1 |
|
2 |
######################################################## |
3 |
# |
4 |
# Copyright (c) 2003-2009 by University of Queensland |
5 |
# Earth Systems Science Computational Center (ESSCC) |
6 |
# http://www.uq.edu.au/esscc |
7 |
# |
8 |
# Primary Business: Queensland, Australia |
9 |
# Licensed under the Open Software License version 3.0 |
10 |
# http://www.opensource.org/licenses/osl-3.0.php |
11 |
# |
12 |
######################################################## |
13 |
|
14 |
__copyright__="""Copyright (c) 2003-2009 by University of Queensland |
15 |
Earth Systems Science Computational Center (ESSCC) |
16 |
http://www.uq.edu.au/esscc |
17 |
Primary Business: Queensland, Australia""" |
18 |
__license__="""Licensed under the Open Software License version 3.0 |
19 |
http://www.opensource.org/licenses/osl-3.0.php""" |
20 |
__url__="https://launchpad.net/escript-finley" |
21 |
|
22 |
""" |
23 |
Author: Antony Hallam antony.hallam@uqconnect.edu.au |
24 |
""" |
25 |
|
26 |
# To solve the problem it is necessary to import the modules we require. |
27 |
from esys.escript import * # This imports everything from the escript library |
28 |
from esys.escript.linearPDEs import LinearPDE # This defines LinearPDE as LinearPDE |
29 |
from esys.finley import Rectangle # This imports the rectangle domain function from finley |
30 |
import os #This package is necessary to handle saving our data. |
31 |
|
32 |
from cblib import needdirs |
33 |
|
34 |
|
35 |
##ESTABLISHING VARIABLES |
36 |
#PDE related |
37 |
mx = 600 # model lenght |
38 |
my = 600 # model width |
39 |
ndx = 100 # steps in x direction |
40 |
ndy = 100 # steps in y direction |
41 |
r = 200 # radius of intrusion |
42 |
ic = [300, 0] #centre of intrusion |
43 |
|
44 |
q=0 #our heat source temperature is now zero |
45 |
Ti=2273 # Kelvin #the starting temperature of our iron bar |
46 |
rhoi = 2750 #kg/m^{3} density |
47 |
cpi = 790 #j/kg specific heat |
48 |
rhocpi = rhoi*cpi #DENSITY * SPECIFIC HEAT |
49 |
eta=0. # RADIATION CONDITION |
50 |
kappai=2.2 # Watts/(meter*Kelvin) DIFFUSION CONSTANT, HEAT PERMEABILITY |
51 |
|
52 |
Tc = 200 |
53 |
rhoc = 2200 |
54 |
cpc = 400 |
55 |
rhocpc = rhoc*cpc |
56 |
kappac = 0.1 |
57 |
|
58 |
|
59 |
#Script/Iteration Related |
60 |
t=0. #our start time, usually zero |
61 |
tday=100*365. #the time we want to end the simulation in days |
62 |
tend=tday*24*60*60 |
63 |
outputs = 200 # number of time steps required. |
64 |
h=(tend-t)/outputs #size of time step |
65 |
|
66 |
print "Expected Number of Output Files is: ", outputs |
67 |
print "Step size is: ", h/(24.*60*60), "days" |
68 |
|
69 |
|
70 |
i=0 #loop counter |
71 |
save_path = "data/twodheatdiff" #the folder to put our outputs in, leave blank "" for script path - note this folder path must exist to work |
72 |
needdirs([save_path]) |
73 |
|
74 |
#... generate domain ... |
75 |
model = Rectangle(l0=mx,l1=my,n0=ndx, n1=ndy) |
76 |
# extract finite points |
77 |
x=model.getX() |
78 |
|
79 |
#... open PDE ... |
80 |
mypde=LinearPDE(model) |
81 |
mypde.setSymmetryOn() |
82 |
|
83 |
bound = length(x-ic)-r #where the boundary will be located |
84 |
|
85 |
A = (kappai)*whereNegative(bound)+(kappac)*wherePositive(bound) |
86 |
D = (rhocpi/h)*whereNegative(bound)+(rhocpc/h)*wherePositive(bound) |
87 |
|
88 |
mypde.setValue(A=A*kronecker(model),D=D,d=eta,y=eta*Tc) |
89 |
|
90 |
# ... set initial temperature .... |
91 |
|
92 |
T= Ti*whereNegative(bound)+Tc*wherePositive(bound) #defining the initial temperatures. |
93 |
saveVTK(os.path.join(save_path,"dataedge.vtu"), sol=bound) |
94 |
saveVTK(os.path.join(save_path,"data%03d.vtu") %i,sol=T) |
95 |
|
96 |
#... start iteration: |
97 |
while t<=tend: |
98 |
i+=1 |
99 |
t+=h |
100 |
Y = T*D |
101 |
mypde.setValue(Y=Y) |
102 |
T=mypde.getSolution() |
103 |
saveVTK(os.path.join(save_path,"data%03d.vtu") %i,sol=T) |