22 |
""" |
""" |
23 |
Author: Antony Hallam antony.hallam@uqconnect.edu.au |
Author: Antony Hallam antony.hallam@uqconnect.edu.au |
24 |
""" |
""" |
25 |
|
############################################################FILE HEADER |
26 |
# To solve the problem it is necessary to import the modules we require. |
# onedheatdiff001.py |
27 |
from esys.escript import * # This imports everything from the escript library |
# Model temperature diffusion in an Iron bar. This is a one dimensional |
28 |
from esys.escript.linearPDEs import LinearPDE # This defines LinearPDE as LinearPDE |
# problem with a single heat source at the LHS |
29 |
from esys.finley import Rectangle # This imports the rectangle domain function from finley |
|
30 |
|
#######################################################EXTERNAL MODULES |
31 |
|
#To solve the problem it is necessary to import the modules we require. |
32 |
|
#This imports everything from the escript library |
33 |
|
from esys.escript import * |
34 |
|
# This defines the LinearPDE module as LinearPDE |
35 |
|
from esys.escript.linearPDEs import LinearPDE |
36 |
|
# This imports the rectangle domain function from finley. |
37 |
|
from esys.finley import Rectangle |
38 |
|
# A useful unit handling package which will make sure all our units |
39 |
|
# match up in the equations under SI. |
40 |
|
from esys.escript.unitsSI import * |
41 |
|
import pylab as pl #Plotting package. |
42 |
|
import numpy as np #Array package. |
43 |
import os #This package is necessary to handle saving our data. |
import os #This package is necessary to handle saving our data. |
44 |
|
|
45 |
|
#################################################ESTABLISHING VARIABLES |
|
|
|
|
##ESTABLISHING VARIABLES |
|
46 |
#Domain related. |
#Domain related. |
47 |
mx = 1 #meters - model lenght |
mx = 1*m #meters - model length |
48 |
my = .1 #meters - model width |
my = .1*m #meters - model width |
49 |
ndx = 100 # steps in x direction |
ndx = 100 # mesh steps in x direction |
50 |
ndy = 1 # steps in y direction |
ndy = 1 # mesh steps in y direction - one dimension means one element |
51 |
|
|
52 |
#PDE related |
#PDE related |
53 |
q=473. #Kelvin - our heat source temperature |
q=200. * Celsius #Kelvin - our heat source temperature |
54 |
Tref = 273. # Kelvin - starting temp of iron bar |
Tref = 0. * Celsius #Kelvin - starting temp of iron bar |
55 |
rho = 7874. #kg/m^{3} density of iron |
rho = 7874. *kg/m**3 #kg/m^{3} density of iron |
56 |
cp = 449. #j/Kg.K |
cp = 449.*J/(kg*K) #j/Kg.K thermal capacity |
57 |
rhocp = rho*cp |
rhocp = rho*cp |
58 |
eta = 0 #radiation condition |
kappa = 80.*W/m/K #watts/m.Kthermal conductivity |
59 |
kappa = 68. #temperature diffusion constant |
|
60 |
#Script/Iteration Related |
#Script/Iteration Related |
61 |
t=0 #our start time, usually zero |
t=0 #our start time, usually zero |
62 |
tend=5.*60. #seconds - time to end simulation |
tend=5.*minute #seconds - time to end simulation |
63 |
outputs = 200 # number of time steps required. |
outputs = 200 # number of time steps required. |
64 |
h=(tend-t)/outputs #size of time step |
h=(tend-t)/outputs #size of time step |
65 |
print "Expected Number of Output Files is: ", (tend-t)/h |
#user warning statement |
66 |
|
print "Expected Number of time outputs is: ", (tend-t)/h |
67 |
i=0 #loop counter |
i=0 #loop counter |
68 |
#the folder to put our outputs in, leave blank "" for script path |
#the folder to put our outputs in, leave blank "" for script path |
69 |
#note this folder path must exist to work |
save_path="data/onedheatdiff001" |
70 |
save_path = "data/onedheatdiff001" |
########## note this folder path must exist to work ################### |
71 |
|
|
72 |
#... generate domain ... |
################################################ESTABLISHING PARAMETERS |
73 |
|
#generate domain using rectangle |
74 |
rod = Rectangle(l0=mx,l1=my,n0=ndx, n1=ndy) |
rod = Rectangle(l0=mx,l1=my,n0=ndx, n1=ndy) |
75 |
# extract finite points |
#extract finite points - the solution points |
76 |
x=rod.getX() |
x=rod.getX() |
77 |
#... open PDE ... |
#create the PDE |
78 |
mypde=LinearPDE(rod) |
mypde=LinearPDE(rod) #assigns a domain to our PDE |
79 |
mypde.setSymmetryOn() |
mypde.setSymmetryOn() #set the fast solver on for symmetry |
80 |
mypde.setValue(A=kappa*kronecker(rod),D=rhocp/h,d=eta,y=eta*Tref) |
mypde.setValue(A=kappa*kronecker(rod),D=rhocp/h) #define our PDE coeffs |
81 |
|
qH=q*whereZero(x[0]) #set heat source |
82 |
# ... set heat source: .... |
T=Tref # set initial temperature |
83 |
qH=q*whereZero(x[0]) |
|
84 |
# ... set initial temperature .... |
#convert solution points for plotting |
85 |
T=Tref |
plx = x.toListOfTuples() |
86 |
|
plx = np.array(plx) #convert to tuple to numpy array |
87 |
#saveVTK(os.path.join(save_path,"data%03d.xml") %i,sol=T) |
plx = plx[:,0] #extract x locations |
88 |
|
|
89 |
# ... start iteration: |
########################################################START ITERATION |
90 |
while t<=tend: |
while t<=tend: |
91 |
i+=1 |
i+=1 #increment the counter |
92 |
t+=h |
t+=h #increment the current time |
93 |
mypde.setValue(Y=qH+rhocp/h*T) |
mypde.setValue(Y=qH+rhocp/h*T) #set variable PDE coefficients |
94 |
T=mypde.getSolution() |
T=mypde.getSolution() #get the PDE solution |
95 |
saveVTK(os.path.join(save_path,"data%03d.xml") %i,sol=T) |
totT = rhocp*T #get the total heat solution in the system |
96 |
|
|
97 |
|
#establish figure 1 for temperature vs x plots |
98 |
|
tempT = T.toListOfTuples(scalarastuple=False) |
99 |
|
pl.figure(1) #current figure |
100 |
|
pl.plot(plx,tempT) #plot solution |
101 |
|
#define axis extents and title |
102 |
|
pl.axis([0,1.0,273.14990+0.00008,0.004+273.1499]) |
103 |
|
pl.title("Temperature accross Rod") |
104 |
|
#save figure to file |
105 |
|
pl.savefig(os.path.join(save_path+"/tempT","rodpyplot%03d.png") %i) |
106 |
|
pl.clf() #clear figure |
107 |
|
|
108 |
|
#establish figure 2 for total temperature vs x plots and repeat |
109 |
|
tottempT = totT.toListOfTuples(scalarastuple=False) |
110 |
|
pl.figure(2) |
111 |
|
pl.plot(plx,tottempT) |
112 |
|
pl.axis([0,1.0,9.657E08,12000+9.657E08]) |
113 |
|
pl.title("Total temperature accross Rod") |
114 |
|
pl.savefig(os.path.join(save_path+"/totT","ttrodpyplot%03d.png")%i) |
115 |
|
pl.clf() |
116 |
|
|
117 |
|
# compile the *.png files to create two *.avi videos that show T change |
118 |
|
# with time. This opperation uses linux mencoder. For other operating |
119 |
|
# systems it is possible to use your favourite video compiler to |
120 |
|
# convert image files to videos. |
121 |
|
|
122 |
|
os.system("mencoder mf://"+save_path+"/tempT"+"/*.png -mf type=png:\ |
123 |
|
w=800:h=600:fps=25 -ovc lavc -lavcopts vcodec=mpeg4 -oac copy -o \ |
124 |
|
onedheatdiff001tempT.avi") |
125 |
|
|
126 |
|
os.system("mencoder mf://"+save_path+"/totT"+"/*.png -mf type=png:\ |
127 |
|
w=800:h=600:fps=25 -ovc lavc -lavcopts vcodec=mpeg4 -oac copy -o \ |
128 |
|
onedheatdiff001totT.avi") |