# Contents of /trunk/doc/examples/cookbook/example02.py

Revision 2949 - (show annotations)
Thu Feb 25 05:23:11 2010 UTC (9 years, 5 months ago) by gross
File MIME type: text/x-python
File size: 4521 byte(s)
```renaming examples part 1
```
 1 2 ######################################################## 3 # 4 # Copyright (c) 2009 by University of Queensland 5 # Earth Systems Science Computational Center (ESSCC) 6 7 # 8 # Primary Business: Queensland, Australia 9 # Licensed under the Open Software License version 3.0 10 11 # 12 ######################################################## 13 14 __copyright__="""Copyright (c) 2009 by University of Queensland 15 Earth Systems Science Computational Center (ESSCC) 16 http://www.uq.edu.au/esscc 17 Primary Business: Queensland, Australia""" 18 __license__="""Licensed under the Open Software License version 3.0 19 20 __url__= 21 22 """ 23 Author: Antony Hallam antony.hallam@uqconnect.edu.au 24 """ 25 26 # To solve the problem it is necessary to import the modules we require. 27 from esys.escript import * # This imports everything from the escript library 28 from esys.escript.unitsSI import * 29 from esys.escript.linearPDEs import LinearPDE # This defines LinearPDE as LinearPDE 30 from esys.finley import Rectangle # This imports the rectangle domain function from finley 31 #For interactive use, you can comment out the next two lines 32 import matplotlib 33 matplotlib.use('agg') #It's just here for automated testing 34 import pylab as pl #Plotting package. 35 import numpy as np #Array package. 36 import os, sys #This package is necessary to handle saving our data. 37 38 # .. MPI WORLD CHECK 39 if getMPISizeWorld() > 1: 40 import sys 41 print "This example will not run in an MPI world." 42 sys.exit(0) 43 44 ##ESTABLISHING VARIABLES 45 #Domain related. 46 mx = 1*m #meters - model length 47 my = .1*m #meters - model width 48 ndx = 100 # mesh steps in x direction 49 ndy = 1 # mesh steps in y direction - one dimension means one element 50 #PDE related 51 rho = 7874. *kg/m**3 #kg/m^{3} density of iron 52 cp = 449.*J/(kg*K) # J/Kg.K thermal capacity 53 rhocp = rho*cp 54 kappa = 80.*W/m/K # watts/m.Kthermal conductivity 55 qH=0 * J/(sec*m**3) # J/(sec.m^{3}) no heat source 56 Tref = 20 * Celsius # base temperature of the rod 57 T0 = 100 * Celsius # temperature at heating element 58 59 t=0 * day # our start time, usually zero 60 tend= 0.5 *day # - time to end simulation 61 outputs = 200 # number of time steps required. 62 h=(tend-t)/outputs #size of time step 63 #user warning statement 64 print "Expected Number of time outputs is: ", (tend-t)/h 65 i=0 #loop counter 66 #the folder to put our outputs in, leave blank "" for script path 67 save_path= os.path.join("data","example02") 68 #ensure the dir exists 69 mkDir(save_path, os.path.join(save_path,"tempT")) 70 71 #... generate domain ... 72 rod = Rectangle(l0=mx,l1=my,n0=ndx, n1=ndy) 73 x=Solution(rod).getX() 74 #... open PDE and set coefficients ... 75 mypde=LinearPDE(rod) 76 A=zeros((2,2)) 77 A[0,0]=kappa 78 q=whereZero(x[0]) 79 mypde.setValue(A=A, D=rhocp/h, q=q, r=T0) 80 # ... set initial temperature .... 81 T= T0*whereZero(x[0])+Tref*(1-whereZero(x[0])) 82 83 # ... open a collector for the time marks and corresponding total energy 84 t_list=[] 85 E_list=[] 86 # ... convert solution points for plotting 87 plx = x.toListOfTuples() 88 plx = np.array(plx) #convert to tuple to numpy array 89 plx = plx[:,0] #extract x locations 90 # ... start iteration: 91 while t