# Contents of /trunk/doc/examples/cookbook/example09b.py

Revision 4576 - (show annotations)
Mon Dec 9 23:35:30 2013 UTC (5 years, 1 month ago) by sshaw
File MIME type: text/x-python
File size: 6597 byte(s)
```python3ified things, replaced mixed whitespace and xrange calls
```
 1 2 ############################################################################## 3 # 4 # Copyright (c) 2009-2013 by University of Queensland 5 6 # 7 # Primary Business: Queensland, Australia 8 # Licensed under the Open Software License version 3.0 9 10 # 11 # Development until 2012 by Earth Systems Science Computational Center (ESSCC) 12 # Development since 2012 by School of Earth Sciences 13 # 14 ############################################################################## 15 16 __copyright__="""Copyright (c) 2009-2013 by University of Queensland 17 http://www.uq.edu.au 18 Primary Business: Queensland, Australia""" 19 __license__="""Licensed under the Open Software License version 3.0 20 21 __url__= 22 23 ############################################################FILE HEADER 24 # example09.py 25 # Antony Hallam 26 # Seismic Wave Equation Simulation using acceleration solution. 27 # 3D model with multiple layers. Layercake example. 28 29 #######################################################EXTERNAL MODULES 30 import matplotlib 31 matplotlib.use('agg') #It's just here for automated testing 32 from esys.escript import * 33 from esys.finley import Rectangle 34 from esys.weipa import saveVTK 35 import os 36 # smoothing operator 37 from esys.escript.pdetools import Projector, Locator 38 from esys.escript.unitsSI import * 39 import numpy as np 40 41 import pylab as pl 42 import matplotlib.cm as cm 43 from esys.escript.linearPDEs import LinearPDE 44 from esys.finley import ReadMesh 45 46 ########################################################MPI WORLD CHECK 47 if getMPISizeWorld() > 1: 48 import sys 49 print("This example will not run in an MPI world.") 50 sys.exit(0) 51 52 #################################################ESTABLISHING VARIABLES 53 # where to save output data 54 savepath = "data/example09b" 55 meshpath = "data/example09m" 56 mkDir(savepath) 57 #Geometric and material property related variables. 58 step=4.0 # the element size 59 60 vel=1800. #starting velocity 61 rhoc=2000. #starting density 62 nlayers=9 #number of layers in layercake model. 63 64 ####################################################TESTING SWITCH 65 testing=True 66 if testing: 67 print('The testing end time is currently selected. This severely limits the number of time iterations.') 68 print("Try changing testing to False for more iterations.") 69 tend=0.001 70 #Model Parameters 71 mx=40. 72 my=40. 73 mz=20. 74 outputs=5 75 else: 76 tend=0.1 # end time 77 #Model Parameters 78 mx=100.0 #x width of model 79 my=100.0 #y width of model 80 mz=50.0 #depth of model 81 outputs=200 82 83 ####################################################TIME RELATED VARIABLES 84 h=0.00001 # time step 85 # data recording times 86 rtime=0.0 # first time to record 87 rtime_inc=tend/outputs # time increment to record 88 #Check to make sure number of time steps is not too large. 89 print("Time step size= ",h, "Expected number of outputs= ",tend/h) 90 91 ####################################################CREATING THE SOURCE FUNCTION 92 U0=0.1 # amplitude of point source 93 ls=500 # length of the source 94 source=np.zeros(ls,'float') # source array 95 decay1=np.zeros(ls,'float') # decay curve one 96 decay2=np.zeros(ls,'float') # decay curve two 97 time=np.zeros(ls,'float') # time values 98 g=np.log(0.01)/ls 99 100 dfeq=50 #Dominant Frequency 101 a = 2.0 * (np.pi * dfeq)**2.0 102 t0 = 5.0 / (2.0 * np.pi * dfeq) 103 srclength = 5. * t0 104 ls = int(srclength/h) 105 print('source length',ls) 106 source=np.zeros(ls,'float') # source array 107 ampmax=0 108 for it in range(0,ls): 109 t = it*h 110 tt = t-t0 111 dum1 = np.exp(-a * tt * tt) 112 source[it] = -2. * a * tt * dum1 113 if (abs(source[it]) > ampmax): 114 ampmax = abs(source[it]) 115 time[t]=t*h 116 117 # will introduce a spherical source at middle left of bottom face 118 xc=[mx/2,my/2,0] 119 120 ####################################################DOMAIN CONSTRUCTION 121 domain=ReadMesh(os.path.join(meshpath,'example09lc.fly')) # create the domain 122 x=domain.getX() # get the locations of the nodes in the domain 123 124 lam=Scalar(0,Function(domain)) 125 mu=Scalar(0,Function(domain)) 126 rho=Scalar(0,Function(domain)) 127 128 #Setting parameters for each layer in the model. 129 for i in range(0,nlayers): 130 rho.setTaggedValue("volume_%d"%i,rhoc+i*100.) 131 lamc=(vel+i*100.)**2.*(rhoc+i*100.)/2. 132 muc=(vel+i*100.)**2.*(rhoc+i*100.)/4. 133 lam.setTaggedValue("volume_%d"%i,lamc) 134 mu.setTaggedValue("volume_%d"%i,muc) 135 136 ##########################################################ESTABLISH PDE 137 mypde=LinearPDE(domain) # create pde 138 mypde.setSymmetryOn() # turn symmetry on 139 # turn lumping on for more efficient solving 140 #mypde.getSolverOptions().setSolverMethod(mypde.getSolverOptions().HRZ_LUMPING) 141 kmat = kronecker(domain) # create the kronecker delta function of the domain 142 mypde.setValue(D=rho*kmat) #set the general form value D 143 144 ############################################FIRST TIME STEPS AND SOURCE 145 # define small radius around point xc 146 src_rad = 20; print("src radius= ",src_rad) 147 # set initial values for first two time steps with source terms 148 xb=FunctionOnBoundary(domain).getX() 149 yx=(cos(length(xb-xc)*3.1415/src_rad)+1)*whereNegative(length(xb-xc)-src_rad) 150 stop=Scalar(0.0,FunctionOnBoundary(domain)) 151 stop.setTaggedValue("intface_0",1.0) 152 src_dir=numpy.array([0.,0.,1.0]) # defines direction of point source as down 153 154 mypde.setValue(y=source[0]*yx*src_dir*stop) #set the source as a function on the boundary 155 # initial value of displacement at point source is constant (U0=0.01) 156 # for first two time steps 157 u=[0.0,0.0,0.0]*wherePositive(x) 158 u_m1=u 159 160 ####################################################ITERATION VARIABLES 161 n=0 # iteration counter 162 t=0 # time counter 163 ##############################################################ITERATION 164 while t= rtime): 174 saveVTK(os.path.join(savepath,"ex09b.%05d.vtu"%n),displacement=length(u),\ 175 acceleration=length(accel),tensor=stress) 176 rtime=rtime+rtime_inc #increment data save time 177 # increment loop values 178 t=t+h; n=n+1 179 if (n < ls): 180 mypde.setValue(y=source[n]*yx*src_dir*stop) #set the source as a function on the boundary 181 print("time step %d, t=%s"%(n,t))

 ViewVC Help Powered by ViewVC 1.1.26