/[escript]/trunk/doc/examples/cookbook/heatrefraction001.py
ViewVC logotype

Contents of /trunk/doc/examples/cookbook/heatrefraction001.py

Parent Directory Parent Directory | Revision Log Revision Log


Revision 2681 - (show annotations)
Thu Sep 24 03:04:04 2009 UTC (11 years, 2 months ago) by ahallam
File MIME type: text/x-python
File size: 6661 byte(s)
proof reading and review of cookbook, minor changes only + updated depth profiles to cb from last week
1
2 ########################################################
3 #
4 # Copyright (c) 2009 by University of Queensland
5 # Earth Systems Science Computational Center (ESSCC)
6 # http://www.uq.edu.au/esscc
7 #
8 # Primary Business: Queensland, Australia
9 # Licensed under the Open Software License version 3.0
10 # http://www.opensource.org/licenses/osl-3.0.php
11 #
12 ########################################################
13
14 __copyright__="""Copyright (c) 2009 by University of Queensland
15 Earth Systems Science Computational Center (ESSCC)
16 http://www.uq.edu.au/esscc
17 Primary Business: Queensland, Australia"""
18 __license__="""Licensed under the Open Software License version 3.0
19 http://www.opensource.org/licenses/osl-3.0.php"""
20 __url__="https://launchpad.net/escript-finley"
21
22 """
23 Author: Antony Hallam antony.hallam@uqconnect.edu.au
24 """
25
26 ############################################################FILE HEADER
27 # heatrefraction001.py
28 # Model steady state temperature distribution in two block model, mesh
29 # from heatrefraction_mesher001.py
30
31 #######################################################EXTERNAL MODULES
32 # To solve the problem it is necessary to import the modules we
33 # require.
34
35
36
37 # This imports everything from the escript library
38 from esys.escript import *
39 # This defines LinearPDE as LinearPDE
40 from esys.escript.linearPDEs import LinearPDE, Poisson
41 # smoothing operator
42 from esys.escript.pdetools import Projector
43 # This imports the rectangle domain function from finley
44 from esys.finley import Rectangle, ReadMesh, Domain
45 # This package is necessary to handle saving our data.
46 import os
47 # A useful unit handling package which will make sure all our units
48 # match up in the equations.
49 from esys.escript.unitsSI import *
50 # numpy for array handling
51 import numpy as np
52
53 import matplotlib
54 #For interactive use, you can comment out the next line
55 matplotlib.use('agg') #It's just here for automated testing
56
57 # pylab for matplotlib and plotting
58 import pylab as pl
59 # cblib functions
60 from cblib import toQuivLocs, toXYTuple, needdirs, toRegGrid, gradtoRegGrid
61
62 ########################################################MPI WORLD CHECK
63 if getMPISizeWorld() > 1:
64 import sys
65 print "This example will not run in an MPI world."
66 sys.exit(0)
67
68 #################################################ESTABLISHING VARIABLES
69 qin=70*Milli*W/(m*m) #our heat source temperature is now zero
70 Ti=290.15*K # Kelvin #the starting temperature of our iron bar
71 width=5000.0*m
72 depth=-6000.0*m
73
74 # the folder to gett our outputs from, leave blank "" for script path -
75 # note these depen. are generated from heatrefraction_mesher001.py
76 saved_path = save_path= os.path.join("data","heatrefrac001" )
77 needdirs([saved_path])
78
79 ################################################ESTABLISHING PARAMETERS
80 ## DOMAIN
81 mymesh=ReadMesh(os.path.join(saved_path,"heatrefraction_mesh001.fly"))
82 tpg = np.loadtxt(os.path.join(saved_path,"toppg"))
83 tpgx = tpg[:,0]
84 tpgy = tpg[:,1]
85 bpg = np.loadtxt(os.path.join(saved_path,"botpg"))
86 bpgx = bpg[:,0]
87 bpgy = bpg[:,1]
88
89 # set up kappa (thermal conductivity across domain) using tags
90 kappa=Scalar(0,Function(mymesh))
91 kappa.setTaggedValue("top",2.0)
92 kappa.setTaggedValue("bottom",4.0)
93
94 #... generate functionspace...
95 #... open PDE ...
96 mypde=LinearPDE(mymesh)
97 #define first coefficient
98 mypde.setValue(A=kappa*kronecker(mymesh))
99
100 # ... set initial temperature ....
101 x=mymesh.getX()
102
103 qH=Scalar(0,FunctionOnBoundary(mymesh))
104 qH.setTaggedValue("linebottom",qin)
105 mypde.setValue(q=whereZero(x[1]),r=Ti)
106 mypde.setValue(y=qH)
107
108 ###########################################################GET SOLUTION
109 T=mypde.getSolution()
110
111 ##########################################################VISUALISATION
112 # calculate gradient of solution for quiver plot
113 qu=-kappa*grad(T)
114 quT=qu.toListOfTuples()
115
116 #Projector is used to smooth the data.
117 proj=Projector(mymesh)
118 smthT=proj(T)
119
120 #move data to a regular grid for plotting
121 xi,yi,zi = toRegGrid(smthT,mymesh,200,200,width,depth)
122
123 #Temperature Depth Profile along x[50]
124 cut=int(len(xi)/2)
125 pl.clf()
126 pl.plot(zi[:,cut],yi)
127 pl.title("Heat Refraction Temperature Depth Profile")
128 pl.xlabel("Temperature (K)")
129 pl.ylabel("Depth (m)")
130 if getMPIRankWorld() == 0: #check for MPI processing
131 pl.savefig(os.path.join(saved_path,"heatrefraction001_tdp.png"))
132
133 # Heat flow depth profile.
134 pl.clf()
135 # grid the data.
136 qu=proj(-kappa*grad(T))
137 xiq,yiq,ziq = gradtoRegGrid(qu,mymesh,200,200,width,depth,1)
138 cut=int(len(xiq)/2)
139 pl.plot(ziq[:,cut]*1000.,yiq)
140 pl.title("Heat Flow Depth Profile")
141 pl.xlabel("Heat Flow (mW/m^2)")
142 pl.ylabel("Depth (m)")
143 if getMPIRankWorld() == 0: #check for MPI processing
144 pl.savefig(os.path.join(saved_path,"heatrefraction001_hf.png"))
145
146 # Temperature Gradient Depth Profile at x[50]
147 pl.clf()
148 zT=proj(-grad(T))
149 xt,yt,zt=gradtoRegGrid(zT,mymesh,200,200,width,depth,1)
150 cut=int(len(xt)/2)
151 pl.plot(zt[:,cut]*1000.,yt)
152 pl.title("Heat Refraction Temperature Gradient \n Depth Profile")
153 pl.xlabel("Temperature (K/Km)")
154 pl.ylabel("Depth (m)")
155 if getMPIRankWorld() == 0: #check for MPI processing
156 pl.savefig(os.path.join(saved_path,"heatrefraction001_tgdp.png"))
157
158 # Thermal Conditions Depth Profile
159 pl.clf()
160 xk,yk,zk = toRegGrid(kappa,mymesh,200,200,width,depth)
161 cut=int(len(xk)/2)
162 pl.plot(zk[:,cut],yk)
163 pl.title("Heat Refraction Thermal Conductivity Depth Profile")
164 pl.xlabel("Conductivity (W/K/m)")
165 pl.ylabel("Depth (m)")
166 pl.axis([1,5,-6000,0])
167 if getMPIRankWorld() == 0: #check for MPI processing
168 pl.savefig(os.path.join(saved_path,"heatrefraction001_tcdp.png"))
169
170 # contour the gridded data,
171 # plotting dots at the randomly spaced data points.
172 quivshape = [20,20] #quivers x and quivers y
173 # function to calculate quiver locations
174 qu,qulocs = toQuivLocs(quivshape,width,depth,qu)
175
176 # select colour
177 pl.matplotlib.pyplot.autumn()
178 pl.clf()
179 # plot polygons for boundaries
180 CKL = pl.fill(tpgx,tpgy,'brown',label='2 W/m/k',zorder=-1000)
181 CKM = pl.fill(bpgx,bpgy,'red',label='4 W/m/k',zorder=-1000)
182 # contour temperature
183 CS = pl.contour(xi,yi,zi,5,linewidths=0.5,colors='k')
184 # labels and formatting
185 pl.clabel(CS, inline=1, fontsize=8)
186 pl.title("Heat Refraction across a clinal structure.")
187 pl.xlabel("Horizontal Displacement (m)")
188 pl.ylabel("Depth (m)")
189 pl.legend()
190 if getMPIRankWorld() == 0: #check for MPI processing
191 pl.savefig(os.path.join(saved_path,"heatrefraction001_cont.png"))
192
193 #Quiver Plot qulocs -> tail location, qu -> quiver length/direction
194 QUIV=pl.quiver(qulocs[:,0],qulocs[:,1],qu[:,0],qu[:,1],\
195 angles='xy',color="white")
196 pl.title("Heat Refraction across a clinal structure\n with\
197 gradient quivers.")
198 if getMPIRankWorld() == 0: #check for MPI processing
199 pl.savefig(os.path.join(saved_path,"heatrefraction001_contqu.png"))
200
201

  ViewVC Help
Powered by ViewVC 1.1.26