1 |
# $Id$ |
2 |
from esys.escript import * |
3 |
from esys.escript.linearPDEs import LinearPDE |
4 |
from esys.finley import Brick |
5 |
#... set some parameters ... |
6 |
lam=1. |
7 |
mu=0.1 |
8 |
alpha=1.e-6 |
9 |
xc=[0.3,0.3,1.] |
10 |
beta=8. |
11 |
T_ref=0. |
12 |
T_0=1. |
13 |
#... generate domain ... |
14 |
mydomain = Brick(l0=1.,l1=1., l2=1.,n0=10, n1=10, n2=10) |
15 |
x=mydomain.getX() |
16 |
#... set temperature ... |
17 |
T=T_0*exp(-beta*length(x-xc)) |
18 |
#... open symmetric PDE ... |
19 |
mypde=LinearPDE(mydomain) |
20 |
mypde.setSymmetryOn() |
21 |
#... set coefficients ... |
22 |
C=Tensor4(0.,Function(mydomain)) |
23 |
for i in range(mydomain.getDim()): |
24 |
for j in range(mydomain.getDim()): |
25 |
C[i,i,j,j]+=lam |
26 |
C[j,i,j,i]+=mu |
27 |
C[j,i,i,j]+=mu |
28 |
msk=whereZero(x[0])*[1.,0.,0.] \ |
29 |
+whereZero(x[1])*[0.,1.,0.] \ |
30 |
+whereZero(x[2])*[0.,0.,1.] |
31 |
sigma0=(lam+2./3.*mu)*alpha*(T-T_ref)*kronecker(mydomain) |
32 |
mypde.setValue(A=C,X=sigma0,q=msk) |
33 |
#... solve pde ... |
34 |
u=mypde.getSolution() |
35 |
#... calculate von-Misses |
36 |
g=grad(u) |
37 |
sigma=mu*(g+transpose(g))+lam*trace(g)*kronecker(mydomain)-sigma0 |
38 |
sigma_mises=sqrt(((sigma[0,0]-sigma[1,1])**2+(sigma[1,1]-sigma[2,2])**2+ \ |
39 |
(sigma[2,2]-sigma[0,0])**2)/6. \ |
40 |
+sigma[0,1]**2 + sigma[1,2]**2 + sigma[2,0]**2) |
41 |
#... output ... |
42 |
saveVTK("deform.xml",disp=u,stress=sigma_mises) |
43 |
|