1 |
|
2 |
######################################################## |
3 |
# |
4 |
# Copyright (c) 2009 by University of Queensland |
5 |
# Earth Systems Science Computational Center (ESSCC) |
6 |
# http://www.uq.edu.au/esscc |
7 |
# |
8 |
# Primary Business: Queensland, Australia |
9 |
# Licensed under the Open Software License version 3.0 |
10 |
# http://www.opensource.org/licenses/osl-3.0.php |
11 |
# |
12 |
######################################################## |
13 |
|
14 |
__copyright__="""Copyright (c) 2009 by University of Queensland |
15 |
Earth Systems Science Computational Center (ESSCC) |
16 |
http://www.uq.edu.au/esscc |
17 |
Primary Business: Queensland, Australia""" |
18 |
__license__="""Licensed under the Open Software License version 3.0 |
19 |
http://www.opensource.org/licenses/osl-3.0.php""" |
20 |
__url__="https://launchpad.net/escript-finley" |
21 |
|
22 |
""" |
23 |
Author: Antony Hallam antony.hallam@uqconnect.edu.au |
24 |
""" |
25 |
|
26 |
############################################################FILE HEADER |
27 |
# example10a.py |
28 |
# Model of gravitational Potential for a gravity POLE. |
29 |
|
30 |
#######################################################EXTERNAL MODULES |
31 |
# To solve the problem it is necessary to import the modules we require. |
32 |
from esys.escript import * # This imports everything from the escript library |
33 |
from esys.escript.unitsSI import * |
34 |
from esys.escript.linearPDEs import LinearPDE # This defines LinearPDE as LinearPDE |
35 |
from esys.finley import Rectangle # This imports the rectangle domain function from finley |
36 |
from esys.weipa import saveVTK # This imports the VTK file saver from weipa |
37 |
import os, sys #This package is necessary to handle saving our data. |
38 |
from math import pi, sqrt, sin, cos |
39 |
|
40 |
from esys.escript.pdetools import Projector |
41 |
|
42 |
import matplotlib |
43 |
matplotlib.use('agg') #It's just here for automated testing |
44 |
|
45 |
from cblib import toRegGrid |
46 |
import pylab as pl #Plotting package |
47 |
import numpy as np |
48 |
|
49 |
########################################################MPI WORLD CHECK |
50 |
if getMPISizeWorld() > 1: |
51 |
import sys |
52 |
print "This example will not run in an MPI world." |
53 |
sys.exit(0) |
54 |
|
55 |
#################################################ESTABLISHING VARIABLES |
56 |
#Domain related. |
57 |
mx = 5000*m #meters - model length |
58 |
my = -5000*m #meters - model width |
59 |
ndx = 100 # mesh steps in x direction |
60 |
ndy = 100 # mesh steps in y direction - one dimension means one element |
61 |
#PDE related |
62 |
rho=200.0 |
63 |
rholoc=[2500,-2500] |
64 |
G=6.67300*10E-11 |
65 |
|
66 |
################################################ESTABLISHING PARAMETERS |
67 |
#the folder to put our outputs in, leave blank "" for script path |
68 |
save_path= os.path.join("data","example10") |
69 |
#ensure the dir exists |
70 |
mkDir(save_path) |
71 |
|
72 |
####################################################DOMAIN CONSTRUCTION |
73 |
domain = Rectangle(l0=mx,l1=my,n0=ndx, n1=ndy) |
74 |
x=Solution(domain).getX() |
75 |
mask=wherePositive(10-length(x-rholoc)) |
76 |
rho=rho*mask |
77 |
kro=kronecker(domain) |
78 |
|
79 |
q=whereZero(x[1]-my)+whereZero(x[1])+whereZero(x[0])+whereZero(x[0]-mx) |
80 |
###############################################ESCRIPT PDE CONSTRUCTION |
81 |
|
82 |
mypde=LinearPDE(domain) |
83 |
mypde.setValue(A=kro,Y=4.*3.1415*G*rho) |
84 |
mypde.setValue(q=q,r=0) |
85 |
mypde.setSymmetryOn() |
86 |
sol=mypde.getSolution() |
87 |
|
88 |
g_field=grad(sol) #The gravitational acceleration g. |
89 |
g_fieldz=g_field*[0,1] #The vertical component of the g field. |
90 |
gz=length(g_fieldz) #The magnitude of the vertical component. |
91 |
# Save the output to file. |
92 |
saveVTK(os.path.join(save_path,"ex10a.vtu"),\ |
93 |
grav_pot=sol,g_field=g_field,g_fieldz=g_fieldz,gz=gz) |
94 |
|
95 |
##################################################REGRIDDING & PLOTTING |
96 |
|
97 |
|
98 |
xi, yi, zi = toRegGrid(sol, nx=50, ny=50) |
99 |
pl.matplotlib.pyplot.autumn() |
100 |
pl.contourf(xi,yi,zi,10) |
101 |
pl.xlabel("Horizontal Displacement (m)") |
102 |
pl.ylabel("Depth (m)") |
103 |
pl.savefig(os.path.join(save_path,"Ucontour.png")) |
104 |
print "Solution has been plotted ..." |
105 |
|
106 |
cut=int(len(xi)/2) |
107 |
|
108 |
pl.clf() |
109 |
|
110 |
r=np.linspace(0,mx/2,100) |
111 |
m=2*pl.pi*10*10*200*-G/(r*r) |
112 |
|
113 |
pl.plot(xi,zi[:,cut]) |
114 |
#pl.plot(r+2500,m) |
115 |
pl.title("Potential Profile") |
116 |
pl.xlabel("Horizontal Displacement (m)") |
117 |
pl.ylabel("Potential") |
118 |
pl.savefig(os.path.join(save_path,"Upot00.png")) |
119 |
|
120 |
out=np.array([xi,zi[:,cut]]) |
121 |
pl.savetxt('profile1.asc',out.transpose()) |
122 |
pl.clf() |