/[escript]/trunk/doc/examples/cookbook/wavesolver2d004.py
ViewVC logotype

Annotation of /trunk/doc/examples/cookbook/wavesolver2d004.py

Parent Directory Parent Directory | Revision Log Revision Log


Revision 3148 - (hide annotations)
Fri Sep 3 02:09:47 2010 UTC (11 years ago) by jfenwick
File MIME type: text/x-python
File size: 7848 byte(s)
Another attempt to patch the X issue

1 ahallam 2829
2     ########################################################
3     #
4 jfenwick 2881 # Copyright (c) 2009-2010 by University of Queensland
5 ahallam 2829 # Earth Systems Science Computational Center (ESSCC)
6     # http://www.uq.edu.au/esscc
7     #
8     # Primary Business: Queensland, Australia
9     # Licensed under the Open Software License version 3.0
10     # http://www.opensource.org/licenses/osl-3.0.php
11     #
12     ########################################################
13    
14 jfenwick 2881 __copyright__="""Copyright (c) 2009-2010 by University of Queensland
15 ahallam 2829 Earth Systems Science Computational Center (ESSCC)
16     http://www.uq.edu.au/esscc
17     Primary Business: Queensland, Australia"""
18     __license__="""Licensed under the Open Software License version 3.0
19     http://www.opensource.org/licenses/osl-3.0.php"""
20     __url__="https://launchpad.net/escript-finley"
21    
22     # You can shorten the execution time by reducing variable tend from 60 to 0.5
23    
24     # Importing all the necessary modules required.
25     from esys.escript import *
26     from esys.finley import Rectangle
27     import sys
28     import os
29 gross 2907 from cblib1 import wavesolver2d
30 ahallam 2829 # smoothing operator
31     from esys.escript.pdetools import Projector
32     import numpy as np
33 jfenwick 3148 import matplotlib
34     matplotlib.use('agg') #It's just here for automated testing
35    
36 ahallam 2829 import pylab as pl
37     import matplotlib.cm as cm
38    
39     # Establish a save path.
40     savepath = "data/wavesolver2d008mpltestABC"
41 gross 2907 mkDir(savepath)
42 ahallam 2829
43    
44     #Geometric and material property related variables.
45     mx = 1000. # model lenght
46     my = 1000. # model width
47     ndx = 200 # steps in x direction
48     ndy = 200 # steps in y direction
49    
50     xstep=mx/ndx
51     ystep=my/ndy
52    
53     lam=3.462e9 #lames constant
54     mu=3.462e9 #bulk modulus
55     rho=1154. #density
56     # Time related variables.
57     tend=0.5 #end time
58     #calculating )the timestep
59     h=(1./5.)*sqrt(rho/(lam+2*mu))*(mx/ndx)
60     #Check to make sure number of time steps is not too large.
61     print "Time step size= ",h, "Expected number of outputs= ",tend/h
62    
63     #uncomment the following lines to give the user a chance to stop
64     #proceeder = raw_input("Is this ok?(y/n)")
65     #Exit if user thinks too many outputs.
66     #if proceeder == "n":
67     # sys.exit()
68    
69     U0=0.01 # amplitude of point source
70     # spherical source at middle of bottom face
71    
72     xc=[500,500]
73    
74     mydomain=Rectangle(l0=mx,l1=my,n0=ndx, n1=ndy)
75     #wavesolver2d(mydomain,h,tend,lam,mu,rho,U0,xc,savepath,output="mpl")
76    
77    
78    
79    
80     domain=mydomain
81     output="mpl"
82    
83    
84    
85    
86    
87     from esys.escript.linearPDEs import LinearPDE
88     x=domain.getX()
89    
90     ## boundary conditions
91    
92     bleft=xstep*50.
93     bright=mx-(xstep*50.)
94     bbot=my-(ystep*50.)
95     btop=ystep*50.
96    
97     left=x[0]-bleft
98     right=x[0]-bright
99     bottom=x[1]-bbot
100     top=x[1]-btop
101    
102     decay=0.0005
103     fleft=exp(-1.0*(decay*(bleft-x[0]))**2)
104     fright=exp(-1.0*(decay*(x[0]-bright))**2)
105     fbottom=exp(-1.0*(decay*(x[1]-bbot))**2)
106     ftop=exp(-1.0*(decay*(btop-x[1]))**2)
107    
108     abcleft=fleft*whereNegative(left)
109     abcright=fright*wherePositive(right)
110     abcbottom=fbottom*wherePositive(bottom)
111     abctop=ftop*whereNegative(top)
112    
113     abcleft=abcleft+whereZero(abcleft)
114     abcright=abcright+whereZero(abcright)
115     abcbottom=abcbottom+whereZero(abcbottom)
116     abctop=abctop+whereZero(abctop)
117    
118     abc=abcleft*abcright*abcbottom*abctop
119    
120     #~ fleftT=fleft.toListOfTuples()
121     #~ fleftT=np.reshape(fleftT,(ndx+1,ndy+1))
122     #~ pl.imshow(fleftT)
123     #~ pl.colorbar()
124     #~ pl.savefig("fleftT.png")
125     #~
126     #~ frightT=fright.toListOfTuples()
127     #~ frightT=np.reshape(frightT,(ndx+1,ndy+1))
128     #~ pl.clf()
129     #~ pl.imshow(frightT)
130     #~ pl.colorbar()
131     #~ pl.savefig("frightT.png")
132     #~
133     #~ fbottomT=fbottom.toListOfTuples()
134     #~ fbottomT=np.reshape(fbottomT,(ndx+1,ndy+1))
135     #~ pl.clf()
136     #~ pl.imshow(fbottomT)
137     #~ pl.colorbar()
138     #~ pl.savefig("fbottomT.png")
139     #~
140     #~ #tester=fright*wherePositive(right)
141     #~ tester=fleft*whereNegative(left)
142     #~ tester=tester.toListOfTuples()
143     #~ tester=np.reshape(tester,(ndx+1,ndy+1))
144     #~ pl.clf()
145     #~ pl.imshow(tester)
146     #~ pl.colorbar()
147     #~ pl.savefig("tester1.png")
148     #~
149     #~ tester=fright*wherePositive(right)
150     #~ tester=tester.toListOfTuples()
151     #~ tester=np.reshape(tester,(ndx+1,ndy+1))
152     #~ pl.clf()
153     #~ pl.imshow(tester)
154     #~ pl.colorbar()
155     #~ pl.savefig("tester2.png")
156     #~
157     #~ tester=fbottom*wherePositive(bottom)
158     #~ tester=tester.toListOfTuples()
159     #~ tester=np.reshape(tester,(ndx+1,ndy+1))
160     #~ pl.clf()
161     #~ pl.imshow(tester)
162     #~ pl.colorbar()
163     #~ pl.savefig("tester3.png")
164    
165    
166     abcT=abc.toListOfTuples()
167     abcT=np.reshape(abcT,(ndx+1,ndy+1))
168     pl.clf()
169     pl.imshow(abcT)
170     pl.colorbar()
171     pl.savefig("abc.png")
172    
173     # ... open new PDE ...
174     mypde=LinearPDE(domain)
175     #mypde.setSolverMethod(LinearPDE.LUMPING)
176     mypde.setSymmetryOn()
177     kmat = kronecker(domain)
178     mypde.setValue(D=kmat*rho)
179    
180     # define small radius around point xc
181     # Lsup(x) returns the maximum value of the argument x
182     src_radius = 50#2*Lsup(domain.getSize())
183     print "src_radius = ",src_radius
184    
185     #dunit=numpy.array([0.,1.]) # defines direction of point source
186     dunit=(x-xc)
187     absrc=length(dunit)
188     dunit=dunit/maximum(absrc,1e-10)
189    
190     # ... set initial values ....
191     n=0
192     # initial value of displacement at point source is constant (U0=0.01)
193     # for first two time steps
194     u=x*0.
195     #u=abs(U0*(cos(length(x-xc)*3.1415/src_radius)+1)*whereNegative(length(x-xc)-src_radius)*dunit)
196     #u=whereNegative(length(x-xc)-src_radius)*dunit
197    
198     #maxi=max(u.toListOfTuples())
199    
200    
201     #~ srcf
202     #~
203     #~ x2= np.linspace(0,0.1,333)
204     #~
205     #~ y2=np.exp(-50.*x2)*np.sin(40*3.14157*x2)
206    
207     print u
208     u_m1=u
209     t=0
210    
211     #~ u_pot = cbphones(domain,u,[[0,500],[250,500],[400,500]],2)
212     #~ u_pc_x1 = u_pot[0,0]
213     #~ u_pc_y1 = u_pot[0,1]
214     #~ u_pc_x2 = u_pot[1,0]
215     #~ u_pc_y2 = u_pot[1,1]
216     #~ u_pc_x3 = u_pot[2,0]
217     #~ u_pc_y3 = u_pot[2,1]
218     #~
219     #~ # open file to save displacement at point source
220     #~ u_pc_data=open(os.path.join(savepath,'U_pc.out'),'w')
221     #~ u_pc_data.write("%f %f %f %f %f %f %f\n"%(t,u_pc_x1,u_pc_y1,u_pc_x2,u_pc_y2,u_pc_x3,u_pc_y3))
222    
223     while t<tend:
224     # ... get current stress ....
225     # t=1.
226    
227     ## TIMED SOURCE
228     srcf=np.exp(-50.*t)*np.sin(40*3.14157*t)
229     setValueOfDataPoint(srcf,xc,u)
230     ##OLD WAY
231     g=grad(u)
232     break
233     stress=lam*trace(g)*kmat+mu*(g+transpose(g))
234     ### ... get new acceleration ....
235     #mypde.setValue(X=-stress)
236     #a=mypde.getSolution()
237     ### ... get new displacement ...
238     #u_p1=2*u-u_m1+h*h*a
239     ###NEW WAY
240     mypde.setValue(X=-stress*(h*h),Y=(rho*2*u-rho*u_m1))
241     u_p1 = mypde.getSolution()
242     # ... shift displacements ....
243     u_m1=u
244     u=u_p1*abc
245     #stress =
246     t+=h
247     n+=1
248     print n,"-th time step t ",t
249     #~ u_pot = cbphones(domain,u,[[300.,200.],[500.,200.],[750.,200.]],2)
250     #~
251     #~ # print "u at point charge=",u_pc
252     #~ u_pc_x1 = u_pot[0,0]
253     #~ u_pc_y1 = u_pot[0,1]
254     #~ u_pc_x2 = u_pot[1,0]
255     #~ u_pc_y2 = u_pot[1,1]
256     #~ u_pc_x3 = u_pot[2,0]
257     #~ u_pc_y3 = u_pot[2,1]
258    
259     # save displacements at point source to file for t > 0
260     #~ u_pc_data.write("%f %f %f %f %f %f %f\n"%(t,u_pc_x1,u_pc_y1,u_pc_x2,u_pc_y2,u_pc_x3,u_pc_y3))
261    
262     # ... save current acceleration in units of gravity and displacements
263     #saveVTK(os.path.join(savepath,"usoln.%i.vtu"%n),acceleration=length(a)/9.81,
264     #displacement = length(u), tensor = stress, Ux = u[0] )
265     if output == "vtk":
266     saveVTK(os.path.join(savepath,"tonysol.%i.vtu"%n),output1 = length(u),tensor=stress)
267     if output == "mpl":
268     uT=np.array(u.toListOfTuples())
269     uT=np.reshape(uT,(ndx+1,ndy+1,2))
270     uTz=uT[:,:,1]+uT[:,:,0]
271     uTz=np.transpose(uTz)
272     pl.clf()
273     # plot wave
274     uTz[0,0]=maxi
275     uTz[0,1]=-maxi
276     CS = pl.imshow(uTz,cmap=cm.spectral)
277     pl.colorbar()
278     # labels and formatting
279     pl.title("Wave Equation Cookbook Example ABC.")
280     pl.xlabel("Horizontal Displacement (m)")
281     pl.ylabel("Depth (m)")
282     if getMPIRankWorld() == 0: #check for MPI processing
283     pl.savefig(os.path.join(savepath,"ws04mpl%05d.png"%n))
284    
285     #~ u_pc_data.close()
286     #~ os.system("mencoder mf://"+savepath+"/*.png -mf type=png:\
287     #~ w=800:h=600:fps=25 -ovc lavc -lavcopts vcodec=mpeg4 -oac copy -o \
288     #~ wsmpl.avi")
289    
290     #mencoder mf://*.png -mf type=png:\w=800:h=600:fps=25 -ovc lavc -lavcopts vcodec=mpeg4 -oac copy -o wsmpl.avi

  ViewVC Help
Powered by ViewVC 1.1.26