 Diff of /trunk-mpi-branch/escript/py_src/linearPDEs.py

revision 1286 by gross, Tue Sep 4 02:11:15 2007 UTC revision 1302 by ksteube, Mon Sep 17 06:57:51 2007 UTC
# Line 364  class LinearPDE(object): Line 364  class LinearPDE(object):
364
365     The PDE is symmetrical if     The PDE is symmetrical if
366
367     M{A[i,j]=A[j,i]}  and M{B[j]=C[j]} and M{A_reduced[i,j]=A_reduced[j,i]}  and M{B_reduced[j]=C_reduced[j]     M{A[i,j]=A[j,i]}  and M{B[j]=C[j]} and M{A_reduced[i,j]=A_reduced[j,i]}  and M{B_reduced[j]=C_reduced[j]}
368
369     For a system of PDEs and a solution with several components the PDE has the form     For a system of PDEs and a solution with several components the PDE has the form
370
# Line 415  class LinearPDE(object): Line 415  class LinearPDE(object):
415     of the solution at side 1 and at side 0, denotes the jump of M{u} across discontinuity along the normal calcualted by     of the solution at side 1 and at side 0, denotes the jump of M{u} across discontinuity along the normal calcualted by
416     L{jump<util.jump>}.     L{jump<util.jump>}.
417     The coefficient M{d_contact} is a rank two and M{y_contact} is a rank one both in the L{FunctionOnContactZero<escript.FunctionOnContactZero>} or L{FunctionOnContactOne<escript.FunctionOnContactOne>}.     The coefficient M{d_contact} is a rank two and M{y_contact} is a rank one both in the L{FunctionOnContactZero<escript.FunctionOnContactZero>} or L{FunctionOnContactOne<escript.FunctionOnContactOne>}.
418      The coefficient M{d_contact_reduced} is a rank two and M{y_contact_reduced} is a rank one both in the L{ReducedFunctionOnContactZero<escript.ReducedFunctionOnContactZero>} or L{ReducedFunctionOnContactOne<escript.ReducedFunctionOnContactOne>}.     The coefficient M{d_contact_reduced} is a rank two and M{y_contact_reduced} is a rank one both in the L{ReducedFunctionOnContactZero<escript.ReducedFunctionOnContactZero>} or L{ReducedFunctionOnContactOne<escript.ReducedFunctionOnContactOne>}.
419     In case of a single PDE and a single component solution the contact condition takes the form     In case of a single PDE and a single component solution the contact condition takes the form
420
421     M{n[j]*J0_{j}=n[j]*J1_{j}=(y_contact+y_contact_reduced)-(d_contact+y_contact_reduced)*jump(u)}     M{n[j]*J0_{j}=n[j]*J1_{j}=(y_contact+y_contact_reduced)-(d_contact+y_contact_reduced)*jump(u)}

Legend:
 Removed from v.1286 changed lines Added in v.1302