1 |
######################################################## |
2 |
# |
3 |
# Copyright (c) 2003-2010 by University of Queensland |
4 |
# Earth Systems Science Computational Center (ESSCC) |
5 |
# http://www.uq.edu.au/esscc |
6 |
# |
7 |
# Primary Business: Queensland, Australia |
8 |
# Licensed under the Open Software License version 3.0 |
9 |
# http://www.opensource.org/licenses/osl-3.0.php |
10 |
# |
11 |
######################################################## |
12 |
|
13 |
__copyright__="""Copyright (c) 2003-2010 by University of Queensland |
14 |
Earth Systems Science Computational Center (ESSCC) |
15 |
http://www.uq.edu.au/esscc |
16 |
Primary Business: Queensland, Australia""" |
17 |
__license__="""Licensed under the Open Software License version 3.0 |
18 |
http://www.opensource.org/licenses/osl-3.0.php""" |
19 |
__url__="https://launchpad.net/escript-finley" |
20 |
|
21 |
# import tools |
22 |
from esys.escript import * |
23 |
from esys.escript.linearPDEs import LinearPDE |
24 |
from esys.dudley import Rectangle |
25 |
from esys.weipa import saveVTK |
26 |
# end of simulation time |
27 |
t_end=0.1 |
28 |
# time step size: |
29 |
dt=0.01 |
30 |
# dimensions: |
31 |
L0=1.;L1=1. |
32 |
# location, size and value of heat source |
33 |
xc=[0.3,0.4]; r=0.1; Qc=3000 |
34 |
# material parameter |
35 |
k=1; rhocp=100; |
36 |
# bottom temperature: |
37 |
T_bot=100 |
38 |
# generate domain: |
39 |
mydomain=Rectangle(l0=L0,l1=L1,n0=20,n1=20) |
40 |
x=mydomain.getX() |
41 |
# set boundray temperature: |
42 |
T_D=T_bot/L1*(L1-x[1]) |
43 |
# set heat source: |
44 |
Q=Qc*whereNegative(length(x-xc)-r) |
45 |
# generate domain: |
46 |
mypde=LinearPDE(mydomain) |
47 |
mypde.setSymmetryOn() |
48 |
# set PDE coefficients: |
49 |
mypde.setValue(A=dt*k*kronecker(mydomain), D=dt*rhocp, |
50 |
r=T_D, q=whereZero(x[1])+whereZero(x[1]-L1)) |
51 |
# initial temperature |
52 |
T=T_D |
53 |
# step counter and time marker: |
54 |
N=0; t=0 |
55 |
# stop when t_end is reached: |
56 |
while t<t_end: |
57 |
print N,"-th time step t=",t |
58 |
# update PDE coefficient: |
59 |
mypde.setValue(Y=dt*rhocp*T+dt*Q) |
60 |
# new temperature: |
61 |
T=mypde.getSolution() |
62 |
# save as VTK for visualisation: |
63 |
saveVTK("u.%s.vtu"%N,T=T) |
64 |
# increase counter and marker: |
65 |
N+=1; t+=dt |