1 |
|
2 |
######################################################## |
3 |
# |
4 |
# Copyright (c) 2003-2009 by University of Queensland |
5 |
# Earth Systems Science Computational Center (ESSCC) |
6 |
# http://www.uq.edu.au/esscc |
7 |
# |
8 |
# Primary Business: Queensland, Australia |
9 |
# Licensed under the Open Software License version 3.0 |
10 |
# http://www.opensource.org/licenses/osl-3.0.php |
11 |
# |
12 |
######################################################## |
13 |
|
14 |
__copyright__="""Copyright (c) 2003-2009 by University of Queensland |
15 |
Earth Systems Science Computational Center (ESSCC) |
16 |
http://www.uq.edu.au/esscc |
17 |
Primary Business: Queensland, Australia""" |
18 |
__license__="""Licensed under the Open Software License version 3.0 |
19 |
http://www.opensource.org/licenses/osl-3.0.php""" |
20 |
__url__="https://launchpad.net/escript-finley" |
21 |
|
22 |
""" |
23 |
Author: Antony Hallam antony.hallam@uqconnect.edu.au |
24 |
""" |
25 |
|
26 |
# To solve the problem it is necessary to import the modules we require. |
27 |
from esys.escript import * # This imports everything from the escript library |
28 |
from esys.escript.linearPDEs import LinearPDE # This defines LinearPDE as LinearPDE |
29 |
from esys.finley import Rectangle # This imports the rectangle domain function from finley |
30 |
from esys.escript.unitsSI import * # A useful unit handling package which will make sure all our units match up in the equations. |
31 |
import os #This package is necessary to handle saving our data. |
32 |
#plotting tools |
33 |
#import matplotlib as ptool |
34 |
|
35 |
|
36 |
##ESTABLISHING VARIABLES |
37 |
#Domain related. |
38 |
mx = 1*m #meters - model lenght |
39 |
my = .1*m #meters - model width |
40 |
ndx = 100 # steps in x direction |
41 |
ndy = 1 # steps in y direction |
42 |
|
43 |
#PDE related |
44 |
q=200. * Celsius #Kelvin - our heat source temperature |
45 |
Tref = 0. * Celsius # Kelvin - starting temp of iron bar |
46 |
rho = 7874. *kg/m**3 #kg/m^{3} density of iron |
47 |
cp = 449.*J/(kg*K) #j/Kg.K thermal capacity |
48 |
rhocp = rho*cp |
49 |
kappa = 80.*W/m/K #watts/m.Kthermal conductivity |
50 |
#Script/Iteration Related |
51 |
t=0 #our start time, usually zero |
52 |
tend=5.*minute #seconds - time to end simulation |
53 |
outputs = 200 # number of time steps required. |
54 |
h=(tend-t)/outputs #size of time step |
55 |
print "Expected Number of time outputs is: ", (tend-t)/h |
56 |
i=0 #loop counter |
57 |
#the folder to put our outputs in, leave blank "" for script path |
58 |
save_path="data/onedheatdiff001" |
59 |
#note this folder path must exist to work |
60 |
|
61 |
|
62 |
#... generate domain ... |
63 |
rod = Rectangle(l0=mx,l1=my,n0=ndx, n1=ndy) |
64 |
# extract finite points |
65 |
x=rod.getX() |
66 |
#... open PDE ... |
67 |
mypde=LinearPDE(rod) |
68 |
mypde.setSymmetryOn() |
69 |
mypde.setValue(A=kappa*kronecker(rod),D=rhocp/h) |
70 |
|
71 |
# ... set heat source: .... |
72 |
qH=q*whereZero(x[0]) |
73 |
# ... set initial temperature .... |
74 |
T=Tref |
75 |
|
76 |
# ... start iteration: |
77 |
while t<=tend: |
78 |
i+=1 |
79 |
t+=h |
80 |
mypde.setValue(Y=qH+rhocp/h*T) |
81 |
T=mypde.getSolution() |
82 |
#ptool.plot(T) |
83 |
saveVTK(os.path.join(save_path,"data%03d.xml") %i,sol=T) |
84 |
|
85 |
|