/[escript]/trunk/doc/examples/cookbook/wavesolver2d003.py
ViewVC logotype

Annotation of /trunk/doc/examples/cookbook/wavesolver2d003.py

Parent Directory Parent Directory | Revision Log Revision Log


Revision 3148 - (hide annotations)
Fri Sep 3 02:09:47 2010 UTC (11 years ago) by jfenwick
File MIME type: text/x-python
File size: 7654 byte(s)
Another attempt to patch the X issue

1 ahallam 2829
2     ########################################################
3     #
4 jfenwick 2881 # Copyright (c) 2009-2010 by University of Queensland
5 ahallam 2829 # Earth Systems Science Computational Center (ESSCC)
6     # http://www.uq.edu.au/esscc
7     #
8     # Primary Business: Queensland, Australia
9     # Licensed under the Open Software License version 3.0
10     # http://www.opensource.org/licenses/osl-3.0.php
11     #
12     ########################################################
13    
14 jfenwick 2881 __copyright__="""Copyright (c) 2009-2010 by University of Queensland
15 ahallam 2829 Earth Systems Science Computational Center (ESSCC)
16     http://www.uq.edu.au/esscc
17     Primary Business: Queensland, Australia"""
18     __license__="""Licensed under the Open Software License version 3.0
19     http://www.opensource.org/licenses/osl-3.0.php"""
20     __url__="https://launchpad.net/escript-finley"
21    
22     # You can shorten the execution time by reducing variable tend from 60 to 0.5
23 ahallam 3001 # Antony Hallam
24     # Acoustic Wave Equation Simulation
25 ahallam 2829
26     # Importing all the necessary modules required.
27     from esys.escript import *
28     from esys.finley import Rectangle
29     import sys
30     import os
31 gross 2907 from cblib1 import wavesolver2d
32 ahallam 2829 # smoothing operator
33     from esys.escript.pdetools import Projector
34     import numpy as np
35 jfenwick 3148 import matplotlib
36     matplotlib.use('agg') #It's just here for automated testing
37    
38 ahallam 2829 import pylab as pl
39     import matplotlib.cm as cm
40    
41     # Establish a save path.
42     savepath = "data/wavesolver2d009mpltestABCnolump0_0006"
43 gross 2907 mkDir(savepath)
44 ahallam 2829
45    
46     #Geometric and material property related variables.
47     mx = 1000. # model lenght
48     my = 1000. # model width
49     ndx = 200 # steps in x direction
50     ndy = 200 # steps in y direction
51    
52     xstep=mx/ndx
53     ystep=my/ndy
54    
55     lam=3.462e9 #lames constant
56     mu=3.462e9 #bulk modulus
57     rho=1154. #density
58     # Time related variables.
59     tend=0.5 #end time
60     #calculating )the timestep
61     h=(1./5.)*sqrt(rho/(lam+2*mu))*(mx/ndx)
62     #Check to make sure number of time steps is not too large.
63     print "Time step size= ",h, "Expected number of outputs= ",tend/h
64    
65     #uncomment the following lines to give the user a chance to stop
66     #proceeder = raw_input("Is this ok?(y/n)")
67     #Exit if user thinks too many outputs.
68     #if proceeder == "n":
69     # sys.exit()
70    
71     U0=0.01 # amplitude of point source
72     # spherical source at middle of bottom face
73    
74     xc=[500,500]
75    
76     mydomain=Rectangle(l0=mx,l1=my,n0=ndx, n1=ndy)
77     #wavesolver2d(mydomain,h,tend,lam,mu,rho,U0,xc,savepath,output="mpl")
78    
79    
80    
81    
82     domain=mydomain
83     output="mpl"
84    
85    
86    
87    
88    
89     from esys.escript.linearPDEs import LinearPDE
90     x=domain.getX()
91    
92     ## boundary conditions
93    
94     bleft=xstep*50.
95     bright=mx-(xstep*50.)
96     bbot=my-(ystep*50.)
97     btop=ystep*50.
98    
99     left=x[0]-bleft
100     right=x[0]-bright
101     bottom=x[1]-bbot
102     top=x[1]-btop
103    
104     decay=0.0006
105     fleft=exp(-1.0*(decay*(bleft-x[0]))**2)
106     fright=exp(-1.0*(decay*(x[0]-bright))**2)
107     fbottom=exp(-1.0*(decay*(x[1]-bbot))**2)
108     ftop=exp(-1.0*(decay*(btop-x[1]))**2)
109    
110     abcleft=fleft*whereNegative(left)
111     abcright=fright*wherePositive(right)
112     abcbottom=fbottom*wherePositive(bottom)
113     abctop=ftop*whereNegative(top)
114    
115     abcleft=abcleft+whereZero(abcleft)
116     abcright=abcright+whereZero(abcright)
117     abcbottom=abcbottom+whereZero(abcbottom)
118     abctop=abctop+whereZero(abctop)
119    
120     abc=abcleft*abcright*abcbottom*abctop
121    
122     #~ fleftT=fleft.toListOfTuples()
123     #~ fleftT=np.reshape(fleftT,(ndx+1,ndy+1))
124     #~ pl.imshow(fleftT)
125     #~ pl.colorbar()
126     #~ pl.savefig("fleftT.png")
127     #~
128     #~ frightT=fright.toListOfTuples()
129     #~ frightT=np.reshape(frightT,(ndx+1,ndy+1))
130     #~ pl.clf()
131     #~ pl.imshow(frightT)
132     #~ pl.colorbar()
133     #~ pl.savefig("frightT.png")
134     #~
135     #~ fbottomT=fbottom.toListOfTuples()
136     #~ fbottomT=np.reshape(fbottomT,(ndx+1,ndy+1))
137     #~ pl.clf()
138     #~ pl.imshow(fbottomT)
139     #~ pl.colorbar()
140     #~ pl.savefig("fbottomT.png")
141     #~
142     #~ #tester=fright*wherePositive(right)
143     #~ tester=fleft*whereNegative(left)
144     #~ tester=tester.toListOfTuples()
145     #~ tester=np.reshape(tester,(ndx+1,ndy+1))
146     #~ pl.clf()
147     #~ pl.imshow(tester)
148     #~ pl.colorbar()
149     #~ pl.savefig("tester1.png")
150     #~
151     #~ tester=fright*wherePositive(right)
152     #~ tester=tester.toListOfTuples()
153     #~ tester=np.reshape(tester,(ndx+1,ndy+1))
154     #~ pl.clf()
155     #~ pl.imshow(tester)
156     #~ pl.colorbar()
157     #~ pl.savefig("tester2.png")
158     #~
159     #~ tester=fbottom*wherePositive(bottom)
160     #~ tester=tester.toListOfTuples()
161     #~ tester=np.reshape(tester,(ndx+1,ndy+1))
162     #~ pl.clf()
163     #~ pl.imshow(tester)
164     #~ pl.colorbar()
165     #~ pl.savefig("tester3.png")
166    
167    
168     # ... open new PDE ...
169     mypde=LinearPDE(domain)
170     print mypde.isUsingLumping()
171     print mypde.getSolverOptions()
172     #mypde.getSolverOptions().setSolverMethod(mypde.getSolverOptions().LUMPING)
173     mypde.setSymmetryOn()
174     kmat = kronecker(domain)
175     mypde.setValue(D=kmat*rho)
176    
177     # define small radius around point xc
178     # Lsup(x) returns the maximum value of the argument x
179     src_radius = 50#2*Lsup(domain.getSize())
180     print "src_radius = ",src_radius
181    
182     dunit=numpy.array([0.,1.]) # defines direction of point source
183     #~ dunit=(x-xc)
184     #~ absrc=length(dunit)
185     #~ dunit=dunit/maximum(absrc,1e-10)
186    
187     # ... set initial values ....
188     n=0
189     # initial value of displacement at point source is constant (U0=0.01)
190     # for first two time steps
191     u=U0*(cos(length(x-xc)*3.1415/src_radius)+1)*whereNegative(length(x-xc)-src_radius)*dunit
192     #u=whereNegative(length(x-xc)-src_radius)*dunit
193    
194     maxi=0.02
195    
196     print u
197     u_m1=u
198     t=0
199    
200     #~ u_pot = cbphones(domain,u,[[0,500],[250,500],[400,500]],2)
201     #~ u_pc_x1 = u_pot[0,0]
202     #~ u_pc_y1 = u_pot[0,1]
203     #~ u_pc_x2 = u_pot[1,0]
204     #~ u_pc_y2 = u_pot[1,1]
205     #~ u_pc_x3 = u_pot[2,0]
206     #~ u_pc_y3 = u_pot[2,1]
207     #~
208     #~ # open file to save displacement at point source
209     #~ u_pc_data=open(os.path.join(savepath,'U_pc.out'),'w')
210     #~ u_pc_data.write("%f %f %f %f %f %f %f\n"%(t,u_pc_x1,u_pc_y1,u_pc_x2,u_pc_y2,u_pc_x3,u_pc_y3))
211    
212     while t<tend:
213     # ... get current stress ....
214     # t=1.
215     ##OLD WAY
216     g=grad(u)
217     stress=lam*trace(g)*kmat+mu*(g+transpose(g))
218     ### ... get new acceleration ....
219     #mypde.setValue(X=-stress)
220     #a=mypde.getSolution()
221     ### ... get new displacement ...
222     #u_p1=2*u-u_m1+h*h*a
223     ###NEW WAY
224     mypde.setValue(X=-stress*(h*h),Y=(rho*2*u-rho*u_m1))
225     u_p1 = mypde.getSolution()
226     # ... shift displacements ....
227     u_m1=u
228     u=u_p1*abc
229     #stress =
230     t+=h
231     n+=1
232     print n,"-th time step t ",t
233     #~ u_pot = cbphones(domain,u,[[300.,200.],[500.,200.],[750.,200.]],2)
234     #~
235     #~ # print "u at point charge=",u_pc
236     #~ u_pc_x1 = u_pot[0,0]
237     #~ u_pc_y1 = u_pot[0,1]
238     #~ u_pc_x2 = u_pot[1,0]
239     #~ u_pc_y2 = u_pot[1,1]
240     #~ u_pc_x3 = u_pot[2,0]
241     #~ u_pc_y3 = u_pot[2,1]
242    
243     # save displacements at point source to file for t > 0
244     #~ u_pc_data.write("%f %f %f %f %f %f %f\n"%(t,u_pc_x1,u_pc_y1,u_pc_x2,u_pc_y2,u_pc_x3,u_pc_y3))
245    
246     # ... save current acceleration in units of gravity and displacements
247     #saveVTK(os.path.join(savepath,"usoln.%i.vtu"%n),acceleration=length(a)/9.81,
248     #displacement = length(u), tensor = stress, Ux = u[0] )
249     if output == "vtk":
250     saveVTK(os.path.join(savepath,"tonysol.%i.vtu"%n),output1 = length(u),tensor=stress)
251     if output == "mpl":
252     uT=np.array(u.toListOfTuples())
253     uT=np.reshape(uT,(ndx+1,ndy+1,2))
254     uTz=uT[:,:,1]+uT[:,:,0]
255     uTz=np.transpose(uTz)
256     pl.clf()
257     # plot wave
258     uTz[0,0]=maxi
259     uTz[0,1]=-maxi
260     CS = pl.imshow(uTz,cmap=cm.spectral)
261     pl.colorbar()
262     # labels and formatting
263     pl.title("Wave Equation Cookbook Example ABC.")
264     pl.xlabel("Horizontal Displacement (m)")
265     pl.ylabel("Depth (m)")
266     if getMPIRankWorld() == 0: #check for MPI processing
267     pl.savefig(os.path.join(savepath,"ws04mpl%05d.png"%n))
268    
269     #~ u_pc_data.close()
270     #~ os.system("mencoder mf://"+savepath+"/*.png -mf type=png:\
271     #~ w=800:h=600:fps=25 -ovc lavc -lavcopts vcodec=mpeg4 -oac copy -o \
272     #~ wsmpl.avi")
273    
274     #mencoder mf://*.png -mf type=png:\w=800:h=600:fps=25 -ovc lavc -lavcopts vcodec=mpeg4 -oac copy -o wsmpl.avi

  ViewVC Help
Powered by ViewVC 1.1.26