/[escript]/trunk/doc/examples/cookbook/example09c.py
ViewVC logotype

Contents of /trunk/doc/examples/cookbook/example09c.py

Parent Directory Parent Directory | Revision Log Revision Log


Revision 3911 - (show annotations)
Thu Jun 14 01:01:03 2012 UTC (6 years, 5 months ago) by jfenwick
File MIME type: text/x-python
File size: 6405 byte(s)
Copyright changes
1
2 ########################################################
3 #
4 # Copyright (c) 2009-2012 by University of Queensland
5 # Earth Systems Science Computational Center (ESSCC)
6 # http://www.uq.edu.au/esscc
7 #
8 # Primary Business: Queensland, Australia
9 # Licensed under the Open Software License version 3.0
10 # http://www.opensource.org/licenses/osl-3.0.php
11 #
12 ########################################################
13
14 __copyright__="""Copyright (c) 2009-2012 by University of Queensland
15 Earth Systems Science Computational Center (ESSCC)
16 http://www.uq.edu.au/esscc
17 Primary Business: Queensland, Australia"""
18 __license__="""Licensed under the Open Software License version 3.0
19 http://www.opensource.org/licenses/osl-3.0.php"""
20 __url__="https://launchpad.net/escript-finley"
21
22 ############################################################FILE HEADER
23 # example09.py
24 # Antony Hallam
25 # Seismic Wave Equation Simulation using acceleration solution.
26 # 3D model with multiple layers.
27
28 #######################################################EXTERNAL MODULES
29 from esys.escript import *
30 from esys.finley import Rectangle
31 from esys.weipa import saveVTK
32 import os
33 # smoothing operator
34 from esys.escript.pdetools import Projector, Locator
35 from esys.escript.unitsSI import *
36 import numpy as np
37 import matplotlib
38 matplotlib.use('agg') #It's just here for automated testing
39
40 import pylab as pl
41 import matplotlib.cm as cm
42 from esys.escript.linearPDEs import LinearPDE
43 from esys.finley import ReadMesh
44
45 ########################################################MPI WORLD CHECK
46 if getMPISizeWorld() > 1:
47 import sys
48 print("This example will not run in an MPI world.")
49 sys.exit(0)
50
51 #################################################ESTABLISHING VARIABLES
52 # where to save output data
53 savepath = "data/example09c"
54 meshpath = "data/example09n"
55 mkDir(savepath)
56 #Geometric and material property related variables.
57 domain=ReadMesh(os.path.join(savepath,'example09n.fly')) # create the domain
58 x=Solution(domain).getX()
59 #parameters layers 1,2,3,4 and fault
60 prho=np.array([2200.,2500.,3200.,4500.,5500.]) #density
61 pvel=np.array([1500.,2200.,3000.,3200.,5000.]) #velocity
62 pmu=pvel**2.*prho/4. #bulk modulus
63 plam=pvel**2.*prho/2. #lames constant
64 nlayers=4
65 width=300.0
66 rho=Scalar(0,Function(domain))
67 vel=Scalar(0,Function(domain))
68 mu=Scalar(0,Function(domain))
69 lam=Scalar(0,Function(domain))
70
71 print(0.5*np.sqrt(prho/(plam+2*pmu))*0.5)
72
73 for i in range(0,nlayers):
74 rho.setTaggedValue('lblock%d'%i,prho[i])
75 rho.setTaggedValue('rblock%d'%i,prho[i])
76 vel.setTaggedValue('lblock%d'%i,pvel[i])
77 vel.setTaggedValue('rblock%d'%i,pvel[i])
78 mu.setTaggedValue('lblock%d'%i,pmu[i])
79 mu.setTaggedValue('rblock%d'%i,pmu[i])
80 lam.setTaggedValue('lblock%d'%i,plam[i])
81 lam.setTaggedValue('rblock%d'%i,plam[i])
82 i=nlayers
83 rho.setTaggedValue('fault',prho[i])
84 vel.setTaggedValue('fault',pvel[i])
85 mu.setTaggedValue('fault',pmu[i])
86 lam.setTaggedValue('fault',plam[i])
87
88
89 # Time related variables.
90 testing=False
91 if testing:
92 print('The testing end time is currently selected. This severely limits the number of time iterations.')
93 print("Try changing testing to False for more iterations.")
94 tend=0.1
95 else:
96 tend=0.1 # end time
97
98 h=0.00001 # time step
99 # data recording times
100 rtime=0.0 # first time to record
101 rtime_inc=tend/750.0 # time increment to record
102 #Check to make sure number of time steps is not too large.
103 print("Time step size= ",h, "Expected number of outputs= ",tend/h)
104
105 U0=0.1 # amplitude of point source
106 ls=500 # length of the source
107 source=np.zeros(ls,'float') # source array
108 decay1=np.zeros(ls,'float') # decay curve one
109 decay2=np.zeros(ls,'float') # decay curve two
110 time=np.zeros(ls,'float') # time values
111 g=np.log(0.01)/ls
112
113 dfeq=50 #Dominant Frequency
114 a = 2.0 * (np.pi * dfeq)**2.0
115 t0 = 5.0 / (2.0 * np.pi * dfeq)
116 srclength = 5. * t0
117 ls = int(srclength/h)
118 print('source length',ls)
119 source=np.zeros(ls,'float') # source array
120 ampmax=0
121 for it in range(0,ls):
122 t = it*h
123 tt = t-t0
124 dum1 = np.exp(-a * tt * tt)
125 source[it] = -2. * a * tt * dum1
126 if (abs(source[it]) > ampmax):
127 ampmax = abs(source[it])
128 time[t]=t*h
129
130 # will introduce a spherical source at middle left of bottom face
131 xc=[150,0]
132
133 ##########################################################ESTABLISH PDE
134 mypde=LinearPDE(domain) # create pde
135 mypde.setSymmetryOn() # turn symmetry on
136 # turn lumping on for more efficient solving
137 mypde.getSolverOptions().setSolverMethod(mypde.getSolverOptions().HRZ_LUMPING)
138 kmat = kronecker(domain) # create the kronecker delta function of the domain
139 mypde.setValue(D=rho*kmat) #set the general form value D
140
141 ############################################FIRST TIME STEPS AND SOURCE
142 # define small radius around point xc
143 src_length = 10; print("src_length = ",src_length)
144 # set initial values for first two time steps with source terms
145 xb=FunctionOnBoundary(domain).getX()
146 yx=(cos(length(xb-xc)*3.1415/src_length)+1)*whereNegative(length(xb-xc)-src_length)
147 stop=Scalar(0.0,FunctionOnBoundary(domain))
148 stop.setTaggedValue("top",1.0)
149 src_dir=numpy.array([0.,-1.]) # defines direction of point source as down
150
151 mypde.setValue(y=source[0]*yx*src_dir*stop) #set the source as a function on the boundary
152
153 # initial value of displacement at point source is constant (U0=0.01)
154 # for first two time steps
155 u=[0.0,0.0]*x
156 u_m1=u
157
158 ####################################################ITERATION VARIABLES
159 n=0 # iteration counter
160 t=0 # time counter
161 ##############################################################ITERATION
162 while t<tend:
163 # get current stress
164 g=grad(u); stress=lam*trace(g)*kmat+mu*(g+transpose(g))#*abc
165 mypde.setValue(X=-stress) # set PDE values
166 accel = mypde.getSolution() #get PDE solution for accelleration
167 u_p1=(2.*u-u_m1)+h*h*accel #calculate displacement
168 u_p1=u_p1#*abc # apply boundary conditions
169 u_m1=u; u=u_p1 # shift values by 1
170 # save current displacement, acceleration and pressure
171 if (t >= rtime):
172 saveVTK(os.path.join(savepath,"ex09c.%05d.vtu"%n),displacement=length(u),\
173 acceleration=length(accel),tensor=stress)
174 rtime=rtime+rtime_inc #increment data save time
175 # increment loop values
176 t=t+h; n=n+1
177 if (n < ls):
178 mypde.setValue(y=source[n]*yx*src_dir*stop) #set the source as a function on the boundary
179 print(n,"-th time step t ",t)

  ViewVC Help
Powered by ViewVC 1.1.26