/[escript]/trunk/doc/examples/cookbook/example09c.py
ViewVC logotype

Contents of /trunk/doc/examples/cookbook/example09c.py

Parent Directory Parent Directory | Revision Log Revision Log


Revision 4087 - (show annotations)
Thu Nov 22 22:28:01 2012 UTC (5 years, 9 months ago) by caltinay
File MIME type: text/x-python
File size: 6471 byte(s)
Moved matplotlib imports in test scripts before escript since there is an
import chain which pulls it so the use() function has no effect.

1
2 ##############################################################################
3 #
4 # Copyright (c) 2009-2012 by University of Queensland
5 # http://www.uq.edu.au
6 #
7 # Primary Business: Queensland, Australia
8 # Licensed under the Open Software License version 3.0
9 # http://www.opensource.org/licenses/osl-3.0.php
10 #
11 # Development until 2012 by Earth Systems Science Computational Center (ESSCC)
12 # Development since 2012 by School of Earth Sciences
13 #
14 ##############################################################################
15
16 __copyright__="""Copyright (c) 2009-2012 by University of Queensland
17 http://www.uq.edu.au
18 Primary Business: Queensland, Australia"""
19 __license__="""Licensed under the Open Software License version 3.0
20 http://www.opensource.org/licenses/osl-3.0.php"""
21 __url__="https://launchpad.net/escript-finley"
22
23 ############################################################FILE HEADER
24 # example09.py
25 # Antony Hallam
26 # Seismic Wave Equation Simulation using acceleration solution.
27 # 3D model with multiple layers.
28
29 #######################################################EXTERNAL MODULES
30 import matplotlib
31 matplotlib.use('agg') #It's just here for automated testing
32 from esys.escript import *
33 from esys.finley import Rectangle
34 from esys.weipa import saveVTK
35 import os
36 # smoothing operator
37 from esys.escript.pdetools import Projector, Locator
38 from esys.escript.unitsSI import *
39 import numpy as np
40
41 import pylab as pl
42 import matplotlib.cm as cm
43 from esys.escript.linearPDEs import LinearPDE
44 from esys.finley import ReadMesh
45
46 ########################################################MPI WORLD CHECK
47 if getMPISizeWorld() > 1:
48 import sys
49 print("This example will not run in an MPI world.")
50 sys.exit(0)
51
52 #################################################ESTABLISHING VARIABLES
53 # where to save output data
54 savepath = "data/example09c"
55 meshpath = "data/example09n"
56 mkDir(savepath)
57 #Geometric and material property related variables.
58 domain=ReadMesh(os.path.join(savepath,'example09n.fly')) # create the domain
59 x=Solution(domain).getX()
60 #parameters layers 1,2,3,4 and fault
61 prho=np.array([2200.,2500.,3200.,4500.,5500.]) #density
62 pvel=np.array([1500.,2200.,3000.,3200.,5000.]) #velocity
63 pmu=pvel**2.*prho/4. #bulk modulus
64 plam=pvel**2.*prho/2. #lames constant
65 nlayers=4
66 width=300.0
67 rho=Scalar(0,Function(domain))
68 vel=Scalar(0,Function(domain))
69 mu=Scalar(0,Function(domain))
70 lam=Scalar(0,Function(domain))
71
72 print(0.5*np.sqrt(prho/(plam+2*pmu))*0.5)
73
74 for i in range(0,nlayers):
75 rho.setTaggedValue('lblock%d'%i,prho[i])
76 rho.setTaggedValue('rblock%d'%i,prho[i])
77 vel.setTaggedValue('lblock%d'%i,pvel[i])
78 vel.setTaggedValue('rblock%d'%i,pvel[i])
79 mu.setTaggedValue('lblock%d'%i,pmu[i])
80 mu.setTaggedValue('rblock%d'%i,pmu[i])
81 lam.setTaggedValue('lblock%d'%i,plam[i])
82 lam.setTaggedValue('rblock%d'%i,plam[i])
83 i=nlayers
84 rho.setTaggedValue('fault',prho[i])
85 vel.setTaggedValue('fault',pvel[i])
86 mu.setTaggedValue('fault',pmu[i])
87 lam.setTaggedValue('fault',plam[i])
88
89
90 # Time related variables.
91 testing=False
92 if testing:
93 print('The testing end time is currently selected. This severely limits the number of time iterations.')
94 print("Try changing testing to False for more iterations.")
95 tend=0.1
96 else:
97 tend=0.1 # end time
98
99 h=0.00001 # time step
100 # data recording times
101 rtime=0.0 # first time to record
102 rtime_inc=tend/750.0 # time increment to record
103 #Check to make sure number of time steps is not too large.
104 print("Time step size= ",h, "Expected number of outputs= ",tend/h)
105
106 U0=0.1 # amplitude of point source
107 ls=500 # length of the source
108 source=np.zeros(ls,'float') # source array
109 decay1=np.zeros(ls,'float') # decay curve one
110 decay2=np.zeros(ls,'float') # decay curve two
111 time=np.zeros(ls,'float') # time values
112 g=np.log(0.01)/ls
113
114 dfeq=50 #Dominant Frequency
115 a = 2.0 * (np.pi * dfeq)**2.0
116 t0 = 5.0 / (2.0 * np.pi * dfeq)
117 srclength = 5. * t0
118 ls = int(srclength/h)
119 print('source length',ls)
120 source=np.zeros(ls,'float') # source array
121 ampmax=0
122 for it in range(0,ls):
123 t = it*h
124 tt = t-t0
125 dum1 = np.exp(-a * tt * tt)
126 source[it] = -2. * a * tt * dum1
127 if (abs(source[it]) > ampmax):
128 ampmax = abs(source[it])
129 time[t]=t*h
130
131 # will introduce a spherical source at middle left of bottom face
132 xc=[150,0]
133
134 ##########################################################ESTABLISH PDE
135 mypde=LinearPDE(domain) # create pde
136 mypde.setSymmetryOn() # turn symmetry on
137 # turn lumping on for more efficient solving
138 mypde.getSolverOptions().setSolverMethod(mypde.getSolverOptions().HRZ_LUMPING)
139 kmat = kronecker(domain) # create the kronecker delta function of the domain
140 mypde.setValue(D=rho*kmat) #set the general form value D
141
142 ############################################FIRST TIME STEPS AND SOURCE
143 # define small radius around point xc
144 src_length = 10; print("src_length = ",src_length)
145 # set initial values for first two time steps with source terms
146 xb=FunctionOnBoundary(domain).getX()
147 yx=(cos(length(xb-xc)*3.1415/src_length)+1)*whereNegative(length(xb-xc)-src_length)
148 stop=Scalar(0.0,FunctionOnBoundary(domain))
149 stop.setTaggedValue("top",1.0)
150 src_dir=numpy.array([0.,-1.]) # defines direction of point source as down
151
152 mypde.setValue(y=source[0]*yx*src_dir*stop) #set the source as a function on the boundary
153
154 # initial value of displacement at point source is constant (U0=0.01)
155 # for first two time steps
156 u=[0.0,0.0]*x
157 u_m1=u
158
159 ####################################################ITERATION VARIABLES
160 n=0 # iteration counter
161 t=0 # time counter
162 ##############################################################ITERATION
163 while t<tend:
164 # get current stress
165 g=grad(u); stress=lam*trace(g)*kmat+mu*(g+transpose(g))#*abc
166 mypde.setValue(X=-stress) # set PDE values
167 accel = mypde.getSolution() #get PDE solution for accelleration
168 u_p1=(2.*u-u_m1)+h*h*accel #calculate displacement
169 u_p1=u_p1#*abc # apply boundary conditions
170 u_m1=u; u=u_p1 # shift values by 1
171 # save current displacement, acceleration and pressure
172 if (t >= rtime):
173 saveVTK(os.path.join(savepath,"ex09c.%05d.vtu"%n),displacement=length(u),\
174 acceleration=length(accel),tensor=stress)
175 rtime=rtime+rtime_inc #increment data save time
176 # increment loop values
177 t=t+h; n=n+1
178 if (n < ls):
179 mypde.setValue(y=source[n]*yx*src_dir*stop) #set the source as a function on the boundary
180 print("time step %d, t=%s"%(n,t))

  ViewVC Help
Powered by ViewVC 1.1.26