1 |
|
2 |
######################################################## |
3 |
# |
4 |
# Copyright (c) 2003-2009 by University of Queensland |
5 |
# Earth Systems Science Computational Center (ESSCC) |
6 |
# http://www.uq.edu.au/esscc |
7 |
# |
8 |
# Primary Business: Queensland, Australia |
9 |
# Licensed under the Open Software License version 3.0 |
10 |
# http://www.opensource.org/licenses/osl-3.0.php |
11 |
# |
12 |
######################################################## |
13 |
|
14 |
__copyright__="""Copyright (c) 2003-2009 by University of Queensland |
15 |
Earth Systems Science Computational Center (ESSCC) |
16 |
http://www.uq.edu.au/esscc |
17 |
Primary Business: Queensland, Australia""" |
18 |
__license__="""Licensed under the Open Software License version 3.0 |
19 |
http://www.opensource.org/licenses/osl-3.0.php""" |
20 |
__url__="https://launchpad.net/escript-finley" |
21 |
|
22 |
""" |
23 |
Author: Antony Hallam antony.hallam@uqconnect.edu.au |
24 |
""" |
25 |
|
26 |
from esys.pycad import * |
27 |
from esys.pycad.gmsh import Design |
28 |
from esys.finley import MakeDomain |
29 |
import numpy as np |
30 |
#import numpy as n |
31 |
from math import * |
32 |
|
33 |
def loopcoords(loop): |
34 |
temp = loop.getConstructionPoints() |
35 |
coords = np.zeros([len(temp),3],float) |
36 |
for i in range(0,len(temp)): |
37 |
coords[i,:]=temp[i].getCoordinates() |
38 |
return coords |
39 |
|
40 |
# Overall Domain |
41 |
p0=Point(0.0, 0.0, 0.0) |
42 |
p1=Point(0.0, -6000.0, 0.0) |
43 |
p2=Point(5000.0, -6000.0, 0.0) |
44 |
p3=Point(5000.0, 0.0, 0.0) |
45 |
|
46 |
l01=Line(p0, p1) |
47 |
l12=Line(p1, p2) |
48 |
l23=Line(p2, p3) |
49 |
l30=Line(p3, p0) |
50 |
|
51 |
c=CurveLoop(l01, l12, l23, l30) |
52 |
|
53 |
# Material Boundary |
54 |
|
55 |
x=[ Point(i*100.0,-2500+1500.*cos(pi*i*100.0/2500.0+pi)) for i in range(0,51) ] |
56 |
mysp = Spline(*tuple(x)) |
57 |
x1=Spline.getStartPoint(mysp) |
58 |
x2=Spline.getEndPoint(mysp) |
59 |
|
60 |
# TOP BLOCK |
61 |
tbl1=Line(p0,x1) |
62 |
tbl2=mysp |
63 |
tbl3=Line(x2,p3) |
64 |
tblockloop = CurveLoop(tbl1,tbl2,tbl3,l30) |
65 |
tblock = PlaneSurface(tblockloop) |
66 |
|
67 |
tpg = loopcoords(tblockloop) |
68 |
np.savetxt("toppg",tpg,delimiter=" ") |
69 |
|
70 |
# BOTTOM BLOCK |
71 |
bbl1=Line(x1,p1) |
72 |
bbl3=Line(p2,x2) |
73 |
bbl4=-mysp |
74 |
bblockloop = CurveLoop(bbl1,l12,bbl3,bbl4) |
75 |
bblock = PlaneSurface(bblockloop) |
76 |
|
77 |
#clockwise check |
78 |
bblockloop2=CurveLoop(mysp,Line(x2,p2),Line(p2,p1),Line(p1,x1)) |
79 |
bpg = loopcoords(bblockloop2) |
80 |
np.savetxt("botpg",bpg,delimiter=" ") |
81 |
|
82 |
# Create a Design which can make the mesh |
83 |
d=Design(dim=2, element_size=200) |
84 |
# Add the trapezoid with cutout |
85 |
d.addItems(PropertySet("top",tblock),PropertySet("bottom",bblock),PropertySet("linebottom",l12)) |
86 |
# Create the geometry, mesh and Escript domain |
87 |
d.setScriptFileName("heatrefraction_mesh001.geo") |
88 |
|
89 |
d.setMeshFileName("heatrefraction_mesh001.msh") |
90 |
domain=MakeDomain(d, integrationOrder=-1, reducedIntegrationOrder=-1, optimizeLabeling=True) |
91 |
# Create a file that can be read back in to python with mesh=ReadMesh(fileName) |
92 |
domain.write("heatrefraction_mesh001.fly") |
93 |
|
94 |
|