1 |
|
2 |
######################################################## |
3 |
# |
4 |
# Copyright (c) 2003-2009 by University of Queensland |
5 |
# Earth Systems Science Computational Center (ESSCC) |
6 |
# http://www.uq.edu.au/esscc |
7 |
# |
8 |
# Primary Business: Queensland, Australia |
9 |
# Licensed under the Open Software License version 3.0 |
10 |
# http://www.opensource.org/licenses/osl-3.0.php |
11 |
# |
12 |
######################################################## |
13 |
|
14 |
__copyright__="""Copyright (c) 2003-2008 by University of Queensland |
15 |
Earth Systems Science Computational Center (ESSCC) |
16 |
http://www.uq.edu.au/esscc |
17 |
Primary Business: Queensland, Australia""" |
18 |
__license__="""Licensed under the Open Software License version 3.0 |
19 |
http://www.opensource.org/licenses/osl-3.0.php""" |
20 |
__url__="https://launchpad.net/escript-finley" |
21 |
|
22 |
from esys.escript import * |
23 |
from esys.escript.pdetools import Locator |
24 |
from esys.escript.linearPDEs import LinearPDE |
25 |
from esys.finley import Brick |
26 |
from numpy import identity,zeros,ones |
27 |
|
28 |
ne=32 # number of cells in x_0 and x_1 directions |
29 |
width=10000. # length in x_0 and x_1 directions |
30 |
lam=3.462e9 |
31 |
mu=3.462e9 |
32 |
rho=1154. |
33 |
tend=20. # to ran a full simulation change tend to 60. |
34 |
alpha=0.7 |
35 |
t0=3. |
36 |
|
37 |
U0=1. # maximum displacement |
38 |
mkDir("data") # create directory data if it does not exist already. |
39 |
|
40 |
def wavePropagation(domain,h,tend,lam,mu,rho, xc, src_radius, U0): |
41 |
x=domain.getX() |
42 |
# ... open new PDE ... |
43 |
mypde=LinearPDE(domain) |
44 |
mypde.getSolverOptions().setSolverMethod(mypde.getSolverOptions().LUMPING) |
45 |
kronecker=identity(mypde.getDim()) |
46 |
|
47 |
dunit=numpy.array([1.,0.,0.]) # defines direction of point source |
48 |
|
49 |
mypde.setValue(D=kronecker*rho, q=whereNegative(length(x-xc)-src_radius)*dunit) |
50 |
# ... set initial values .... |
51 |
n=0 |
52 |
# for first two time steps |
53 |
u=Vector(0.,Solution(domain)) |
54 |
u_last=Vector(0.,Solution(domain)) |
55 |
t=0 |
56 |
|
57 |
# define the location of the point source |
58 |
L=Locator(domain,xc) |
59 |
# find potential at point source |
60 |
u_pc=L.getValue(u) |
61 |
print "u at point charge=",u_pc |
62 |
# open file to save displacement at point source |
63 |
u_pc_data=FileWriter('./data/U_pc.out') |
64 |
u_pc_data.write("%f %f %f %f\n"%(t,u_pc[0],u_pc[1],u_pc[2])) |
65 |
|
66 |
while t<tend: |
67 |
t+=h |
68 |
# ... get current stress .... |
69 |
g=grad(u) |
70 |
stress=lam*trace(g)*kronecker+mu*(g+transpose(g)) |
71 |
# ... get new acceleration .... |
72 |
amplitude=U0*(4*(t-t0)**3/alpha**3-6*(t-t0)/alpha)*sqrt(2.)/alpha**2*exp(1./2.-(t-t0)**2/alpha**2) |
73 |
mypde.setValue(X=-stress, r=dunit*amplitude) |
74 |
a=mypde.getSolution() |
75 |
# ... get new displacement ... |
76 |
u_new=2*u-u_last+h**2*a |
77 |
# ... shift displacements .... |
78 |
u_last=u |
79 |
u=u_new |
80 |
n+=1 |
81 |
print n,"-th time step t ",t |
82 |
u_pc=L.getValue(u) |
83 |
print "u at point charge=",u_pc |
84 |
# save displacements at point source to file for t > 0 |
85 |
u_pc_data.write("%f %f %f %f\n"%(t,u_pc[0],u_pc[1],u_pc[2])) |
86 |
|
87 |
# ... save current acceleration in units of gravity and displacements |
88 |
if n==1 or n%10==0: saveVTK("./data/usoln.%i.vtu"%(n/10),acceleration=length(a)/9.81, |
89 |
displacement = length(u), tensor = stress, Ux = u[0] ) |
90 |
|
91 |
u_pc_data.close() |
92 |
|
93 |
mydomain=Brick(ne,ne,10,l0=width,l1=width,l2=10.*width/ne) |
94 |
h=inf(1./5.)*inf(sqrt(rho/(lam+2*mu))*mydomain.getSize()) |
95 |
print "time step size = ",h |
96 |
# spherical source at middle of bottom face |
97 |
xc=[width/2.,width/2.,0.] |
98 |
# define small radius around point xc |
99 |
src_radius = 0.03*width |
100 |
print "src_radius = ",src_radius |
101 |
wavePropagation(mydomain,h,tend,lam,mu,rho, xc, src_radius, U0) |
102 |
|