/[escript]/trunk/doc/examples/cookbook/example09b.py
ViewVC logotype

Annotation of /trunk/doc/examples/cookbook/example09b.py

Parent Directory Parent Directory | Revision Log Revision Log


Revision 3346 - (hide annotations)
Fri Nov 12 01:19:02 2010 UTC (8 years, 11 months ago) by caltinay
File MIME type: text/x-python
File size: 6400 byte(s)
Replaced usage of esys.escript.util.saveVTK by weipa.saveVTK in all python
scripts.

1 ahallam 3089
2     ########################################################
3     #
4     # Copyright (c) 2009-2010 by University of Queensland
5     # Earth Systems Science Computational Center (ESSCC)
6     # http://www.uq.edu.au/esscc
7     #
8     # Primary Business: Queensland, Australia
9     # Licensed under the Open Software License version 3.0
10     # http://www.opensource.org/licenses/osl-3.0.php
11     #
12     ########################################################
13    
14     __copyright__="""Copyright (c) 2009-2010 by University of Queensland
15     Earth Systems Science Computational Center (ESSCC)
16     http://www.uq.edu.au/esscc
17     Primary Business: Queensland, Australia"""
18     __license__="""Licensed under the Open Software License version 3.0
19     http://www.opensource.org/licenses/osl-3.0.php"""
20     __url__="https://launchpad.net/escript-finley"
21    
22     ############################################################FILE HEADER
23     # example09.py
24     # Antony Hallam
25     # Seismic Wave Equation Simulation using acceleration solution.
26     # 3D model with multiple layers.
27    
28     #######################################################EXTERNAL MODULES
29     from esys.escript import *
30     from esys.finley import Rectangle
31 caltinay 3346 from esys.weipa import saveVTK
32 ahallam 3089 import os
33     # smoothing operator
34     from esys.escript.pdetools import Projector, Locator
35     from esys.escript.unitsSI import *
36     import numpy as np
37 jfenwick 3148 import matplotlib
38     matplotlib.use('agg') #It's just here for automated testing
39    
40 ahallam 3089 import pylab as pl
41     import matplotlib.cm as cm
42     from esys.escript.linearPDEs import LinearPDE
43     from esys.finley import ReadMesh
44    
45     ########################################################MPI WORLD CHECK
46     if getMPISizeWorld() > 1:
47     import sys
48     print "This example will not run in an MPI world."
49     sys.exit(0)
50    
51     #################################################ESTABLISHING VARIABLES
52     # where to save output data
53     savepath = "data/example09b2"
54     meshpath = "data/example09m"
55     mkDir(savepath)
56     #Geometric and material property related variables.
57     mx = 200. # model lenght
58     my = 200. # model width
59     mz=100.0
60 ahallam 3099 step=4.0 # the element size
61 ahallam 3089 ndx = int(mx/step) # steps in x direction
62     ndy = int(my/step) # steps in y direction
63     ndz = int(mz/step)
64    
65     vel2=1800.; vel1=3000.
66     rho2=2300.; rho1=3100. #density
67     mu2=vel2**2.*rho2/4.; mu1=vel1**2.*rho1/4. #bulk modulus
68     lam2=vel2**2.*rho2/2.; lam1=vel1**2.*rho1/2. #lames constant
69    
70     # Time related variables.
71 ahallam 3195 testing=True
72     if testing:
73     print 'The testing end time is curerntly sellected this severely limits the number of time iterations.'
74     print "Try changing testing to False for more iterations."
75     tend=0.001
76     else:
77     tend=0.1 # end time
78    
79 ahallam 3089 h=0.00005 # time step
80     # data recording times
81     rtime=0.0 # first time to record
82 ahallam 3099 rtime_inc=tend/200.0 # time increment to record
83 ahallam 3089 #Check to make sure number of time steps is not too large.
84     print "Time step size= ",h, "Expected number of outputs= ",tend/h
85    
86     U0=0.1 # amplitude of point source
87     ls=500 # length of the source
88     source=np.zeros(ls,'float') # source array
89     decay1=np.zeros(ls,'float') # decay curve one
90     decay2=np.zeros(ls,'float') # decay curve two
91     time=np.zeros(ls,'float') # time values
92     g=np.log(0.01)/ls
93    
94     dfeq=50 #Dominant Frequency
95     a = 2.0 * (np.pi * dfeq)**2.0
96     t0 = 5.0 / (2.0 * np.pi * dfeq)
97     srclength = 5. * t0
98     ls = int(srclength/h)
99     print 'source length',ls
100     source=np.zeros(ls,'float') # source array
101     ampmax=0
102     for it in range(0,ls):
103     t = it*h
104     tt = t-t0
105     dum1 = np.exp(-a * tt * tt)
106     source[it] = -2. * a * tt * dum1
107     if (abs(source[it]) > ampmax):
108     ampmax = abs(source[it])
109     time[t]=t*h
110     #tdecay=decay1*decay2*U0
111     #decay1=decay1*U0; decay2=decay2*U0
112     #pl.clf();
113     #pl.plot(source)
114     #pl.plot(time,decay1);pl.plot(time,decay2);
115     #pl.plot(time,tdecay)
116     #pl.savefig(os.path.join(savepath,'source.png'))
117    
118     # will introduce a spherical source at middle left of bottom face
119     xc=[mx/2,my/2,0]
120    
121     ####################################################DOMAIN CONSTRUCTION
122     domain=ReadMesh(os.path.join(meshpath,'example09m.fly')) # create the domain
123     x=domain.getX() # get the locations of the nodes in the domain
124    
125     lam=Scalar(0,Function(domain))
126     lam.setTaggedValue("vintfa",lam1)
127     lam.setTaggedValue("vintfb",lam2)
128     mu=Scalar(0,Function(domain))
129     mu.setTaggedValue("vintfa",mu1)
130     mu.setTaggedValue("vintfb",mu2)
131     rho=Scalar(0,Function(domain))
132     rho.setTaggedValue("vintfa",rho1)
133     rho.setTaggedValue("vintfb",rho2)
134    
135     ##########################################################ESTABLISH PDE
136     mypde=LinearPDE(domain) # create pde
137     mypde.setSymmetryOn() # turn symmetry on
138     # turn lumping on for more efficient solving
139     #mypde.getSolverOptions().setSolverMethod(mypde.getSolverOptions().LUMPING)
140     kmat = kronecker(domain) # create the kronecker delta function of the domain
141     mypde.setValue(D=rho*kmat) #set the general form value D
142    
143     ############################################FIRST TIME STEPS AND SOURCE
144     # define small radius around point xc
145     src_length = 20; print "src_length = ",src_length
146     # set initial values for first two time steps with source terms
147     xb=FunctionOnBoundary(domain).getX()
148     yx=(cos(length(xb-xc)*3.1415/src_length)+1)*whereNegative(length(xb-xc)-src_length)
149     stop=Scalar(0.0,FunctionOnBoundary(domain))
150     stop.setTaggedValue("stop",1.0)
151 ahallam 3099 src_dir=numpy.array([0.,1.,0.0]) # defines direction of point source as down
152 ahallam 3089
153     mypde.setValue(y=source[0]*yx*src_dir*stop) #set the source as a function on the boundary
154     # initial value of displacement at point source is constant (U0=0.01)
155     # for first two time steps
156     u=[0.0,0.0,0.0]*wherePositive(x)
157     u_m1=u
158    
159     ####################################################ITERATION VARIABLES
160     n=0 # iteration counter
161     t=0 # time counter
162     ##############################################################ITERATION
163     while t<tend:
164     # get current stress
165     g=grad(u); stress=lam*trace(g)*kmat+mu*(g+transpose(g))#*abc
166     mypde.setValue(X=-stress) # set PDE values
167     accel = mypde.getSolution() #get PDE solution for accelleration
168     u_p1=(2.*u-u_m1)+h*h*accel #calculate displacement
169     u_p1=u_p1#*abc # apply boundary conditions
170     u_m1=u; u=u_p1 # shift values by 1
171     # save current displacement, acceleration and pressure
172     if (t >= rtime):
173     saveVTK(os.path.join(savepath,"ex09b.%05d.vtu"%n),displacement=length(u),\
174     acceleration=length(accel),tensor=stress)
175     rtime=rtime+rtime_inc #increment data save time
176     # increment loop values
177     t=t+h; n=n+1
178     if (n < ls):
179     mypde.setValue(y=source[n]*yx*src_dir*stop) #set the source as a function on the boundary
180     print n,"-th time step t ",t

  ViewVC Help
Powered by ViewVC 1.1.26