381 |
In cases of PDEs dominated by the advection terms $B$ and $C$ against the diffusion term $A$ |
In cases of PDEs dominated by the advection terms $B$ and $C$ against the diffusion term $A$ |
382 |
up-winding has been used. |
up-winding has been used. |
383 |
The \AdvectivePDE class applies upwinding to the advective terms, see \Ref{SUPG}. |
The \AdvectivePDE class applies upwinding to the advective terms, see \Ref{SUPG}. |
384 |
|
|
385 |
|
In the following we set |
386 |
|
\begin{eqnarray}\label{LINEARPDE.UPWIND.Z} |
387 |
|
Z\hackscore{j}=C\hackscore{j}-B\hackscore{j} |
388 |
|
\mbox{ or } \\ |
389 |
|
Z\hackscore{ikl}=C\hackscore{ikl}-B\hackscore{ilk} |
390 |
|
\end{eqnarray} |
391 |
To measure the dominance of the advective terms over the diffusive term $A$ the |
To measure the dominance of the advective terms over the diffusive term $A$ the |
392 |
Pelclet number is used \index{Pelclet number}. The are defined as |
Pelclet number is used \index{Pelclet number}. The are defined as |
393 |
\begin{eqnarray}\label{LINEARPDE.Peclet.single} |
\begin{eqnarray}\label{LINEARPDE.Peclet.single} |
394 |
P^{B}=\frac{h\|B\hackscore{:}\|}{2\|A\hackscore{::}\|} |
P=\frac{h\|Z\hackscore{:}\|}{2\|A\hackscore{::}\|} |
|
\mbox{ and } |
|
|
P^{C}=\frac{h\|C\hackscore{:}\|}{2\|A\hackscore{::}\|} |
|
395 |
\end{eqnarray} |
\end{eqnarray} |
396 |
\begin{eqnarray}\label{LINEARPDE.Peclet.system} |
\begin{eqnarray}\label{LINEARPDE.Peclet.system} |
397 |
P^{B}_{ik}=\frac{h\|B\hackscore{i:k}\|}{2\|A\hackscore{i:k:}\|} |
P\hackscore{ik}=\frac{h\|Z\hackscore{i:k}\|}{2\|A\hackscore{i:k:}\|} |
|
\mbox{ and } |
|
|
P^{C}_{ik}=\frac{h\|C\hackscore{ik:}\|}{2\|A\hackscore{i:k:}\|} |
|
398 |
\end{eqnarray} |
\end{eqnarray} |
399 |
where $h$ is the local cell size and |
where $h$ is the local cell size and |
400 |
\begin{eqnarray}\label{LINEARPDE.ADVECTIVE.1b} |
\begin{eqnarray}\label{LINEARPDE.ADVECTIVE.1b} |
401 |
\|C\hackscore{:}\|^2=C\hackscore{j}C\hackscore{j} \\ |
\|Z\hackscore{:}\|^2=Z\hackscore{j}Z\hackscore{j} \\ |
402 |
\|A\hackscore{::}\|^2=A\hackscore{jl}A\hackscore{jl} \\ |
\|A\hackscore{::}\|^2=A\hackscore{jl}A\hackscore{jl} \\ |
403 |
\|C\hackscore{i:k}\|^2=C\hackscore{ijk}C\hackscore{ijk} \\ |
\|Z\hackscore{i:k}\|^2=\delta\hackscore{in} \delta\hackscore{km} Z\hackscore{njm}Z\hackscore{njm} \\ |
404 |
\|A\hackscore{i:k:}\|^2=A\hackscore{ijkl}A\hackscore{ijkl} \; . |
\|A\hackscore{i:k:}\|^2=\delta\hackscore{in} \delta\hackscore{km} A\hackscore{njml}A\hackscore{njml} \; . |
405 |
\end{eqnarray} |
\end{eqnarray} |
406 |
From the Pelclet number the stabilization parameters $\Xi^{B}$ and $\Xi^{C}$ are calculated: |
In the case that it is $\|A\hackscore{::}\|$ we set $P=0$ if $\|Z\hackscore{:}\|=0$ and |
407 |
|
$P=\infinity$ if $\|Z\hackscore{:}\|=0$. Analogously for $P$ in the case of a systems of PDEs. |
408 |
|
|
409 |
|
From the Pelclet number the stabilization parameters $\Xi$ and $\Xi$ are calculated: |
410 |
\begin{eqnarray}\label{LINEARPDE.Peclet.2} |
\begin{eqnarray}\label{LINEARPDE.Peclet.2} |
411 |
\Xi^{B}=\frac{\xi(P^{B}) h}{\|B\hackscore{:}\|} |
\Xi=\xi(P) \frac{h}{\|Z\hackscore{:}\|} \\ |
412 |
\mbox{ and } |
\mbox{ or } \\ |
413 |
\Xi^{C}=\frac{\xi(P^{C}) h}{\|C\hackscore{:}\|} \\ |
\Xi\hackscore{ik}=\xi(P\hackscore{ik}) \frac{h}{\|Z\hackscore{i:k}\|} |
|
\mbox{ or } |
|
|
\Xi^{B}\hackscore{ik}=\frac{\xi(P^{B}\hackscore{ik}) h}{\|B\hackscore{i:k}\|} |
|
|
\mbox{ and } |
|
|
\Xi^{C}\hackscore{ik}=\frac{\xi(P^{C}\hackscore{ik}) h}{\|C\hackscore{ik:}\|} |
|
414 |
\end{eqnarray} |
\end{eqnarray} |
415 |
where $\xi$ is a suitable function of the Peclet number. |
where $\xi$ is a suitable function of the Peclet number. |
416 |
In the case of a single PDE the coefficient are up-dated in the following way: |
In the case of a single PDE the coefficient are up-dated in the following way: |
417 |
\begin{eqnarray}\label{LINEARPDE.ADVECTIVE.1} |
\begin{eqnarray}\label{LINEARPDE.ADVECTIVE.1} |
418 |
A\hackscore{jl} \leftarrow A\hackscore{jl} + \Xi^{B} B\hackscore{j} B\hackscore{l} + \Xi^{C} C\hackscore{j} C\hackscore{l} \\ |
A\hackscore{jl} \leftarrow A\hackscore{jl} + \Xi Z\hackscore{j} Z\hackscore{l} \\ |
419 |
B\hackscore{j} \leftarrow B\hackscore{j} + \Xi^{C} C\hackscore{j} D \\ |
B\hackscore{j} \leftarrow B\hackscore{j} + \Xi C\hackscore{j} D \\ |
420 |
C\hackscore{j} \leftarrow C\hackscore{j} + \Xi^{B} B\hackscore{j} D \\ |
C\hackscore{j} \leftarrow C\hackscore{j} + \Xi B\hackscore{j} D \\ |
421 |
X\hackscore{j} \leftarrow X\hackscore{j} + (Xi^{B} B\hackscore{j} + \Xi^{C} C\hackscore{j}) Y \\ |
X\hackscore{j} \leftarrow X\hackscore{j} + \Xi Z\hackscore{j} Y \\ |
422 |
\end{eqnarray} |
\end{eqnarray} |
423 |
Similar for the case of a systems of PDEs: |
Similar for the case of a systems of PDEs: |
424 |
\begin{eqnarray}\label{LINEARPDE.ADVECTIVE.SYSTEM} |
\begin{eqnarray}\label{LINEARPDE.ADVECTIVE.SYSTEM} |
425 |
A\hackscore{ijkl} \leftarrow A\hackscore{ijl} + \Xi^{B}\hackscore{ik} B\hackscore{ijk} B\hackscore{ilk} + |
A\hackscore{ijkl} \leftarrow A\hackscore{ijl} + \delta\hackscore{pm} \Xi\hackscore{mi} Z\hackscore{pij} Z\hackscore{mkl} \\ |
426 |
\Xi^{C}\hackscore{ik} C\hackscore{ikj} C\hackscore{ikl} \\ |
B\hackscore{ijk} \leftarrow B\hackscore{ijk} + \delta\hackscore{pm} \Xi\hackscore{mi} D\hackscore{pk} C\hackscore{mij} \\ |
427 |
B\hackscore{ijk} \leftarrow B\hackscore{ijk} + \Xi^{C}\hackscore{ij} C\hackscore{ikj} D\hackscore{ik} \\ |
C\hackscore{ikl} \leftarrow C\hackscore{ikl} + \delta\hackscore{pm} \Xi\hackscore{mi} D\hackscore{pk} B\hackscore{mli} \\ |
428 |
C\hackscore{ikl} \leftarrow C\hackscore{ikl} + \Xi^{B}\hackscore{ik} B\hackscore{ilk} D\hackscore{ik} \\ |
X\hackscore{ij} \leftarrow X\hackscore{ij} + \delta\hackscore{pm} \Xi\hackscore{mi} Y\hackscore{p} Z\hackscore{mij}\\ |
|
X\hackscore{ij} \leftarrow X\hackscore{ij} + (Xi^{B}\hackscore{ik} B\hackscore{ij} + \Xi^{C}\hackscore{ik} C\hackscore{ij}) Y\hackscore{i} \\ |
|
429 |
\end{eqnarray} |
\end{eqnarray} |
430 |
Using upwinding in this form, introduces an additonal error which is proprtional to the cell size $h$ |
Using upwinding in this form, introduces an additonal error which is proprtional to the cell size $h$ |
431 |
but with the intension to stabilize the solution. |
but with the intension to stabilize the solution. |
436 |
If \var{numEquations} and \var{numSolutions} is non-positive, the number of equations |
If \var{numEquations} and \var{numSolutions} is non-positive, the number of equations |
437 |
and the number solutions, respectively, stay undefined until a coefficient is |
and the number solutions, respectively, stay undefined until a coefficient is |
438 |
defined. \var{xi} defines a function which returns for any given Preclet number $P\ge 0$ the |
defined. \var{xi} defines a function which returns for any given Preclet number $P\ge 0$ the |
439 |
$\xi$-value used to define the stabilization parameters $\Xi^{B}$ and $\Xi^{C}$. |
$\xi$-value used to define the stabilization parameters $\Xi$ and $\Xi$. |
440 |
\AdvectivePDE is derived from \LinearPDE. |
\AdvectivePDE is derived from \LinearPDE. |
441 |
\end{classdesc} |
\end{classdesc} |
442 |
|
|