1 |
jgs |
102 |
% $Id$ |
2 |
|
|
|
3 |
|
|
\chapter{The module \linearPDEsPack} |
4 |
|
|
|
5 |
|
|
\declaremodule{extension}{linearPDEs} \modulesynopsis{Linear partial pifferential equation handler} |
6 |
|
|
The module \linearPDEsPack provides an interface to define and solve linear partial |
7 |
|
|
differential equations within \escript. \linearPDEsPack does not provide any |
8 |
|
|
solver capabilities in itself but hand the PDE over to |
9 |
|
|
the PDE solver library defined through the \Domain of the PDE. |
10 |
|
|
The general interface is provided through the \LinearPDE class. The |
11 |
|
|
\AdvectivePDE which is derived from the \LinearPDE class |
12 |
|
|
provides an interface to PDE dominated by its advective terms. The \Poisson |
13 |
|
|
class which is also derived form the \LinearPDE class should be used |
14 |
|
|
to define the Poisson equation \index{Poisson}. |
15 |
|
|
|
16 |
|
|
\section{\LinearPDE Class} |
17 |
|
|
\label{SEC LinearPDE} |
18 |
|
|
|
19 |
|
|
The \LinearPDE class is used to define a general linear, steady, second order PDE |
20 |
|
|
for an unknown function $u$ on a given $\Omega$ defined through a \Domain object. |
21 |
|
|
In the following $\Gamma$ denotes the boundary of the domain $\Omega$. $n$ denotes |
22 |
|
|
the outer normal field on $\Gamma$. |
23 |
|
|
|
24 |
|
|
A single PDE with a solution with a single component the linear PDE is defined in the |
25 |
|
|
following form: |
26 |
|
|
\begin{equation}\label{LINEARPDE.SINGLE.1} |
27 |
|
|
-(A\hackscore{jl} u\hackscore{,l}){,j}+(B\hackscore{j} u)\hackscore{,j}+C\hackscore{l} u\hackscore{,l}+D u =-X\hackscore{j,j}+Y \; . |
28 |
|
|
\end{equation} |
29 |
|
|
$u_{,j}$ denotes the derivative of $u$ with respect to the $j$-th spatial direction. Einstein's summation convention, ie. summation over indexes appearing twice in a term of a sum is performed, is used. |
30 |
|
|
The coefficients $A$, $B$, $C$, $D$, $X$ and $Y$ have to be specified through \Data objects in the |
31 |
|
|
\Function on the PDE or objects that can be converted into such \Data objects. |
32 |
|
|
$A$ is a \RankTwo, $B$, $C$ and $X$ are \RankOne and $D$ and $Y$ are scalar. |
33 |
|
|
The following natural |
34 |
|
|
boundary conditions are considered \index{boundary condition!natural} on $\Gamma$: |
35 |
|
|
\begin{equation}\label{LINEARPDE.SINGLE.2} |
36 |
|
|
n\hackscore{j}(A\hackscore{jl} u\hackscore{,l}+B\hackscore{j} u)+d u=n\hackscore{j}X\hackscore{j} + y \;. |
37 |
|
|
\end{equation} |
38 |
|
|
Notice that the coefficients $A$, $B$ and $X$ are defined in the PDE. The coefficients $d$ and $y$ are |
39 |
|
|
each a \Scalar in the \FunctionOnBoundary. Constraints \index{constraint} for the solution prescribing the value of the |
40 |
|
|
solution at certain locations in the domain. They have the form |
41 |
|
|
\begin{equation}\label{LINEARPDE.SINGLE.3} |
42 |
|
|
u=r \mbox{ where } q>0 |
43 |
|
|
\end{equation} |
44 |
|
|
$r$ and $q$ are each \Scalar where $q$ is the characteristic function |
45 |
|
|
\index{characteristic function} defining where the constraint is applied. |
46 |
|
|
The constraints defined by \eqn{LINEARPDE.SINGLE.3} override any other condition set by \eqn{LINEARPDE.SINGLE.1} |
47 |
|
|
or \eqn{LINEARPDE.SINGLE.2}. The PDE is symmetrical \index{symmetrical} if |
48 |
|
|
\begin{equation}\label{LINEARPDE.SINGLE.4} |
49 |
|
|
A\hackscore{jl}=A\hackscore{lj} \mbox{ and } B\hackscore{j}=C\hackscore{j} |
50 |
|
|
\end{equation} |
51 |
|
|
For a system of PDEs and a solution with several components the PDE has the form |
52 |
|
|
\begin{equation}\label{LINEARPDE.SYSTEM.1} |
53 |
|
|
-(A\hackscore{ijkl} u\hackscore{k,l}){,j}+(B\hackscore{ijk} u_k)\hackscore{,j}+C\hackscore{ikl} u\hackscore{k,l}+D\hackscore{ik} u_k =-X\hackscore{ij,j}+Y\hackscore{i} \; . |
54 |
|
|
\end{equation} |
55 |
|
|
$A$ is a \RankFour, $B$ and $C$ are each a \RankThree, $D$ and $X$ are each a \RankTwo and $Y$ is a \RankOne. |
56 |
|
|
The natural boundary conditions \index{boundary condition!natural} take the form: |
57 |
|
|
\begin{equation}\label{LINEARPDE.SYSTEM.2} |
58 |
|
|
n\hackscore{j}(A\hackscore{ijkl} u\hackscore{k,l}){,j}+(B\hackscore{ijk} u_k)+d\hackscore{ik} u_k=n\hackscore{j}-X\hackscore{ij}+y\hackscore{i} \;. |
59 |
|
|
\end{equation} |
60 |
|
|
The coefficient $d$ is a \RankTwo and $y$ is a |
61 |
|
|
\RankOne both in the \FunctionOnBoundary. Constraints \index{constraint} take the form |
62 |
|
|
\begin{equation}\label{LINEARPDE.SYSTEM.3} |
63 |
|
|
u\hackscore{i}=r\hackscore{i} \mbox{ where } q\hackscore{i}>0 |
64 |
|
|
\end{equation} |
65 |
|
|
$r$ and $q$ are each \RankOne. Notice that at some locations not necessarily all components must |
66 |
|
|
have a constraint. The system of PDEs is symmetrical \index{symmetrical} if |
67 |
|
|
\begin{eqnarray}\label{LINEARPDE.SYSTEM.4} |
68 |
|
|
A\hackscore{ijkl}=A\hackscore{klij} \\ |
69 |
|
|
B\hackscore{ijk}=C\hackscore{kij} \\ |
70 |
|
|
D\hackscore{ik}=D\hackscore{ki} \\ |
71 |
|
|
d\hackscore{ik}=d\hackscore{ki} \ |
72 |
|
|
\end{eqnarray} |
73 |
|
|
\LinearPDE also supports solution discontinuities \index{discontinuity} over contact region $\Gamma^{contact}$ |
74 |
|
|
in the domain $\Omega$. To specify the conditions across the discontinuity we are using the |
75 |
|
|
generalised flux $J$ which is in the case of a systems of PDEs and several components of the solution |
76 |
|
|
defined as |
77 |
|
|
\begin{equation}\label{LINEARPDE.SYSTEM.5} |
78 |
|
|
J\hackscore{ij}=A\hackscore{ijkl}u\hackscore{k,l}+B\hackscore{ijk}u\hackscore{k}-X\hackscore{ij} |
79 |
|
|
\end{equation} |
80 |
|
|
For the case of single solution component and single PDE $J$ is defined |
81 |
|
|
\begin{equation}\label{LINEARPDE.SINGLE.5} |
82 |
|
|
J\hackscore{j}=A\hackscore{jl}u\hackscore{,l}+B\hackscore{j}u\hackscore{k}-X\hackscore{j} |
83 |
|
|
\end{equation} |
84 |
|
|
In the context of discontinuities \index{discontinuity} $n$ denotes the normal on the |
85 |
|
|
discontinuity pointing from side 0 towards side 1. For a system of PDEs |
86 |
|
|
the contact condition takes the form |
87 |
|
|
\begin{equation}\label{LINEARPDE.SYSTEM.6} |
88 |
|
|
n\hackscore{j} J^{0}\hackscore{ij}=n\hackscore{j} J^{1}\hackscore{ij}=y^{contact}\hackscore{i} - d^{contact}\hackscore{ik} [u]\hackscore{k} \; . |
89 |
|
|
\end{equation} |
90 |
|
|
where $J^{0}$ and $J^{1}$ are the fluxes on side $0$ and side $1$ of the |
91 |
|
|
discontinuity $\Gamma^{contact}$, respectively. $[u]$, which is the difference |
92 |
|
|
of the solution at side 1 and at side 0, denotes the jump of $u$ across $\Gamma^{contact}$. |
93 |
|
|
The coefficient $d^{contact}$ is a \RankTwo and $y^{contact}$ is a |
94 |
|
|
\RankOne both in the \FunctionOnContactZero or \FunctionOnContactOne. |
95 |
|
|
In case of a single PDE and a single component solution the contact condition takes the form |
96 |
|
|
\begin{equation}\label{LINEARPDE.SINGLE.6} |
97 |
|
|
n\hackscore{j} J^{0}\hackscore{j}=n\hackscore{j} J^{1}\hackscore{j}=y^{contact} - d^{contact}[u] |
98 |
|
|
\end{equation} |
99 |
|
|
In this case the the coefficient $d^{contact}$ and $y^{contact}$ are eaach \Scalar |
100 |
|
|
both in the \FunctionOnContactZero or \FunctionOnContactOne. |
101 |
|
|
|
102 |
|
|
\begin{classdesc}{LinearPDE}{domain,numEquations=0,numSolutions=0} |
103 |
|
|
opens a linear, steady, second order PDE on the \Domain \var{domain}. \var{numEquations} |
104 |
|
|
and \var{numSolutions} gives the number of equations and the number of solutiopn components. |
105 |
|
|
If \var{numEquations} and \var{numSolutions} is non-positive, the number of equations |
106 |
|
|
and the number solutions, respctively, stay undefined until a coefficient is |
107 |
|
|
defined. |
108 |
|
|
\end{classdesc} |
109 |
|
|
|
110 |
|
|
\begin{methoddesc}[LinearPDE]{setValues}{arg1,arg2,...,argN} |
111 |
|
|
assigns new values to coefficients \var{arg1}, \var{arg2}, $\ldots$ \var{argN}. |
112 |
|
|
The coefficients must be one of the valid coefficient names |
113 |
|
|
\var{A}, |
114 |
|
|
\var{B}, |
115 |
|
|
\var{C}, |
116 |
|
|
\var{D}, |
117 |
|
|
\var{X}, |
118 |
|
|
\var{Y}, |
119 |
|
|
\var{d}, |
120 |
|
|
\var{y}, |
121 |
|
|
\var{dcontact}, |
122 |
|
|
\var{ycontact}, |
123 |
|
|
\var{r}, |
124 |
|
|
or \var{q}. |
125 |
|
|
If the coefficient is not a \Data object, it is converted into a \Data object in the |
126 |
|
|
appropriate \FunctionSpace. |
127 |
|
|
\end{methoddesc} |
128 |
|
|
|
129 |
|
|
\begin{methoddesc}[LinearPDE]{getCoefficient}{name} |
130 |
|
|
return the value assigned to coefficient \var{name}. If \var{name} is not a valid name |
131 |
|
|
an exception is raised. |
132 |
|
|
\end{methoddesc} |
133 |
|
|
|
134 |
|
|
\begin{methoddesc}[LinearPDE]{cleanCoefficients}{} |
135 |
|
|
resets all coefficients to their initialization values. This method is useful to call when trying to save memory |
136 |
|
|
as is releaces eqnerences to coefficients but keeping the differential operator. |
137 |
|
|
\end{methoddesc} |
138 |
|
|
|
139 |
|
|
\begin{methoddesc}[LinearPDE]{getShapeOfCoefficient}{name} |
140 |
|
|
returns the shape of coefficient \var{name} even if no value has been assigned to it. |
141 |
|
|
\end{methoddesc} |
142 |
|
|
|
143 |
|
|
|
144 |
|
|
\begin{methoddesc}[LinearPDE]{getFunctionSpaceOfCoefficient}{name} |
145 |
|
|
returns the \FunctionSpace of coefficient \var{name} even if no value has been assigned to it. |
146 |
|
|
\end{methoddesc} |
147 |
|
|
|
148 |
|
|
\begin{methoddesc}[LinearPDE]{hasCoefficient}{name} |
149 |
|
|
returns \True if \var{name} is valid name of a coefficient |
150 |
|
|
\end{methoddesc} |
151 |
|
|
|
152 |
|
|
|
153 |
|
|
\begin{methoddesc}[LinearPDE]{getFunctionSpaceForEquation}{} |
154 |
|
|
returns \FunctionSpace of the right hand side which is identical to \FunctionSpace of |
155 |
|
|
the result of the PDE operator. |
156 |
|
|
\end{methoddesc} |
157 |
|
|
|
158 |
|
|
\begin{methoddesc}[LinearPDE]{getFunctionSpaceForSolution}{} |
159 |
|
|
returns \FunctionSpace of the solution of the PDE hich is identical to \FunctionSpace of |
160 |
|
|
the result of argument of the PDE operator. |
161 |
|
|
\end{methoddesc} |
162 |
|
|
|
163 |
|
|
\begin{methoddesc}[LinearPDE]{setDebugOn}{} |
164 |
|
|
switches the debug mode to on. |
165 |
|
|
\end{methoddesc} |
166 |
|
|
|
167 |
|
|
\begin{methoddesc}[LinearPDE]{setDebugOff}{} |
168 |
|
|
switches the debug mode to on. |
169 |
|
|
\end{methoddesc} |
170 |
|
|
|
171 |
|
|
\begin{methoddesc}[LinearPDE]{debug}{} |
172 |
|
|
returns \True if the debug mode is switched on. Otherwise it return \False. |
173 |
|
|
\end{methoddesc} |
174 |
|
|
|
175 |
|
|
\begin{methoddesc}[LinearPDE]{setLumpingOn}{} |
176 |
|
|
switches on lumping \index{lumping}. If lumping is switched on |
177 |
|
|
the operator is |
178 |
|
|
\end{methoddesc} |
179 |
|
|
|
180 |
|
|
|
181 |
|
|
\begin{methoddesc}[LinearPDE]{setLumpingOff} |
182 |
|
|
switches lumping off \index{lumping}. |
183 |
|
|
\end{methoddesc} |
184 |
|
|
|
185 |
|
|
\begin{methoddesc}[LinearPDE]{setLumping}{flag=\False} |
186 |
|
|
switches on lumping if \var{flag} is \True. Otherwise lumping is swiched off. |
187 |
|
|
\end{methoddesc} |
188 |
|
|
|
189 |
|
|
\begin{methoddesc}[LinearPDE]{isUsingLumping}{} |
190 |
|
|
returns \True if lumping is switched on. Otherwise \False is returned. |
191 |
|
|
\end{methoddesc} |
192 |
|
|
|
193 |
|
|
\begin{memberdesc}[LinearPDE]{DEFAULT_METHOD} |
194 |
|
|
default method to be used to solve the PDE. An appropriate method should be |
195 |
|
|
chosen by the used PDE solver library. |
196 |
|
|
\end{memberdesc} |
197 |
|
|
|
198 |
|
|
\begin{memberdesc}[LinearPDE]{DIRECT} |
199 |
|
|
direct linear solver~\Ref{SAAD} |
200 |
|
|
\end{memberdesc} |
201 |
|
|
|
202 |
|
|
\begin{memberdesc}[LinearPDE]{CHOLEVSKY} |
203 |
|
|
direct solver based on Cholevsky factorization (or similar), see~\Ref{SAAD}. The solver will require a symmetric PDE. |
204 |
|
|
\end{memberdesc} |
205 |
|
|
|
206 |
|
|
\begin{memberdesc}[LinearPDE]{PCG} |
207 |
|
|
preconditioned conjugate gradient method, see~\Ref{WEISS}. The solver will require a symmetric PDE. |
208 |
|
|
\end{memberdesc} |
209 |
|
|
|
210 |
|
|
\begin{memberdesc}[LinearPDE]{GMRES} |
211 |
|
|
the GMRES method, see~\Ref{WEISS}. Truncation and restart ar econtrolled by the parameters |
212 |
|
|
\var{truncation} and \var{restart} of \method{getSolution}. |
213 |
|
|
\end{memberdesc} |
214 |
|
|
|
215 |
|
|
\begin{memberdesc}[LinearPDE]{PRES20} |
216 |
|
|
the GMRES method with trunction after five residuals and |
217 |
|
|
restart after 20 steps, see~\Ref{WEISS}. |
218 |
|
|
\end{memberdesc} |
219 |
|
|
|
220 |
|
|
\begin{memberdesc}[LinearPDE]{CR} |
221 |
|
|
conjugate residual method, see~\Ref{WEISS}. |
222 |
|
|
\end{memberdesc} |
223 |
|
|
|
224 |
|
|
\begin{memberdesc}[LinearPDE]{CGS} |
225 |
|
|
conjugate gradient squared method, see~\Ref{WEISS}. |
226 |
|
|
\end{memberdesc} |
227 |
|
|
|
228 |
|
|
\begin{memberdesc}[LinearPDE]{BICGSTAB} |
229 |
|
|
stabilzed bi-conjugate gradients methods, see~\Ref{WEISS}. |
230 |
|
|
\end{memberdesc} |
231 |
|
|
|
232 |
|
|
\begin{memberdesc}[LinearPDE]{SSOR} |
233 |
|
|
symmetric successive overrelaxtion method, see~\Ref{WEISS}. |
234 |
|
|
\end{memberdesc} |
235 |
|
|
|
236 |
|
|
\begin{methoddesc}[LinearPDE]{setSolverMethod}{solver=linearPDE.DEFAULT_METHOD} |
237 |
|
|
sets the solver method to be used. It is pointed out that the PDE solver library |
238 |
|
|
does not know the specified solver method but may choose a similar method. |
239 |
|
|
\end{methoddesc} |
240 |
|
|
|
241 |
|
|
\begin{methoddesc}[LinearPDE]{setTolerance}{tol=1.e-8} |
242 |
|
|
resets the tolerance for solution. The actually meaning of tolerance is |
243 |
|
|
depending on the underlying PDE library. In most cases, the tolerance |
244 |
|
|
will only consider the error from solving the discerete problem but will |
245 |
|
|
not consider any discretization error. |
246 |
|
|
\end{methoddesc} |
247 |
|
|
|
248 |
|
|
\begin{methoddesc}[LinearPDE]{getTolerance}{} |
249 |
|
|
returns the current tolerance of the solution |
250 |
|
|
\end{methoddesc} |
251 |
|
|
|
252 |
|
|
\begin{methoddesc}[LinearPDE]{isSymmetric}{} |
253 |
|
|
returns \True if the PDE has been indicated to be symmetric. |
254 |
|
|
Otherwise \False is returned. |
255 |
|
|
\end{methoddesc} |
256 |
|
|
|
257 |
|
|
\begin{methoddesc}[LinearPDE]{setSymmetryOn}{} |
258 |
|
|
indicates that the PDE is symmetric. |
259 |
|
|
\end{methoddesc} |
260 |
|
|
|
261 |
|
|
\begin{methoddesc}[LinearPDE]{setSymmetryOff}{} |
262 |
|
|
indicates that the PDE is not symmetric. |
263 |
|
|
\end{methoddesc} |
264 |
|
|
|
265 |
|
|
\begin{methoddesc}[LinearPDE]{setSymmetryTo}{flag=\False} |
266 |
|
|
indicates that the PDE is symmetric if \var{flag}=\True |
267 |
|
|
and indicates a non-symmetric PDE is \var{flag}=\False. |
268 |
|
|
\end{methoddesc} |
269 |
|
|
|
270 |
|
|
\begin{methoddesc}[LinearPDE]{setReducedOrderOn}{} |
271 |
|
|
switches on the reduction of polynomial order for the solution and |
272 |
|
|
equation evaluation. |
273 |
|
|
\end{methoddesc} |
274 |
|
|
|
275 |
|
|
\begin{methoddesc}[LinearPDE]{setReducedOrderOff}{} |
276 |
|
|
switches off the reduction of polynomial order for the solution and |
277 |
|
|
equation evaluation. |
278 |
|
|
\end{methoddesc} |
279 |
|
|
|
280 |
|
|
\begin{methoddesc}[LinearPDE]{setReducedOrderTo}{flag=\False} |
281 |
|
|
switches on the reduction of polynomial order for the solution and |
282 |
|
|
equation evaluation if \var{flag}=\True. Otherwise |
283 |
|
|
the order reduction is switched off. |
284 |
|
|
\end{methoddesc} |
285 |
|
|
|
286 |
|
|
\begin{methoddesc}[LinearPDE]{setReducedOrderForSolutionOn}{} |
287 |
|
|
switches on reduction of polynomial order for the solution. |
288 |
|
|
\end{methoddesc} |
289 |
|
|
|
290 |
|
|
\begin{methoddesc}[LinearPDE]{setReducedOrderForSolutionOff}{} |
291 |
|
|
switches off reduction of polynomial order for the solution. |
292 |
|
|
\end{methoddesc} |
293 |
|
|
|
294 |
|
|
\begin{methoddesc}[LinearPDE]{setReducedOrderForSolutionTo}{flag=\False} |
295 |
|
|
switches on the reduction of polynomial order for the solution |
296 |
|
|
if \var{flag}=\True. Otherwise |
297 |
|
|
the order reduction is switched off. |
298 |
|
|
\end{methoddesc} |
299 |
|
|
|
300 |
|
|
\begin{methoddesc}[LinearPDE]{setReducedOrderForEquationOn}{} |
301 |
|
|
switches on reduction of polynomial order for the equation evaluation. |
302 |
|
|
\end{methoddesc} |
303 |
|
|
|
304 |
|
|
\begin{methoddesc}[LinearPDE]{setReducedOrderForEquationOff}{} |
305 |
|
|
switches off reduction of polynomial order for the equation evaluation. |
306 |
|
|
\end{methoddesc} |
307 |
|
|
|
308 |
|
|
\begin{methoddesc}[LinearPDE]{setReducedOrderForEquationTo}{flag=\False} |
309 |
|
|
switches on the reduction of polynomial order for the equation |
310 |
|
|
evaluation if \var{flag}=\True. Otherwise |
311 |
|
|
the order reduction is switched off. |
312 |
|
|
\end{methoddesc} |
313 |
|
|
|
314 |
|
|
\begin{methoddesc}[LinearPDE]{getOperator}{} |
315 |
|
|
returns the \Operator of the PDE. |
316 |
|
|
\end{methoddesc} |
317 |
|
|
|
318 |
|
|
\begin{methoddesc}[LinearPDE]{getRightHandSide}{ignoreConstraint=\False} |
319 |
|
|
returns the right hand side of the PDE as a \Data object. If |
320 |
|
|
\var{ignoreConstraint}=\True the constraints are not considered |
321 |
|
|
when building up the right hand side. |
322 |
|
|
\end{methoddesc} |
323 |
|
|
|
324 |
|
|
\begin{methoddesc}[LinearPDE]{getSystem}{} |
325 |
|
|
returns the \Operator and right hand side of the PDE. |
326 |
|
|
\end{methoddesc} |
327 |
|
|
|
328 |
|
|
\begin{methoddesc}[LinearPDE]{getSolution}{option1,option2,...,optionN} |
329 |
|
|
returns (an approximation of) the solution of the PDE. \var{options1}, \var{options2} |
330 |
|
|
$\ldots$ \var{optionsN} are options handed over to the underlying PDE solver library. |
331 |
|
|
\end{methoddesc} |
332 |
|
|
|
333 |
|
|
\begin{methoddesc}[LinearPDE]{getDomain}{} |
334 |
|
|
returns the \Domain of the PDE. |
335 |
|
|
\end{methoddesc} |
336 |
|
|
|
337 |
|
|
\begin{methoddesc}[LinearPDE]{getDim}{} |
338 |
|
|
returns the spatial dimension of the PDE. |
339 |
|
|
\end{methoddesc} |
340 |
|
|
|
341 |
|
|
\begin{methoddesc}[LinearPDE]{getNumEquations}{} |
342 |
|
|
returns the number of equations. |
343 |
|
|
\end{methoddesc} |
344 |
|
|
|
345 |
|
|
\begin{methoddesc}[LinearPDE]{getNumSolutions}{} |
346 |
|
|
returns the number of components of the solution. |
347 |
|
|
\end{methoddesc} |
348 |
|
|
|
349 |
|
|
\begin{methoddesc}[LinearPDE]{checkSymmetry}{verbose=\False} |
350 |
|
|
returns \True if the PDE is symmetric and \False otherwise. |
351 |
|
|
The method is very computational expensive and should only be |
352 |
|
|
called for testing purposes. The symmetry flag is not altered. |
353 |
|
|
If \var{verbose}=\True information about where symmetry is violated |
354 |
|
|
are printed. |
355 |
|
|
\end{methoddesc} |
356 |
|
|
|
357 |
|
|
\begin{methoddesc}[LinearPDE]{getFlux}{u} |
358 |
|
|
returns the flux $J\hackscore{ij}$ \index{flux} for given solution \var{u} |
359 |
|
|
defined by \eqn{LINEARPDE.SYSTEM.5} and \eqn{LINEARPDE.SINGLE.5}, respectively. |
360 |
|
|
\end{methoddesc} |
361 |
|
|
|
362 |
|
|
\begin{methoddesc}[LinearPDE]{applyOperator}{u} |
363 |
|
|
applies the PDE operator to \var{u} |
364 |
|
|
\end{methoddesc} |
365 |
|
|
|
366 |
|
|
\begin{methoddesc}[LinearPDE]{getResidual}{u} |
367 |
|
|
returns the residual when insering \var{u} into the PDE |
368 |
|
|
\end{methoddesc} |
369 |
|
|
|
370 |
|
|
\section{\AdvectivePDE Class} |
371 |
|
|
under construction |
372 |
|
|
|
373 |
|
|
\section{The \Poisson Class} |
374 |
|
|
|
375 |
|
|
The \Poisson class provides an easy way to define and solve the Poisson |
376 |
|
|
equation |
377 |
|
|
\begin{equation}\label{POISSON.1} |
378 |
|
|
-u\hackscore{,ii}=f\; . |
379 |
|
|
\end{equation} |
380 |
|
|
with homogeneous boundary conditions |
381 |
|
|
\begin{equation}\label{POISSON.2} |
382 |
|
|
n\hackscore{i}u\hackscore{,i}=0 |
383 |
|
|
\end{equation} |
384 |
|
|
and homogeneous constraints |
385 |
|
|
\begin{equation}\label{POISSON.3} |
386 |
|
|
u=0 \mbox{ where } q>0 |
387 |
|
|
\end{equation} |
388 |
|
|
$f$ has to be a \Scalar in the \Function and $q$ must be |
389 |
|
|
a \Scalar in the \SolutionFS. |
390 |
|
|
|
391 |
|
|
\begin{classdesc}{Poisson}{domain} |
392 |
|
|
opens a Poisson equation on the \Domain domain. \Poisson is derived from \LinearPDE. |
393 |
|
|
\end{classdesc} |
394 |
|
|
\begin{methoddesc}[Poisson]{setValue}{f=escript.Data(),q=escript.Data()} |
395 |
|
|
assigns new values to \var{f} and \var{q}. |
396 |
|
|
\end{methoddesc} |