/[escript]/trunk/doc/examples/cookbook/example09b.py
ViewVC logotype

Contents of /trunk/doc/examples/cookbook/example09b.py

Parent Directory Parent Directory | Revision Log Revision Log


Revision 3346 - (show annotations)
Fri Nov 12 01:19:02 2010 UTC (9 years, 1 month ago) by caltinay
File MIME type: text/x-python
File size: 6400 byte(s)
Replaced usage of esys.escript.util.saveVTK by weipa.saveVTK in all python
scripts.

1
2 ########################################################
3 #
4 # Copyright (c) 2009-2010 by University of Queensland
5 # Earth Systems Science Computational Center (ESSCC)
6 # http://www.uq.edu.au/esscc
7 #
8 # Primary Business: Queensland, Australia
9 # Licensed under the Open Software License version 3.0
10 # http://www.opensource.org/licenses/osl-3.0.php
11 #
12 ########################################################
13
14 __copyright__="""Copyright (c) 2009-2010 by University of Queensland
15 Earth Systems Science Computational Center (ESSCC)
16 http://www.uq.edu.au/esscc
17 Primary Business: Queensland, Australia"""
18 __license__="""Licensed under the Open Software License version 3.0
19 http://www.opensource.org/licenses/osl-3.0.php"""
20 __url__="https://launchpad.net/escript-finley"
21
22 ############################################################FILE HEADER
23 # example09.py
24 # Antony Hallam
25 # Seismic Wave Equation Simulation using acceleration solution.
26 # 3D model with multiple layers.
27
28 #######################################################EXTERNAL MODULES
29 from esys.escript import *
30 from esys.finley import Rectangle
31 from esys.weipa import saveVTK
32 import os
33 # smoothing operator
34 from esys.escript.pdetools import Projector, Locator
35 from esys.escript.unitsSI import *
36 import numpy as np
37 import matplotlib
38 matplotlib.use('agg') #It's just here for automated testing
39
40 import pylab as pl
41 import matplotlib.cm as cm
42 from esys.escript.linearPDEs import LinearPDE
43 from esys.finley import ReadMesh
44
45 ########################################################MPI WORLD CHECK
46 if getMPISizeWorld() > 1:
47 import sys
48 print "This example will not run in an MPI world."
49 sys.exit(0)
50
51 #################################################ESTABLISHING VARIABLES
52 # where to save output data
53 savepath = "data/example09b2"
54 meshpath = "data/example09m"
55 mkDir(savepath)
56 #Geometric and material property related variables.
57 mx = 200. # model lenght
58 my = 200. # model width
59 mz=100.0
60 step=4.0 # the element size
61 ndx = int(mx/step) # steps in x direction
62 ndy = int(my/step) # steps in y direction
63 ndz = int(mz/step)
64
65 vel2=1800.; vel1=3000.
66 rho2=2300.; rho1=3100. #density
67 mu2=vel2**2.*rho2/4.; mu1=vel1**2.*rho1/4. #bulk modulus
68 lam2=vel2**2.*rho2/2.; lam1=vel1**2.*rho1/2. #lames constant
69
70 # Time related variables.
71 testing=True
72 if testing:
73 print 'The testing end time is curerntly sellected this severely limits the number of time iterations.'
74 print "Try changing testing to False for more iterations."
75 tend=0.001
76 else:
77 tend=0.1 # end time
78
79 h=0.00005 # time step
80 # data recording times
81 rtime=0.0 # first time to record
82 rtime_inc=tend/200.0 # time increment to record
83 #Check to make sure number of time steps is not too large.
84 print "Time step size= ",h, "Expected number of outputs= ",tend/h
85
86 U0=0.1 # amplitude of point source
87 ls=500 # length of the source
88 source=np.zeros(ls,'float') # source array
89 decay1=np.zeros(ls,'float') # decay curve one
90 decay2=np.zeros(ls,'float') # decay curve two
91 time=np.zeros(ls,'float') # time values
92 g=np.log(0.01)/ls
93
94 dfeq=50 #Dominant Frequency
95 a = 2.0 * (np.pi * dfeq)**2.0
96 t0 = 5.0 / (2.0 * np.pi * dfeq)
97 srclength = 5. * t0
98 ls = int(srclength/h)
99 print 'source length',ls
100 source=np.zeros(ls,'float') # source array
101 ampmax=0
102 for it in range(0,ls):
103 t = it*h
104 tt = t-t0
105 dum1 = np.exp(-a * tt * tt)
106 source[it] = -2. * a * tt * dum1
107 if (abs(source[it]) > ampmax):
108 ampmax = abs(source[it])
109 time[t]=t*h
110 #tdecay=decay1*decay2*U0
111 #decay1=decay1*U0; decay2=decay2*U0
112 #pl.clf();
113 #pl.plot(source)
114 #pl.plot(time,decay1);pl.plot(time,decay2);
115 #pl.plot(time,tdecay)
116 #pl.savefig(os.path.join(savepath,'source.png'))
117
118 # will introduce a spherical source at middle left of bottom face
119 xc=[mx/2,my/2,0]
120
121 ####################################################DOMAIN CONSTRUCTION
122 domain=ReadMesh(os.path.join(meshpath,'example09m.fly')) # create the domain
123 x=domain.getX() # get the locations of the nodes in the domain
124
125 lam=Scalar(0,Function(domain))
126 lam.setTaggedValue("vintfa",lam1)
127 lam.setTaggedValue("vintfb",lam2)
128 mu=Scalar(0,Function(domain))
129 mu.setTaggedValue("vintfa",mu1)
130 mu.setTaggedValue("vintfb",mu2)
131 rho=Scalar(0,Function(domain))
132 rho.setTaggedValue("vintfa",rho1)
133 rho.setTaggedValue("vintfb",rho2)
134
135 ##########################################################ESTABLISH PDE
136 mypde=LinearPDE(domain) # create pde
137 mypde.setSymmetryOn() # turn symmetry on
138 # turn lumping on for more efficient solving
139 #mypde.getSolverOptions().setSolverMethod(mypde.getSolverOptions().LUMPING)
140 kmat = kronecker(domain) # create the kronecker delta function of the domain
141 mypde.setValue(D=rho*kmat) #set the general form value D
142
143 ############################################FIRST TIME STEPS AND SOURCE
144 # define small radius around point xc
145 src_length = 20; print "src_length = ",src_length
146 # set initial values for first two time steps with source terms
147 xb=FunctionOnBoundary(domain).getX()
148 yx=(cos(length(xb-xc)*3.1415/src_length)+1)*whereNegative(length(xb-xc)-src_length)
149 stop=Scalar(0.0,FunctionOnBoundary(domain))
150 stop.setTaggedValue("stop",1.0)
151 src_dir=numpy.array([0.,1.,0.0]) # defines direction of point source as down
152
153 mypde.setValue(y=source[0]*yx*src_dir*stop) #set the source as a function on the boundary
154 # initial value of displacement at point source is constant (U0=0.01)
155 # for first two time steps
156 u=[0.0,0.0,0.0]*wherePositive(x)
157 u_m1=u
158
159 ####################################################ITERATION VARIABLES
160 n=0 # iteration counter
161 t=0 # time counter
162 ##############################################################ITERATION
163 while t<tend:
164 # get current stress
165 g=grad(u); stress=lam*trace(g)*kmat+mu*(g+transpose(g))#*abc
166 mypde.setValue(X=-stress) # set PDE values
167 accel = mypde.getSolution() #get PDE solution for accelleration
168 u_p1=(2.*u-u_m1)+h*h*accel #calculate displacement
169 u_p1=u_p1#*abc # apply boundary conditions
170 u_m1=u; u=u_p1 # shift values by 1
171 # save current displacement, acceleration and pressure
172 if (t >= rtime):
173 saveVTK(os.path.join(savepath,"ex09b.%05d.vtu"%n),displacement=length(u),\
174 acceleration=length(accel),tensor=stress)
175 rtime=rtime+rtime_inc #increment data save time
176 # increment loop values
177 t=t+h; n=n+1
178 if (n < ls):
179 mypde.setValue(y=source[n]*yx*src_dir*stop) #set the source as a function on the boundary
180 print n,"-th time step t ",t

  ViewVC Help
Powered by ViewVC 1.1.26