1 |
|
2 |
######################################################## |
3 |
# |
4 |
# Copyright (c) 2003-2008 by University of Queensland |
5 |
# Earth Systems Science Computational Center (ESSCC) |
6 |
# http://www.uq.edu.au/esscc |
7 |
# |
8 |
# Primary Business: Queensland, Australia |
9 |
# Licensed under the Open Software License version 3.0 |
10 |
# http://www.opensource.org/licenses/osl-3.0.php |
11 |
# |
12 |
######################################################## |
13 |
|
14 |
__copyright__="""Copyright (c) 2003-2008 by University of Queensland |
15 |
Earth Systems Science Computational Center (ESSCC) |
16 |
http://www.uq.edu.au/esscc |
17 |
Primary Business: Queensland, Australia""" |
18 |
__license__="""Licensed under the Open Software License version 3.0 |
19 |
http://www.opensource.org/licenses/osl-3.0.php""" |
20 |
__url__="http://www.uq.edu.au/esscc/escript-finley" |
21 |
|
22 |
""" |
23 |
Author: Lutz Gross, l.gross@uq.edu.au |
24 |
Author: John Ngui, john.ngui@uq.edu.au |
25 |
""" |
26 |
|
27 |
# Import the necessary modules. |
28 |
from esys.escript import * |
29 |
from esys.escript.pdetools import Locator |
30 |
from esys.escript.linearPDEs import LinearPDE |
31 |
from esys.finley import Brick |
32 |
from numarray import identity,zeros,ones |
33 |
from esys.pyvisi import Scene, DataCollector, Ellipsoid, Camera |
34 |
from esys.pyvisi.constant import * |
35 |
import os |
36 |
|
37 |
PYVISI_EXAMPLE_IMAGES_PATH = "data_sample_images" |
38 |
X_SIZE = 400 |
39 |
Y_SIZE = 300 |
40 |
JPG_RENDERER = Renderer.ONLINE_JPG |
41 |
|
42 |
ne=32 # number of cells in x_0 and x_1 directions |
43 |
width=10000. # length in x_0 and x_1 directions |
44 |
lam=3.462e9 |
45 |
mu=3.462e9 |
46 |
rho=1154. |
47 |
tend=60 |
48 |
h=(1./5.)*sqrt(rho/(lam+2*mu))*(width/ne) |
49 |
|
50 |
U0=0.01 # amplitude of point source |
51 |
|
52 |
def wavePropagation(domain,h,tend,lam,mu,rho,U0): |
53 |
x=domain.getX() |
54 |
# ... open new PDE ... |
55 |
mypde=LinearPDE(domain) |
56 |
mypde.setSolverMethod(LinearPDE.LUMPING) |
57 |
kronecker=identity(mypde.getDim()) |
58 |
|
59 |
# spherical source at middle of bottom face |
60 |
|
61 |
xc=[width/2.,width/2.,0.] |
62 |
# define small radius around point xc |
63 |
# Lsup(x) returns the maximum value of the argument x |
64 |
src_radius = 0.1*Lsup(domain.getSize()) |
65 |
dunit=numarray.array([1.,0.,0.]) # defines direction of point source |
66 |
|
67 |
mypde.setValue(D=kronecker*rho) |
68 |
# ... set initial values .... |
69 |
n=0 |
70 |
# initial value of displacement at point source is constant (U0=0.01) |
71 |
# for first two time steps |
72 |
u=U0*whereNegative(length(x-xc)-src_radius)*dunit |
73 |
u_last=U0*whereNegative(length(x-xc)-src_radius)*dunit |
74 |
t=0 |
75 |
|
76 |
# define the location of the point source |
77 |
L=Locator(domain,numarray.array(xc)) |
78 |
# find potential at point source |
79 |
u_pc=L.getValue(u) |
80 |
|
81 |
u_pc_x = u_pc[0] |
82 |
u_pc_y = u_pc[1] |
83 |
u_pc_z = u_pc[2] |
84 |
|
85 |
# open file to save displacement at point source |
86 |
#u_pc_data=open('./data/U_pc.out','w') |
87 |
#u_pc_data.write("%f %f %f %f\n"%(t,u_pc_x,u_pc_y,u_pc_z)) |
88 |
|
89 |
# Create a Scene. |
90 |
s = Scene(renderer = JPG_RENDERER, x_size = X_SIZE, y_size = Y_SIZE) |
91 |
|
92 |
# Create a DataCollector reading directly from escript objects. |
93 |
dc = DataCollector(source = Source.ESCRIPT) |
94 |
|
95 |
# Create an Ellipsoid. |
96 |
e = Ellipsoid(scene = s, data_collector = dc, |
97 |
viewport = Viewport.SOUTH_WEST, |
98 |
lut = Lut.COLOR, cell_to_point = True, outline = True) |
99 |
e.setScaleFactor(scale_factor = 0.7) |
100 |
e.setMaxScaleFactor(max_scale_factor = 1000) |
101 |
e.setRatio(ratio = 10) |
102 |
|
103 |
# Create a Camera. |
104 |
c = Camera(scene = s, viewport = Viewport.SOUTH_WEST) |
105 |
c.isometricView() |
106 |
|
107 |
while t<0.4: |
108 |
# ... get current stress .... |
109 |
g=grad(u) |
110 |
stress=lam*trace(g)*kronecker+mu*(g+transpose(g)) |
111 |
# ... get new acceleration .... |
112 |
mypde.setValue(X=-stress) |
113 |
a=mypde.getSolution() |
114 |
# ... get new displacement ... |
115 |
u_new=2*u-u_last+h**2*a |
116 |
# ... shift displacements .... |
117 |
u_last=u |
118 |
u=u_new |
119 |
t+=h |
120 |
n+=1 |
121 |
u_pc=L.getValue(u) |
122 |
|
123 |
u_pc_x=u_pc[0] |
124 |
u_pc_y=u_pc[1] |
125 |
u_pc_z=u_pc[2] |
126 |
|
127 |
# ... save current acceleration in units of gravity and displacements |
128 |
if n==1 or n%10==0: |
129 |
|
130 |
dc.setData(acceleration = length(a)/9.81, displacement = u, |
131 |
tensor = stress, Ux = u[0]) |
132 |
|
133 |
# Render the object. |
134 |
s.render(image_name = os.path.join(PYVISI_EXAMPLE_IMAGES_PATH, \ |
135 |
"wave%02d.jpg") % (n/10)) |
136 |
|
137 |
mydomain=Brick(ne,ne,10,l0=width,l1=width,l2=10.*width/32.) |
138 |
wavePropagation(mydomain,h,tend,lam,mu,rho,U0) |
139 |
|