !Finley_checkPtr(row_index) ) { |
119 |
if (p.numEqu == 1) { |
120 |
if (expandedD) { |
121 |
for (color=elements->minColor;color<=elements->maxColor;color++) { |
122 |
/* open loop over all elements: */ |
123 |
#pragma omp for private(e) schedule(static) |
124 |
for(e=0;e<elements->numElements;e++){ |
125 |
if (elements->Color[e]==color) { |
126 |
Vol=&(p.row_jac->volume[INDEX2(0,e,p.numQuad)]); |
127 |
memset(EM_lumpedMat,0,len_EM_lumpedMat_size); |
128 |
D_p=getSampleData(D,e); |
129 |
#ifdef NEW_LUMPING /* HRZ lumping */ |
130 |
/* |
131 |
* Number of PDEs: 1 |
132 |
* D_p varies over element: True |
133 |
*/ |
134 |
m_t=0; /* mass of the element: m_t */ |
135 |
for (q=0;q<p.numQuad;q++) { |
136 |
m_t+=Vol[q]*D_p[q]; |
137 |
} |
138 |
diagS=0; /* diagonal sum: S */ |
139 |
for (s=0;s<p.row_NS;s++) { |
140 |
rtmp=0; |
141 |
for (q=0;q<p.numQuad;q++) { |
142 |
rtmp+=Vol[q]*D_p[q]*S[INDEX2(s,q,p.row_NS)]*S[INDEX2(s,q,p.row_NS)]; |
143 |
} |
144 |
EM_lumpedMat[INDEX2(0,s,p.numEqu)]+=rtmp; |
145 |
diagS+=EM_lumpedMat[INDEX2(0,s,p.numEqu)]; |
146 |
} |
147 |
/* rescale diagonals by m_t/diagS to ensure consistent mass over element */ |
148 |
for (s=0;s<p.row_NS;s++) { |
149 |
EM_lumpedMat[INDEX2(0,s,p.numEqu)]*=m_t/diagS; |
150 |
} |
151 |
#else /* row-sum lumping */ |
152 |
for (s=0;s<p.row_NS;s++) { |
153 |
rtmp=0; |
154 |
for (q=0;q<p.numQuad;q++) rtmp+=Vol[q]*S[INDEX2(s,q,p.row_NS)]*D_p[q]; |
155 |
EM_lumpedMat[INDEX2(0,s,p.numEqu)]+=rtmp; |
156 |
} |
157 |
#endif |
158 |
for (q=0;q<p.row_NN;q++) row_index[q]=p.row_DOF[elements->Nodes[INDEX2(p.row_node[q],e,p.NN)]]; |
159 |
Finley_Util_AddScatter(p.row_NN,row_index,p.numEqu,EM_lumpedMat,lumpedMat_p, p.row_DOF_UpperBound); |
160 |
} /* end color check */ |
161 |
} /* end element loop */ |
162 |
} /* end color loop */ |
163 |
} else { |
164 |
for (color=elements->minColor;color<=elements->maxColor;color++) { |
165 |
/* open loop over all elements: */ |
166 |
#pragma omp for private(e) schedule(static) |
167 |
for(e=0;e<elements->numElements;e++){ |
168 |
if (elements->Color[e]==color) { |
169 |
Vol=&(p.row_jac->volume[INDEX2(0,e,p.numQuad)]); |
170 |
memset(EM_lumpedMat,0,len_EM_lumpedMat_size); |
171 |
D_p=getSampleData(D,e); |
172 |
#ifdef NEW_LUMPING /* HRZ lumping */ |
173 |
/* |
174 |
* Number of PDEs: 1 |
175 |
* D_p varies over element: False |
176 |
*/ |
177 |
m_t=0; /* mass of the element: m_t */ |
178 |
for (q=0;q<p.numQuad;q++) { |
179 |
m_t+=Vol[q]*D_p[0]; |
180 |
} |
181 |
diagS=0; /* diagonal sum: S */ |
182 |
for (s=0;s<p.row_NS;s++) { |
183 |
rtmp=0; |
184 |
for (q=0;q<p.numQuad;q++) { |
185 |
rtmp+=Vol[q]*D_p[0]*S[INDEX2(s,q,p.row_NS)]*S[INDEX2(s,q,p.row_NS)]; |
186 |
} |
187 |
EM_lumpedMat[INDEX2(0,s,p.numEqu)]+=rtmp; |
188 |
diagS+=EM_lumpedMat[INDEX2(0,s,p.numEqu)]; |
189 |
} |
190 |
/* rescale diagonals by m_t/diagS to ensure consistent mass over element */ |
191 |
for (s=0;s<p.row_NS;s++) { |
192 |
EM_lumpedMat[INDEX2(0,s,p.numEqu)]*=m_t/diagS; |
193 |
} |
194 |
#else /* row-sum lumping */ |
195 |
for (s=0;s<p.row_NS;s++) { |
196 |
rtmp=0; |
197 |
for (q=0;q<p.numQuad;q++) rtmp+=Vol[q]*S[INDEX2(s,q,p.row_NS)]; |
198 |
EM_lumpedMat[INDEX2(0,s,p.numEqu)]+=rtmp*D_p[0]; |
199 |
} |
200 |
#endif |
201 |
for (q=0;q<p.row_NN;q++) row_index[q]=p.row_DOF[elements->Nodes[INDEX2(p.row_node[q],e,p.NN)]]; |
202 |
Finley_Util_AddScatter(p.row_NN,row_index,p.numEqu,EM_lumpedMat,lumpedMat_p, p.row_DOF_UpperBound); |
203 |
} /* end color check */ |
204 |
} /* end element loop */ |
205 |
} /* end color loop */ |
206 |
} |
207 |
} else { |
208 |
if (expandedD) { |
209 |
for (color=elements->minColor;color<=elements->maxColor;color++) { |
210 |
/* open loop over all elements: */ |
211 |
#pragma omp for private(e) schedule(static) |
212 |
for(e=0;e<elements->numElements;e++){ |
213 |
if (elements->Color[e]==color) { |
214 |
Vol=&(p.row_jac->volume[INDEX2(0,e,p.numQuad)]); |
215 |
memset(EM_lumpedMat,0,len_EM_lumpedMat_size); |
216 |
D_p=getSampleData(D,e); |
217 |
#ifdef NEW_LUMPING /* HRZ lumping */ |
218 |
/* |
219 |
* Number of PDEs: Multiple |
220 |
* D_p varies over element: True |
221 |
*/ |
222 |
for (k=0;k<p.numEqu;k++) { |
223 |
m_t=0; /* mass of the element: m_t */ |
224 |
for (q=0;q<p.numQuad;q++) { |
225 |
m_t+=Vol[q]*D_p[INDEX2(k,q,p.numEqu)]; |
226 |
} |
227 |
diagS=0; /* diagonal sum: S */ |
228 |
for (s=0;s<p.row_NS;s++) { |
229 |
rtmp=0; |
230 |
for (q=0;q<p.numQuad;q++) { |
231 |
rtmp+=Vol[q]*D_p[INDEX2(k,q,p.numEqu)]*S[INDEX2(s,q,p.row_NS)]*S[INDEX2(s,q,p.row_NS)]; |
232 |
} |
233 |
EM_lumpedMat[INDEX2(k,s,p.numEqu)]+=rtmp; |
234 |
diagS+=EM_lumpedMat[INDEX2(k,s,p.numEqu)]; |
235 |
} |
236 |
/* rescale diagonals by m_t/diagS to ensure consistent mass over element */ |
237 |
for (s=0;s<p.row_NS;s++) { |
238 |
EM_lumpedMat[INDEX2(k,s,p.numEqu)]*=m_t/diagS; |
239 |
} |
240 |
} |
241 |
#else /* row-sum lumping */ |
242 |
for (s=0;s<p.row_NS;s++) { |
243 |
for (k=0;k<p.numEqu;k++) { |
244 |
rtmp=0.; |
245 |
for (q=0;q<p.numQuad;q++) rtmp+=Vol[q]*S[INDEX2(s,q,p.row_NS)]*D_p[INDEX2(k,q,p.numEqu)]; |
246 |
EM_lumpedMat[INDEX2(k,s,p.numEqu)]+=rtmp; |
247 |
} |
248 |
} |
249 |
#endif |
250 |
for (q=0;q<p.row_NN;q++) row_index[q]=p.row_DOF[elements->Nodes[INDEX2(p.row_node[q],e,p.NN)]]; |
251 |
Finley_Util_AddScatter(p.row_NN,row_index,p.numEqu,EM_lumpedMat,lumpedMat_p, p.row_DOF_UpperBound); |
252 |
} /* end color check */ |
253 |
} /* end element loop */ |
254 |
} /* end color loop */ |
255 |
} else { |
256 |
/* open loop over all elements: */ |
257 |
for (color=elements->minColor;color<=elements->maxColor;color++) { |
258 |
#pragma omp for private(e) schedule(static) |
259 |
for(e=0;e<elements->numElements;e++){ |
260 |
if (elements->Color[e]==color) { |
261 |
Vol=&(p.row_jac->volume[INDEX2(0,e,p.numQuad)]); |
262 |
memset(EM_lumpedMat,0,len_EM_lumpedMat_size); |
263 |
D_p=getSampleData(D,e); |
264 |
#ifdef NEW_LUMPING /* HRZ lumping */ |
265 |
/* |
266 |
* Number of PDEs: Multiple |
267 |
* D_p varies over element: False |
268 |
*/ |
269 |
for (k=0;k<p.numEqu;k++) { |
270 |
m_t=0; /* mass of the element: m_t */ |
271 |
for (q=0;q<p.numQuad;q++) { |
272 |
m_t+=Vol[q]*D_p[k]; |
273 |
} |
274 |
diagS=0; /* diagonal sum: S */ |
275 |
for (s=0;s<p.row_NS;s++) { |
276 |
rtmp=0; |
277 |
for (q=0;q<p.numQuad;q++) { |
278 |
rtmp+=Vol[q]*D_p[k]*S[INDEX2(s,q,p.row_NS)]*S[INDEX2(s,q,p.row_NS)]; |
279 |
} |
280 |
EM_lumpedMat[INDEX2(k,s,p.numEqu)]+=rtmp; |
281 |
diagS+=EM_lumpedMat[INDEX2(k,s,p.numEqu)]; |
282 |
} |
283 |
/* rescale diagonals by m_t/diagS to ensure consistent mass over element */ |
284 |
for (s=0;s<p.row_NS;s++) { |
285 |
EM_lumpedMat[INDEX2(k,s,p.numEqu)]*=m_t/diagS; |
286 |
} |
287 |
} |
288 |
#else /* row-sum lumping */ |
289 |
for (s=0;s<p.row_NS;s++) { |
290 |
rtmp=0; |
291 |
for (q=0;q<p.numQuad;q++) rtmp+=Vol[q]*S[INDEX2(s,q,p.row_NS)]; |
292 |
for (k=0;k<p.numEqu;k++) EM_lumpedMat[INDEX2(k,s,p.numEqu)]+=rtmp*D_p[k]; |
293 |
} |
294 |
#endif |
295 |
for (q=0;q<p.row_NN;q++) row_index[q]=p.row_DOF[elements->Nodes[INDEX2(p.row_node[q],e,p.NN)]]; |
296 |
Finley_Util_AddScatter(p.row_NN,row_index,p.numEqu,EM_lumpedMat,lumpedMat_p, p.row_DOF_UpperBound); |
297 |
} /* end color check */ |
298 |
} /* end element loop */ |
299 |
} /* end color loop */ |
300 |
} |
301 |
} |
302 |
} /* end of pointer check */ |
303 |
THREAD_MEMFREE(EM_lumpedMat); |
304 |
THREAD_MEMFREE(row_index); |
305 |
} /* end parallel region */ |
306 |
} |
307 |
} |