1 |
from __future__ import print_function |
2 |
############################################################################## |
3 |
# |
4 |
# Copyright (c) 2009-2014 by University of Queensland |
5 |
# http://www.uq.edu.au |
6 |
# |
7 |
# Primary Business: Queensland, Australia |
8 |
# Licensed under the Open Software License version 3.0 |
9 |
# http://www.opensource.org/licenses/osl-3.0.php |
10 |
# |
11 |
# Development until 2012 by Earth Systems Science Computational Center (ESSCC) |
12 |
# Development 2012-2013 by School of Earth Sciences |
13 |
# Development from 2014 by Centre for Geoscience Computing (GeoComp) |
14 |
# |
15 |
############################################################################## |
16 |
|
17 |
"""3D gravity/magnetic joint inversion example using netCDF data""" |
18 |
|
19 |
__copyright__="""Copyright (c) 2009-2014 by University of Queensland |
20 |
http://www.uq.edu.au |
21 |
Primary Business: Queensland, Australia""" |
22 |
__license__="""Licensed under the Open Software License version 3.0 |
23 |
http://www.opensource.org/licenses/osl-3.0.php""" |
24 |
__url__="https://launchpad.net/escript-finley" |
25 |
|
26 |
# Import required modules |
27 |
from esys.downunder import * |
28 |
from esys.escript import unitsSI as U |
29 |
from esys.escript import saveDataCSV |
30 |
from esys.weipa import * |
31 |
|
32 |
# Set parameters |
33 |
MAGNETIC_DATASET = 'data/MagneticSmall.nc' |
34 |
MAG_UNITS = U.Nano * U.Tesla |
35 |
GRAVITY_DATASET = 'data/GravitySmall.nc' |
36 |
GRAV_UNITS = 1e-6 * U.m/(U.sec**2) |
37 |
# background magnetic field components (B_East, B_North, B_Vertical) |
38 |
B_b = [2201.*U.Nano*U.Tesla, 31232.*U.Nano*U.Tesla, -41405.*U.Nano*U.Tesla] |
39 |
PAD_X = 0.2 |
40 |
PAD_Y = 0.2 |
41 |
thickness = 40. * U.km |
42 |
l_air = 6. * U.km |
43 |
n_cells_v = 25 |
44 |
mu_gravity = 1. |
45 |
mu_magnetic = 0.1 |
46 |
COORDINATES=CartesianReferenceSystem() |
47 |
#COORDINATES=WGS84ReferenceSystem() |
48 |
|
49 |
|
50 |
def work(): |
51 |
# Setup and run the inversion |
52 |
grav_source=NetCdfData(NetCdfData.GRAVITY, GRAVITY_DATASET, scale_factor=GRAV_UNITS, reference_system=COORDINATES) |
53 |
mag_source=NetCdfData(NetCdfData.MAGNETIC, MAGNETIC_DATASET, scale_factor=MAG_UNITS, reference_system=COORDINATES) |
54 |
db=DomainBuilder(dim=3, reference_system=COORDINATES) |
55 |
db.addSource(grav_source) |
56 |
db.addSource(mag_source) |
57 |
db.setVerticalExtents(depth=thickness, air_layer=l_air, num_cells=n_cells_v) |
58 |
db.setFractionalPadding(pad_x=PAD_X, pad_y=PAD_Y) |
59 |
db.setBackgroundMagneticFluxDensity(B_b) |
60 |
db.fixDensityBelow(depth=thickness) |
61 |
db.fixSusceptibilityBelow(depth=thickness) |
62 |
|
63 |
inv=StrongJointGravityMagneticInversion() |
64 |
inv.setSolverTolerance(1e-4) |
65 |
inv.setSolverMaxIterations(50) |
66 |
inv.setup(db) |
67 |
inv.getCostFunction().setTradeOffFactorsModels([mu_gravity, mu_magnetic]) |
68 |
inv.getCostFunction().setTradeOffFactorsRegularization(mu = 1.) |
69 |
|
70 |
density, susceptibility = inv.run() |
71 |
print("density = %s"%density) |
72 |
print("susceptibility = %s"%susceptibility) |
73 |
|
74 |
g, wg = db.getGravitySurveys()[0] |
75 |
B, wB = db.getMagneticSurveys()[0] |
76 |
if saveSilo("result_gravmag_strong.silo", density=density, gravity_anomaly=g, gravity_weight=wg, susceptibility=susceptibility, magnetic_anomaly=B, magnetic_weight=wB): |
77 |
print("Results saved in result_gravmag_strong.silo") |
78 |
else: |
79 |
print("Failed to save silo file. Possibly no Silo support.") |
80 |
|
81 |
saveVTK("result_gravmag_strong.vtu", density=density, gravity_anomaly=g, gravity_weight=wg, susceptibility=susceptibility, magnetic_anomaly=B, magnetic_weight=wB) |
82 |
print("Results saved in result_gravmag_strong.vtu") |
83 |
|
84 |
print("All done. Have a nice day!") |
85 |
|
86 |
if 'NetCdfData' in dir(): |
87 |
work() |
88 |
else: |
89 |
print("This example requires scipy's netcdf support which does not appear to be installed.") |
90 |
|