1 |
|
2 |
######################################################## |
3 |
# |
4 |
# Copyright (c) 2009 by University of Queensland |
5 |
# Earth Systems Science Computational Center (ESSCC) |
6 |
# http://www.uq.edu.au/esscc |
7 |
# |
8 |
# Primary Business: Queensland, Australia |
9 |
# Licensed under the Open Software License version 3.0 |
10 |
# http://www.opensource.org/licenses/osl-3.0.php |
11 |
# |
12 |
######################################################## |
13 |
|
14 |
__copyright__="""Copyright (c) 2009 by University of Queensland |
15 |
Earth Systems Science Computational Center (ESSCC) |
16 |
http://www.uq.edu.au/esscc |
17 |
Primary Business: Queensland, Australia""" |
18 |
__license__="""Licensed under the Open Software License version 3.0 |
19 |
http://www.opensource.org/licenses/osl-3.0.php""" |
20 |
__url__="https://launchpad.net/escript-finley" |
21 |
|
22 |
""" |
23 |
Author: Antony Hallam antony.hallam@uqconnect.edu.au |
24 |
""" |
25 |
|
26 |
############################################################FILE HEADER |
27 |
# onedheatdiff002.py |
28 |
# Model temperature diffusion between two granite blocks. This is a one |
29 |
# dimensional problem with no heat source and a single heat disparity. |
30 |
|
31 |
#######################################################EXTERNAL MODULES |
32 |
#To solve the problem it is necessary to import the modules we require. |
33 |
#This imports everything from the escript library |
34 |
from esys.escript import * |
35 |
# This defines the LinearPDE module as LinearPDE |
36 |
from esys.escript.linearPDEs import LinearPDE |
37 |
# This imports the rectangle domain function from finley. |
38 |
from esys.finley import Rectangle |
39 |
# A useful unit handling package which will make sure all our units |
40 |
# match up in the equations under SI. |
41 |
from esys.escript.unitsSI import * |
42 |
#For interactive use, you can comment out the next two lines |
43 |
import matplotlib |
44 |
matplotlib.use('agg') #It's just here for automated testing |
45 |
import pylab as pl #Plotting package. |
46 |
import numpy as np #Array package. |
47 |
import os #This package is necessary to handle saving our data. |
48 |
from cblib1 import needdirs |
49 |
|
50 |
########################################################MPI WORLD CHECK |
51 |
if getMPISizeWorld() > 1: |
52 |
import sys |
53 |
print "This example will not run in an MPI world." |
54 |
sys.exit(0) |
55 |
|
56 |
#################################################ESTABLISHING VARIABLES |
57 |
#PDE related |
58 |
mx = 500*m #meters - model length |
59 |
my = 100*m #meters - model width |
60 |
ndx = 500 # mesh steps in x direction |
61 |
ndy = 1 # mesh steps in y direction |
62 |
boundloc = mx/2 # location of boundary between two blocks |
63 |
q=0.*Celsius #our heat source temperature is now zero |
64 |
Tref=2273.*Celsius # Kelvin -the starting temperature of our RHS Block |
65 |
rho = 2750*kg/m**3 #kg/m^{3} density of granite |
66 |
cp = 790.*J/(kg*K) #j/Kg.K thermal capacity |
67 |
rhocp = rho*cp #DENSITY * SPECIFIC HEAT |
68 |
eta=0. # RADIATION CONDITION |
69 |
kappa=2.2*W/m/K #watts/m.K thermal conductivity |
70 |
|
71 |
#Script/Iteration Related |
72 |
t=0. #our start time, usually zero |
73 |
tend=10*yr #the time we want to end the simulation in years |
74 |
outputs = 40 # number of time steps required. |
75 |
h=(tend-t)/outputs #size of time step |
76 |
#user warning statement |
77 |
print "Expected Number of Output Files is: ", outputs |
78 |
print "Step size is: ", h/day, "days" |
79 |
i=0 #loop counter |
80 |
#the folder to put our outputs in, leave blank "" for script path |
81 |
save_path= os.path.join("data","onedheatdiff002") |
82 |
needdirs([save_path]) |
83 |
########## note this folder path must exist to work ################### |
84 |
|
85 |
################################################ESTABLISHING PARAMETERS |
86 |
#generate domain using rectangle |
87 |
model = Rectangle(l0=mx,l1=my,n0=ndx, n1=ndy) |
88 |
#extract finite points - the solution points |
89 |
x=model.getX() |
90 |
#create the PDE |
91 |
mypde=LinearPDE(model) #assigns a domain to our PDE |
92 |
mypde.setSymmetryOn() #set the fast solver on for symmetry |
93 |
#define our PDE coeffs |
94 |
mypde.setValue(A=kappa*kronecker(model),D=rhocp/h,d=eta,y=eta*Tref) |
95 |
#establish location of boundary between two blocks |
96 |
bound = x[0]-boundloc |
97 |
#set initial temperature |
98 |
T= 0*Tref*whereNegative(bound)+Tref*wherePositive(bound) |
99 |
|
100 |
#convert solution points for plotting |
101 |
plx = x.toListOfTuples() |
102 |
plx = np.array(plx) #convert to tuple to numpy array |
103 |
plx = plx[:,0] #extract x locations |
104 |
|
105 |
########################################################START ITERATION |
106 |
while t<=tend: |
107 |
i+=1 #increment the counter |
108 |
t+=h #increment the current time |
109 |
print "time step ",i," at time ",t/day," days." |
110 |
mypde.setValue(Y=rhocp/h*T) #reset variable PDE coefficients |
111 |
T=mypde.getSolution() #find temperature solution |
112 |
#set up for plotting |
113 |
tempT = T.toListOfTuples(scalarastuple=False) |
114 |
pl.figure(1) |
115 |
pl.plot(plx,tempT) |
116 |
pl.axis([0,500,0,2500]) |
117 |
pl.title("Temperature accross Interface") |
118 |
if getMPIRankWorld() == 0: |
119 |
pl.savefig(os.path.join(save_path,"intpyplot%03d.png" %i)) |
120 |
pl.clf() |
121 |
|
122 |
# compile the *.png files to create two *.avi videos that show T change |
123 |
# with time. This opperation uses linux mencoder. For other operating |
124 |
# systems it may be possible to use your favourite video compiler to |
125 |
# convert image files to videos. To enable this step uncomment the |
126 |
# following lines. |
127 |
|
128 |
#os.system("mencoder mf://"+save_path+"/*.png -mf type=png:\ |
129 |
#w=800:h=600:fps=25 -ovc lavc -lavcopts vcodec=mpeg4 -oac copy -o \ |
130 |
#onedheatdiff002tempT.avi") |