1 |
jgs |
102 |
% $Id$ |
2 |
gross |
625 |
% |
3 |
|
|
% Copyright © 2006 by ACcESS MNRF |
4 |
|
|
% \url{http://www.access.edu.au |
5 |
|
|
% Primary Business: Queensland, Australia. |
6 |
|
|
% Licensed under the Open Software License version 3.0 |
7 |
|
|
% http://www.opensource.org/licenses/osl-3.0.php |
8 |
|
|
% |
9 |
jgs |
102 |
|
10 |
gross |
625 |
|
11 |
gross |
599 |
\chapter{The module \linearPDEs} |
12 |
jgs |
102 |
|
13 |
|
|
|
14 |
gross |
999 |
|
15 |
|
|
\section{Linear Partial Differential Equations} |
16 |
jgs |
102 |
\label{SEC LinearPDE} |
17 |
|
|
|
18 |
|
|
The \LinearPDE class is used to define a general linear, steady, second order PDE |
19 |
|
|
for an unknown function $u$ on a given $\Omega$ defined through a \Domain object. |
20 |
|
|
In the following $\Gamma$ denotes the boundary of the domain $\Omega$. $n$ denotes |
21 |
gross |
660 |
the outer normal field on $\Gamma$. |
22 |
jgs |
102 |
|
23 |
gross |
660 |
For a single PDE with a solution with a single component the linear PDE is defined in the |
24 |
jgs |
102 |
following form: |
25 |
|
|
\begin{equation}\label{LINEARPDE.SINGLE.1} |
26 |
gross |
660 |
-(A\hackscore{jl} u\hackscore{,l})\hackscore{,j}-(B\hackscore{j} u)\hackscore{,j}+C\hackscore{l} u\hackscore{,l}+D u =-X\hackscore{j,j}+Y \; . |
27 |
jgs |
102 |
\end{equation} |
28 |
gross |
660 |
$u_{,j}$ denotes the derivative of $u$ with respect to the $j$-th spatial direction. Einstein's summation convention, ie. summation over indexes appearing twice in a term of a sum is performed, is used. |
29 |
|
|
The coefficients $A$, $B$, $C$, $D$, $X$ and $Y$ have to be specified through \Data objects in the |
30 |
|
|
\Function on the PDE or objects that can be converted into such \Data objects. |
31 |
|
|
$A$ is a \RankTwo, $B$, $C$ and $X$ are \RankOne and $D$ and $Y$ are scalar. |
32 |
jgs |
102 |
The following natural |
33 |
|
|
boundary conditions are considered \index{boundary condition!natural} on $\Gamma$: |
34 |
|
|
\begin{equation}\label{LINEARPDE.SINGLE.2} |
35 |
|
|
n\hackscore{j}(A\hackscore{jl} u\hackscore{,l}+B\hackscore{j} u)+d u=n\hackscore{j}X\hackscore{j} + y \;. |
36 |
|
|
\end{equation} |
37 |
gross |
660 |
Notice that the coefficients $A$, $B$ and $X$ are defined in the PDE. The coefficients $d$ and $y$ are |
38 |
|
|
each a \Scalar in the \FunctionOnBoundary. Constraints \index{constraint} for the solution prescribing the value of the |
39 |
jgs |
102 |
solution at certain locations in the domain. They have the form |
40 |
|
|
\begin{equation}\label{LINEARPDE.SINGLE.3} |
41 |
|
|
u=r \mbox{ where } q>0 |
42 |
|
|
\end{equation} |
43 |
|
|
$r$ and $q$ are each \Scalar where $q$ is the characteristic function |
44 |
|
|
\index{characteristic function} defining where the constraint is applied. |
45 |
|
|
The constraints defined by \eqn{LINEARPDE.SINGLE.3} override any other condition set by \eqn{LINEARPDE.SINGLE.1} |
46 |
gross |
660 |
or \eqn{LINEARPDE.SINGLE.2}. |
47 |
gross |
625 |
|
48 |
jgs |
102 |
For a system of PDEs and a solution with several components the PDE has the form |
49 |
|
|
\begin{equation}\label{LINEARPDE.SYSTEM.1} |
50 |
gross |
660 |
-(A\hackscore{ijkl} u\hackscore{k,l})\hackscore{,j}-(B\hackscore{ijk} u\hackscore{k})\hackscore{,j}+C\hackscore{ikl} u\hackscore{k,l}+D\hackscore{ik} u\hackscore{k} =-X\hackscore{ij,j}+Y\hackscore{i} \; . |
51 |
jgs |
102 |
\end{equation} |
52 |
gross |
660 |
$A$ is a \RankFour, $B$ and $C$ are each a \RankThree, $D$ and $X$ are each a \RankTwo and $Y$ is a \RankOne. |
53 |
jgs |
102 |
The natural boundary conditions \index{boundary condition!natural} take the form: |
54 |
|
|
\begin{equation}\label{LINEARPDE.SYSTEM.2} |
55 |
gross |
625 |
n\hackscore{j}(A\hackscore{ijkl} u\hackscore{k,l}+B\hackscore{ijk} u\hackscore{k})+d\hackscore{ik} u\hackscore{k}=n\hackscore{j}X\hackscore{ij}+y\hackscore{i} \;. |
56 |
jgs |
102 |
\end{equation} |
57 |
gross |
660 |
The coefficient $d$ is a \RankTwo and $y$ is a |
58 |
jgs |
102 |
\RankOne both in the \FunctionOnBoundary. Constraints \index{constraint} take the form |
59 |
|
|
\begin{equation}\label{LINEARPDE.SYSTEM.3} |
60 |
|
|
u\hackscore{i}=r\hackscore{i} \mbox{ where } q\hackscore{i}>0 |
61 |
|
|
\end{equation} |
62 |
gross |
660 |
$r$ and $q$ are each \RankOne. Notice that not necessarily all components must |
63 |
gross |
625 |
have a constraint at all locations. |
64 |
|
|
|
65 |
jgs |
102 |
\LinearPDE also supports solution discontinuities \index{discontinuity} over contact region $\Gamma^{contact}$ |
66 |
|
|
in the domain $\Omega$. To specify the conditions across the discontinuity we are using the |
67 |
|
|
generalised flux $J$ which is in the case of a systems of PDEs and several components of the solution |
68 |
gross |
660 |
defined as |
69 |
jgs |
102 |
\begin{equation}\label{LINEARPDE.SYSTEM.5} |
70 |
|
|
J\hackscore{ij}=A\hackscore{ijkl}u\hackscore{k,l}+B\hackscore{ijk}u\hackscore{k}-X\hackscore{ij} |
71 |
|
|
\end{equation} |
72 |
|
|
For the case of single solution component and single PDE $J$ is defined |
73 |
|
|
\begin{equation}\label{LINEARPDE.SINGLE.5} |
74 |
|
|
J\hackscore{j}=A\hackscore{jl}u\hackscore{,l}+B\hackscore{j}u\hackscore{k}-X\hackscore{j} |
75 |
|
|
\end{equation} |
76 |
gross |
660 |
In the context of discontinuities \index{discontinuity} $n$ denotes the normal on the |
77 |
jgs |
102 |
discontinuity pointing from side 0 towards side 1. For a system of PDEs |
78 |
|
|
the contact condition takes the form |
79 |
|
|
\begin{equation}\label{LINEARPDE.SYSTEM.6} |
80 |
|
|
n\hackscore{j} J^{0}\hackscore{ij}=n\hackscore{j} J^{1}\hackscore{ij}=y^{contact}\hackscore{i} - d^{contact}\hackscore{ik} [u]\hackscore{k} \; . |
81 |
|
|
\end{equation} |
82 |
|
|
where $J^{0}$ and $J^{1}$ are the fluxes on side $0$ and side $1$ of the |
83 |
|
|
discontinuity $\Gamma^{contact}$, respectively. $[u]$, which is the difference |
84 |
|
|
of the solution at side 1 and at side 0, denotes the jump of $u$ across $\Gamma^{contact}$. |
85 |
gross |
660 |
The coefficient $d^{contact}$ is a \RankTwo and $y^{contact}$ is a |
86 |
jgs |
102 |
\RankOne both in the \FunctionOnContactZero or \FunctionOnContactOne. |
87 |
|
|
In case of a single PDE and a single component solution the contact condition takes the form |
88 |
|
|
\begin{equation}\label{LINEARPDE.SINGLE.6} |
89 |
|
|
n\hackscore{j} J^{0}\hackscore{j}=n\hackscore{j} J^{1}\hackscore{j}=y^{contact} - d^{contact}[u] |
90 |
|
|
\end{equation} |
91 |
|
|
In this case the the coefficient $d^{contact}$ and $y^{contact}$ are eaach \Scalar |
92 |
|
|
both in the \FunctionOnContactZero or \FunctionOnContactOne. |
93 |
gross |
625 |
|
94 |
|
|
The PDE is symmetrical \index{symmetrical} if |
95 |
|
|
\begin{equation}\label{LINEARPDE.SINGLE.4} |
96 |
|
|
A\hackscore{jl}=A\hackscore{lj} \mbox{ and } B\hackscore{j}=C\hackscore{j} |
97 |
|
|
\end{equation} |
98 |
|
|
The system of PDEs is symmetrical \index{symmetrical} if |
99 |
|
|
\begin{eqnarray} |
100 |
|
|
\label{LINEARPDE.SYSTEM.4} |
101 |
|
|
A\hackscore{ijkl}=A\hackscore{klij} \\ |
102 |
|
|
B\hackscore{ijk}=C\hackscore{kij} \\ |
103 |
|
|
D\hackscore{ik}=D\hackscore{ki} \\ |
104 |
|
|
d\hackscore{ik}=d\hackscore{ki} \\ |
105 |
gross |
660 |
d^{contact}\hackscore{ik}=d^{contact}\hackscore{ki} |
106 |
gross |
625 |
\end{eqnarray} |
107 |
|
|
Note that different from the scalar case~\eqn{LINEARPDE.SINGLE.4} now the coefficients $D$, $d$ abd $d^{contact}$ |
108 |
|
|
have to be inspected. |
109 |
|
|
|
110 |
gross |
999 |
|
111 |
|
|
\subsection{Classes} |
112 |
|
|
\declaremodule{extension}{esys.escript.linearPDEs} |
113 |
|
|
\modulesynopsis{Linear partial pifferential equation handler} |
114 |
|
|
The module \linearPDEs provides an interface to define and solve linear partial |
115 |
|
|
differential equations within \escript. \linearPDEs does not provide any |
116 |
|
|
solver capabilities in itself but hands the PDE over to |
117 |
|
|
the PDE solver library defined through the \Domain of the PDE. |
118 |
|
|
The general interface is provided through the \LinearPDE class. The |
119 |
|
|
\AdvectivePDE which is derived from the \LinearPDE class |
120 |
|
|
provides an interface to PDE dominated by its advective terms. The \Poisson |
121 |
|
|
class which is also derived form the \LinearPDE class should be used |
122 |
|
|
to define the Poisson equation \index{Poisson}. |
123 |
|
|
|
124 |
|
|
\subsection{\LinearPDE class} |
125 |
gross |
660 |
This is the general class to define a linear PDE in \escript. We list a selction of the most |
126 |
gross |
625 |
important methods of the class only and refer to reference guide \ReferenceGuide for a complete list. |
127 |
|
|
|
128 |
jgs |
102 |
\begin{classdesc}{LinearPDE}{domain,numEquations=0,numSolutions=0} |
129 |
|
|
opens a linear, steady, second order PDE on the \Domain \var{domain}. \var{numEquations} |
130 |
|
|
and \var{numSolutions} gives the number of equations and the number of solutiopn components. |
131 |
gross |
660 |
If \var{numEquations} and \var{numSolutions} is non-positive, the number of equations |
132 |
jgs |
102 |
and the number solutions, respctively, stay undefined until a coefficient is |
133 |
gross |
660 |
defined. |
134 |
jgs |
102 |
\end{classdesc} |
135 |
|
|
|
136 |
gross |
625 |
\begin{methoddesc}[LinearPDE]{setValue}{ |
137 |
gross |
660 |
\optional{A}\optional{, B}, |
138 |
|
|
\optional{, C}\optional{, D} |
139 |
|
|
\optional{, X}\optional{, Y} |
140 |
|
|
\optional{, d}\optional{, y} |
141 |
|
|
\optional{, d_contact}\optional{, y_contact} |
142 |
|
|
\optional{, q}\optional{, r}} |
143 |
|
|
assigns new values to coefficients. By dafault all values are assumed to be zero\footnote{ |
144 |
|
|
In fact it is assumed they are not present by assigning the value \code{escript.Data()}. The |
145 |
|
|
can by used by the solver library to reduce computational costs. |
146 |
|
|
} |
147 |
gross |
625 |
If the new coefficient value is not a \Data object, it is converted into a \Data object in the |
148 |
jgs |
102 |
appropriate \FunctionSpace. |
149 |
|
|
\end{methoddesc} |
150 |
|
|
|
151 |
|
|
\begin{methoddesc}[LinearPDE]{getCoefficient}{name} |
152 |
gross |
660 |
return the value assigned to coefficient \var{name}. If \var{name} is not a valid name |
153 |
|
|
an exception is raised. |
154 |
jgs |
102 |
\end{methoddesc} |
155 |
|
|
|
156 |
|
|
\begin{methoddesc}[LinearPDE]{getShapeOfCoefficient}{name} |
157 |
|
|
returns the shape of coefficient \var{name} even if no value has been assigned to it. |
158 |
|
|
\end{methoddesc} |
159 |
|
|
|
160 |
gross |
625 |
\begin{methoddesc}[LinearPDE]{getFunctionSpaceForCoefficient}{name} |
161 |
jgs |
102 |
returns the \FunctionSpace of coefficient \var{name} even if no value has been assigned to it. |
162 |
|
|
\end{methoddesc} |
163 |
|
|
|
164 |
|
|
\begin{methoddesc}[LinearPDE]{setDebugOn}{} |
165 |
|
|
switches the debug mode to on. |
166 |
|
|
\end{methoddesc} |
167 |
|
|
|
168 |
|
|
\begin{methoddesc}[LinearPDE]{setDebugOff}{} |
169 |
|
|
switches the debug mode to on. |
170 |
|
|
\end{methoddesc} |
171 |
|
|
|
172 |
gross |
625 |
\begin{methoddesc}[LinearPDE]{isUsingLumping}{} |
173 |
gross |
653 |
returns \True if \LUMPING is set as the solver for the system of lienar equations. |
174 |
|
|
Otherwise \False is returned. |
175 |
jgs |
102 |
\end{methoddesc} |
176 |
|
|
|
177 |
gross |
653 |
\begin{methoddesc}[LinearPDE]{setSolverMethod}{\optional{solver=LinearPDE.DEFAULT}\optional{, preconditioner=LinearPDE.DEFAULT}} |
178 |
gross |
625 |
sets the solver method and preconditioner to be used. It is pointed out that a PDE solver library |
179 |
gross |
660 |
may not know the specified solver method but may choose a similar method and preconditioner. |
180 |
jgs |
102 |
\end{methoddesc} |
181 |
|
|
|
182 |
gross |
653 |
\begin{methoddesc}[LinearPDE]{getSolverMethodName}{} |
183 |
|
|
returns the name of the solver method and preconditioner which is currently been used. |
184 |
|
|
\end{methoddesc} |
185 |
|
|
|
186 |
|
|
\begin{methoddesc}[LinearPDE]{getSolverMethod}{} |
187 |
|
|
returns the solver method and preconditioner which is currently been used. |
188 |
|
|
\end{methoddesc} |
189 |
|
|
|
190 |
|
|
\begin{methoddesc}[LinearPDE]{setSolverPackage}{\optional{package=LinearPDE.DEFAULT}} |
191 |
gross |
660 |
Set the solver package to be used by PDE library to solve the linear systems of equations. The |
192 |
gross |
653 |
specified package may not be supported by the PDE solver library. In this case, dependng on |
193 |
|
|
the PDE solver, the default solver is used or an exeption is thrown. |
194 |
gross |
660 |
If \var{package} is not specified, the default package of the PDE solver library is used. |
195 |
gross |
653 |
\end{methoddesc} |
196 |
|
|
|
197 |
|
|
\begin{methoddesc}[LinearPDE]{getSolverPackage}{} |
198 |
|
|
returns the linear solver package currently by the PDE solver library |
199 |
|
|
\end{methoddesc} |
200 |
|
|
|
201 |
|
|
|
202 |
gross |
625 |
\begin{methoddesc}[LinearPDE]{setTolerance}{\optional{tol=1.e-8}}: |
203 |
|
|
resets the tolerance for solution. The actually meaning of tolerance is |
204 |
gross |
660 |
depending on the underlying PDE library. In most cases, the tolerance |
205 |
gross |
625 |
will only consider the error from solving the discerete problem but will |
206 |
|
|
not consider any discretization error. |
207 |
|
|
\end{methoddesc} |
208 |
jgs |
102 |
|
209 |
gross |
625 |
\begin{methoddesc}[LinearPDE]{getTolerance}{} |
210 |
|
|
returns the current tolerance of the solution |
211 |
jgs |
102 |
\end{methoddesc} |
212 |
|
|
|
213 |
gross |
625 |
\begin{methoddesc}[LinearPDE]{getDomain}{} |
214 |
|
|
returns the \Domain of the PDE. |
215 |
jgs |
102 |
\end{methoddesc} |
216 |
|
|
|
217 |
gross |
625 |
\begin{methoddesc}[LinearPDE]{getDim}{} |
218 |
|
|
returns the spatial dimension of the PDE. |
219 |
jgs |
102 |
\end{methoddesc} |
220 |
|
|
|
221 |
gross |
625 |
\begin{methoddesc}[LinearPDE]{getNumEquations}{} |
222 |
|
|
returns the number of equations. |
223 |
|
|
\end{methoddesc} |
224 |
jgs |
102 |
|
225 |
gross |
625 |
\begin{methoddesc}[LinearPDE]{getNumSolutions}{} |
226 |
|
|
returns the number of components of the solution. |
227 |
jgs |
102 |
\end{methoddesc} |
228 |
|
|
|
229 |
gross |
625 |
\begin{methoddesc}[LinearPDE]{checkSymmetry}{verbose=\False} |
230 |
gross |
660 |
returns \True if the PDE is symmetric and \False otherwise. |
231 |
|
|
The method is very computational expensive and should only be |
232 |
gross |
625 |
called for testing purposes. The symmetry flag is not altered. |
233 |
|
|
If \var{verbose}=\True information about where symmetry is violated |
234 |
|
|
are printed. |
235 |
jgs |
102 |
\end{methoddesc} |
236 |
|
|
|
237 |
gross |
625 |
\begin{methoddesc}[LinearPDE]{getFlux}{u} |
238 |
|
|
returns the flux $J\hackscore{ij}$ \index{flux} for given solution \var{u} |
239 |
|
|
defined by \eqn{LINEARPDE.SYSTEM.5} and \eqn{LINEARPDE.SINGLE.5}, respectively. |
240 |
jgs |
102 |
\end{methoddesc} |
241 |
|
|
|
242 |
gross |
625 |
|
243 |
jgs |
102 |
\begin{methoddesc}[LinearPDE]{isSymmetric}{} |
244 |
|
|
returns \True if the PDE has been indicated to be symmetric. |
245 |
|
|
Otherwise \False is returned. |
246 |
|
|
\end{methoddesc} |
247 |
|
|
|
248 |
|
|
\begin{methoddesc}[LinearPDE]{setSymmetryOn}{} |
249 |
|
|
indicates that the PDE is symmetric. |
250 |
|
|
\end{methoddesc} |
251 |
|
|
|
252 |
|
|
\begin{methoddesc}[LinearPDE]{setSymmetryOff}{} |
253 |
|
|
indicates that the PDE is not symmetric. |
254 |
|
|
\end{methoddesc} |
255 |
|
|
|
256 |
|
|
\begin{methoddesc}[LinearPDE]{setReducedOrderOn}{} |
257 |
gross |
660 |
switches on the reduction of polynomial order for the solution and equation evaluation even if |
258 |
|
|
a quadratic or higher interpolation order is defined in the \Domain. This feature may not |
259 |
gross |
625 |
be supported by all PDE libraries. |
260 |
jgs |
102 |
\end{methoddesc} |
261 |
|
|
|
262 |
|
|
\begin{methoddesc}[LinearPDE]{setReducedOrderOff}{} |
263 |
gross |
660 |
switches off the reduction of polynomial order for the solution and |
264 |
jgs |
102 |
equation evaluation. |
265 |
|
|
\end{methoddesc} |
266 |
|
|
|
267 |
|
|
\begin{methoddesc}[LinearPDE]{getOperator}{} |
268 |
|
|
returns the \Operator of the PDE. |
269 |
|
|
\end{methoddesc} |
270 |
|
|
|
271 |
gross |
625 |
\begin{methoddesc}[LinearPDE]{getRightHandSide}{} |
272 |
jgs |
102 |
returns the right hand side of the PDE as a \Data object. If |
273 |
|
|
\var{ignoreConstraint}=\True the constraints are not considered |
274 |
|
|
when building up the right hand side. |
275 |
|
|
\end{methoddesc} |
276 |
|
|
|
277 |
|
|
\begin{methoddesc}[LinearPDE]{getSystem}{} |
278 |
|
|
returns the \Operator and right hand side of the PDE. |
279 |
|
|
\end{methoddesc} |
280 |
|
|
|
281 |
gross |
625 |
\begin{methoddesc}[LinearPDE]{getSolution}{ |
282 |
|
|
\optional{verbose=False} |
283 |
|
|
\optional{, reordering=LinearPDE.NO_REORDERING} |
284 |
|
|
\optional{, iter_max=1000} |
285 |
|
|
\optional{, drop_tolerance=0.01} |
286 |
|
|
\optional{, drop_storage=1.20} |
287 |
|
|
\optional{, truncation=-1} |
288 |
|
|
\optional{, restart=-1} |
289 |
|
|
} |
290 |
gross |
653 |
returns (an approximation of) the solution of the PDE. If \code{verbose=\True} some information during the solution process printed. |
291 |
gross |
660 |
\var{reordering} selects a reordering methods that is applied before or during the solution process |
292 |
gross |
653 |
(=\NOREORDERING ,\MINIMUMFILLIN ,\NESTEDDESCTION). |
293 |
gross |
660 |
\var{iter_max} specifies the maximum number of iteration steps that are allowed to reach the specified tolerance. |
294 |
gross |
625 |
\var{drop_tolerance} specifies a relative tolerance for small elements to be dropped when building a preconditioner |
295 |
gross |
653 |
(eg. in \ILUT). \var{drop_storage} limits the extra storage allowed when building a preconditioner |
296 |
gross |
660 |
(eg. in \ILUT). The extra storage is given relative to the size of the stiffness matrix, eg. |
297 |
|
|
\var{drop_storage=1.2} will allow the preconditioner to use the $1.2$ fold storage space than used |
298 |
|
|
for the stiffness matrix. \var{truncation} defines the truncation. |
299 |
jgs |
102 |
\end{methoddesc} |
300 |
|
|
|
301 |
gross |
625 |
\begin{memberdesc}[LinearPDE]{DEFAULT} |
302 |
gross |
660 |
default method, preconditioner or package to be used to solve the PDE. An appropriate method should be |
303 |
gross |
625 |
chosen by the used PDE solver library. |
304 |
|
|
\end{memberdesc} |
305 |
jgs |
102 |
|
306 |
gross |
625 |
\begin{memberdesc}[LinearPDE]{SCSL} |
307 |
gross |
660 |
the SCSL library by SGI,~\Ref{SCSL}\footnote{The SCSL library will only be available on SGI systems} |
308 |
gross |
625 |
\end{memberdesc} |
309 |
jgs |
102 |
|
310 |
gross |
625 |
\begin{memberdesc}[LinearPDE]{MKL} |
311 |
gross |
653 |
the MKL library by Intel,~\Ref{MKL}\footnote{The MKL library will only be available when the intel compilation environment is used.}. |
312 |
gross |
625 |
\end{memberdesc} |
313 |
jgs |
102 |
|
314 |
gross |
625 |
\begin{memberdesc}[LinearPDE]{UMFPACK} |
315 |
gross |
653 |
the UMFPACK,~\Ref{UMFPACK}. Remark: UMFPACK is not parallelized. |
316 |
gross |
625 |
\end{memberdesc} |
317 |
jgs |
102 |
|
318 |
gross |
625 |
\begin{memberdesc}[LinearPDE]{PASO} |
319 |
gross |
653 |
the solver library of \finley, see \Sec{CHAPTER ON FINLEY}. |
320 |
gross |
625 |
\end{memberdesc} |
321 |
jgs |
102 |
|
322 |
gross |
625 |
\begin{memberdesc}[LinearPDE]{ITERATIVE} |
323 |
gross |
653 |
the default iterative method and preconditioner. The actually used method depends on the |
324 |
gross |
660 |
PDE solver library and the solver package been choosen. Typically, \PCG is used for symmetric PDEs |
325 |
|
|
and \BiCGStab otherwise, both with \JACOBI preconditioner. |
326 |
gross |
625 |
\end{memberdesc} |
327 |
jgs |
102 |
|
328 |
gross |
625 |
\begin{memberdesc}[LinearPDE]{DIRECT} |
329 |
gross |
660 |
the default direct linear solver. |
330 |
gross |
625 |
\end{memberdesc} |
331 |
jgs |
102 |
|
332 |
gross |
625 |
\begin{memberdesc}[LinearPDE]{CHOLEVSKY} |
333 |
gross |
660 |
direct solver based on Cholevsky factorization (or similar), see~\Ref{Saad}. The solver will require a symmetric PDE. |
334 |
gross |
625 |
\end{memberdesc} |
335 |
jgs |
110 |
|
336 |
gross |
625 |
\begin{memberdesc}[LinearPDE]{PCG} |
337 |
gross |
653 |
preconditioned conjugate gradient method, see~\Ref{WEISS}\index{linear solver!PCG}\index{PCG}. The solver will require a symmetric PDE. |
338 |
gross |
625 |
\end{memberdesc} |
339 |
jgs |
110 |
|
340 |
gross |
625 |
\begin{memberdesc}[LinearPDE]{GMRES} |
341 |
gross |
653 |
the GMRES method, see~\Ref{WEISS}\index{linear solver!GMRES}\index{GMRES}. Truncation and restart are controlled by the parameters |
342 |
gross |
625 |
\var{truncation} and \var{restart} of \method{getSolution}. |
343 |
|
|
\end{memberdesc} |
344 |
jgs |
102 |
|
345 |
gross |
625 |
\begin{memberdesc}[LinearPDE]{LUMPING} |
346 |
gross |
660 |
uses lumping to solve the system of linear equations~\index{linear solver!lumping}\index{lumping}. This solver technique |
347 |
|
|
condenses the stiffness matrix to a diagonal matrix so the solution of the linear systems becomes very cheap. It can be used when |
348 |
gross |
653 |
only \var{D} is present but in any case has to applied with care. The difference in the solutions with and without lumping can be significant |
349 |
gross |
660 |
but is expect to converge to zero when the mesh gets finer. |
350 |
|
|
Lumping does not use the linear system solver library. |
351 |
gross |
625 |
\end{memberdesc} |
352 |
jgs |
107 |
|
353 |
gross |
625 |
\begin{memberdesc}[LinearPDE]{PRES20} |
354 |
gross |
653 |
the GMRES method with truncation after five residuals and |
355 |
gross |
625 |
restart after 20 steps, see~\Ref{WEISS}. |
356 |
gross |
999 |
\end{memberdesc} |
357 |
gross |
625 |
|
358 |
|
|
\begin{memberdesc}[LinearPDE]{CGS} |
359 |
|
|
conjugate gradient squared method, see~\Ref{WEISS}. |
360 |
jgs |
107 |
\end{memberdesc} |
361 |
|
|
|
362 |
gross |
625 |
\begin{memberdesc}[LinearPDE]{BICGSTAB} |
363 |
gross |
660 |
stabilized bi-conjugate gradients methods, see~\Ref{WEISS}. |
364 |
jgs |
107 |
\end{memberdesc} |
365 |
|
|
|
366 |
gross |
625 |
\begin{memberdesc}[LinearPDE]{SSOR} |
367 |
gross |
653 |
symmetric successive over-relaxation method, see~\Ref{WEISS}. Typically used as preconditioner but some linear solver libraries support |
368 |
gross |
660 |
this as a solver. |
369 |
gross |
625 |
\end{memberdesc} |
370 |
|
|
\begin{memberdesc}[LinearPDE]{ILU0} |
371 |
gross |
660 |
the incomplete LU factorization preconditioner with no fill-in, see~\Ref{Saad}. |
372 |
gross |
653 |
\end{memberdesc} |
373 |
|
|
|
374 |
gross |
625 |
\begin{memberdesc}[LinearPDE]{ILUT} |
375 |
gross |
653 |
the incomplete LU factorization preconditioner with fill-in, see~\Ref{Saad}. During the LU-factorization element with |
376 |
|
|
relative size less then \var{drop_tolerance} are dropped. Moreover, the size of the LU-factorization is restricted to the |
377 |
gross |
660 |
\var{drop_storage}-fold of the stiffness matrix. \var{drop_tolerance} and \var{drop_storage} are both set in the |
378 |
|
|
\method{getSolution} call. |
379 |
gross |
653 |
\end{memberdesc} |
380 |
|
|
|
381 |
gross |
625 |
\begin{memberdesc}[LinearPDE]{JACOBI} |
382 |
gross |
653 |
the Jacobi preconditioner, see~\Ref{Saad}. |
383 |
|
|
\end{memberdesc} |
384 |
|
|
|
385 |
gross |
625 |
\begin{memberdesc}[LinearPDE]{AMG} |
386 |
gross |
660 |
the algebraic--multi grid method, see~\Ref{AMG}. This method can be used as linear solver method but is more robust when used |
387 |
gross |
653 |
in a preconditioner. |
388 |
|
|
\end{memberdesc} |
389 |
|
|
|
390 |
gross |
625 |
\begin{memberdesc}[LinearPDE]{RILU} |
391 |
gross |
653 |
recursive incomplete LU factorization preconditioner, see~\Ref{RILU}. This method is similar to \ILUT but uses smoothing |
392 |
|
|
between levels. During the LU-factorization element with |
393 |
|
|
relative size less then \var{drop_tolerance} are dropped. Moreover, the size of the LU-factorization is restricted to the |
394 |
gross |
660 |
\var{drop_storage}-fold of the stiffness matrix. \var{drop_tolerance} and \var{drop_storage} are both set in the |
395 |
|
|
\method{getSolution} call. |
396 |
gross |
653 |
\end{memberdesc} |
397 |
jgs |
107 |
|
398 |
gross |
653 |
\begin{memberdesc}[LinearPDE]{NO_REORDERING} |
399 |
|
|
no ordering is used during factorization. |
400 |
|
|
\end{memberdesc} |
401 |
gross |
625 |
|
402 |
gross |
653 |
\begin{memberdesc}[LinearPDE]{MINIMUM_FILL_IN} |
403 |
|
|
applies reordering before factorization using a fill-in minimization strategy. You have to check with the particular solver library or |
404 |
|
|
linear solver package if this is supported. In any case, it is advisable to apply reordering on the mesh to minimize fill-in. |
405 |
|
|
\end{memberdesc} |
406 |
gross |
625 |
|
407 |
|
|
\begin{memberdesc}[LinearPDE]{NESTED_DISSECTION} |
408 |
gross |
653 |
applies reordering before factorization using a nested dissection strategy. You have to check with the particular solver library or |
409 |
|
|
linear solver package if this is supported. In any case, it is advisable to apply reordering on the mesh to minimize fill-in. |
410 |
|
|
\end{memberdesc} |
411 |
gross |
625 |
|
412 |
gross |
999 |
\subsection{The \Poisson Class} |
413 |
jgs |
102 |
The \Poisson class provides an easy way to define and solve the Poisson |
414 |
|
|
equation |
415 |
|
|
\begin{equation}\label{POISSON.1} |
416 |
|
|
-u\hackscore{,ii}=f\; . |
417 |
|
|
\end{equation} |
418 |
|
|
with homogeneous boundary conditions |
419 |
|
|
\begin{equation}\label{POISSON.2} |
420 |
|
|
n\hackscore{i}u\hackscore{,i}=0 |
421 |
|
|
\end{equation} |
422 |
|
|
and homogeneous constraints |
423 |
|
|
\begin{equation}\label{POISSON.3} |
424 |
|
|
u=0 \mbox{ where } q>0 |
425 |
|
|
\end{equation} |
426 |
|
|
$f$ has to be a \Scalar in the \Function and $q$ must be |
427 |
gross |
660 |
a \Scalar in the \SolutionFS. |
428 |
jgs |
102 |
|
429 |
|
|
\begin{classdesc}{Poisson}{domain} |
430 |
|
|
opens a Poisson equation on the \Domain domain. \Poisson is derived from \LinearPDE. |
431 |
|
|
\end{classdesc} |
432 |
|
|
\begin{methoddesc}[Poisson]{setValue}{f=escript.Data(),q=escript.Data()} |
433 |
|
|
assigns new values to \var{f} and \var{q}. |
434 |
|
|
\end{methoddesc} |
435 |
gross |
625 |
|
436 |
gross |
999 |
\subsection{The \Helmholtz Class} |
437 |
gross |
660 |
The \Helmholtz class defines the Helmholtz problem |
438 |
|
|
\begin{equation}\label{HZ.1} |
439 |
|
|
\omega \; u - (k\; u\hackscore{,j})\hackscore{,j} = f |
440 |
|
|
\end{equation} |
441 |
|
|
with natural boundary conditons |
442 |
|
|
\begin{equation}\label{HZ.2} |
443 |
|
|
k\; u\hackscore{,j} n\hackscore{,j} = g- \alpha \; u |
444 |
|
|
\end{equation} |
445 |
|
|
and constraints: |
446 |
|
|
\begin{equation}\label{HZ.3} |
447 |
|
|
u=r \mbox{ where } q>0 |
448 |
|
|
\end{equation} |
449 |
|
|
$\omega$, $k$, $f$ have to be a \Scalar in the \Function, |
450 |
|
|
$g$ and $\alpha$ must be a \Scalar in the \FunctionOnBoundary, |
451 |
|
|
and $q$ and $r$ must be a \Scalar in the \SolutionFS or must be mapped or interpolated into the particular \FunctionSpace. |
452 |
gross |
625 |
|
453 |
gross |
660 |
\begin{classdesc}{Helmholtz}{domain} |
454 |
|
|
opens a Helmholtz equation on the \Domain domain. \Helmholtz is derived from \LinearPDE. |
455 |
|
|
\end{classdesc} |
456 |
|
|
\begin{methoddesc}[Helmholtz]{setValue}{ \optional{omega} \optional{, k} \optional{, f} \optional{, alpha} \optional{, g} \optional{, r} \optional{, q}} |
457 |
|
|
assigns new values to \var{omega}, \var{k}, \var{f}, \var{alpha}, \var{g}, \var{r}, \var{q}. By default all values are set to be zero. |
458 |
|
|
\end{methoddesc} |
459 |
|
|
|
460 |
gross |
999 |
\subsection{The \Lame Class} |
461 |
gross |
660 |
The \Lame class defines a Lame equation problem: |
462 |
|
|
\begin{equation}\label{LE.1} |
463 |
|
|
-\mu (u\hackscore{i,j}+u\hackscore{j,i})+\lambda u\hackscore{k,k})\hackscore{j} = F\hackscore{i}-\sigma\hackscore{ij,j} |
464 |
|
|
\end{equation} |
465 |
|
|
with natural boundary conditons: |
466 |
|
|
\begin{equation}\label{LE.2} |
467 |
|
|
n\hackscore{j}(\mu \; (u\hackscore{i,j}+u\hackscore{j,i})+\lambda*u\hackscore{k,k}) = f\hackscore{i}+n\hackscore{j}\sigma\hackscore{ij} |
468 |
|
|
\end{equation} |
469 |
|
|
and constraint |
470 |
|
|
\begin{equation}\label{LE.3} |
471 |
|
|
u\hackscore{i}=r\hackscore{i} \mbox{ where } q\hackscore{i}>0 |
472 |
|
|
\end{equation} |
473 |
|
|
$\mu$, $\lambda$ have to be a \Scalar in the \Function, |
474 |
|
|
$F$ has to be a \Vector in the \Function, |
475 |
|
|
$\sigma$ has to be a \Tensor in the \Function, |
476 |
|
|
$f$ must be a \Vector in the \FunctionOnBoundary, |
477 |
|
|
and $q$ and $r$ must be a \Vector in the \SolutionFS or must be mapped or interpolated into the particular \FunctionSpace. |
478 |
gross |
625 |
|
479 |
gross |
660 |
\begin{classdesc}{Lame}{domain} |
480 |
|
|
opens a Lame equation on the \Domain domain. \Lame is derived from \LinearPDE. |
481 |
|
|
\end{classdesc} |
482 |
|
|
\begin{methoddesc}[Lame]{setValue}{ \optional{lame_lambda} \optional{, lame_mu} \optional{, F} \optional{, sigma} \optional{, f} \optional{, r} \optional{, q}} |
483 |
|
|
assigns new values to |
484 |
|
|
\var{lame_lambda}, |
485 |
|
|
\var{lame_mu}, |
486 |
|
|
\var{F}, |
487 |
|
|
\var{sigma}, |
488 |
|
|
\var{f}, |
489 |
|
|
\var{r} and |
490 |
|
|
\var{q} |
491 |
|
|
By default all values are set to be zero. |
492 |
|
|
\end{methoddesc} |
493 |
|
|
|