1 |
|
2 |
######################################################## |
3 |
# |
4 |
# Copyright (c) 2003-2008 by University of Queensland |
5 |
# Earth Systems Science Computational Center (ESSCC) |
6 |
# http://www.uq.edu.au/esscc |
7 |
# |
8 |
# Primary Business: Queensland, Australia |
9 |
# Licensed under the Open Software License version 3.0 |
10 |
# http://www.opensource.org/licenses/osl-3.0.php |
11 |
# |
12 |
######################################################## |
13 |
|
14 |
__copyright__="""Copyright (c) 2003-2008 by University of Queensland |
15 |
Earth Systems Science Computational Center (ESSCC) |
16 |
http://www.uq.edu.au/esscc |
17 |
Primary Business: Queensland, Australia""" |
18 |
__license__="""Licensed under the Open Software License version 3.0 |
19 |
http://www.opensource.org/licenses/osl-3.0.php""" |
20 |
__url__="http://www.uq.edu.au/esscc/escript-finley" |
21 |
|
22 |
# You can shorten the execution time by reducing variable tend from 60 to 0.5 |
23 |
|
24 |
from esys.escript import * |
25 |
from esys.escript.pdetools import Locator |
26 |
from esys.escript.linearPDEs import LinearPDE |
27 |
from esys.finley import Brick |
28 |
from numarray import identity,zeros,ones |
29 |
|
30 |
if not os.path.isdir("data"): |
31 |
print "\nCreating subdirectory 'data'\n" |
32 |
os.mkdir("data") |
33 |
|
34 |
ne=32 # number of cells in x_0 and x_1 directions |
35 |
width=10000. # length in x_0 and x_1 directions |
36 |
lam=3.462e9 |
37 |
mu=3.462e9 |
38 |
rho=1154. |
39 |
tend=60 |
40 |
h=(1./5.)*sqrt(rho/(lam+2*mu))*(width/ne) |
41 |
print "time step size = ",h |
42 |
|
43 |
U0=0.01 # amplitude of point source |
44 |
|
45 |
def wavePropagation(domain,h,tend,lam,mu,rho,U0): |
46 |
x=domain.getX() |
47 |
# ... open new PDE ... |
48 |
mypde=LinearPDE(domain) |
49 |
mypde.setSolverMethod(LinearPDE.LUMPING) |
50 |
kronecker=identity(mypde.getDim()) |
51 |
|
52 |
# spherical source at middle of bottom face |
53 |
|
54 |
xc=[width/2.,width/2.,0.] |
55 |
# define small radius around point xc |
56 |
# Lsup(x) returns the maximum value of the argument x |
57 |
src_radius = 0.1*Lsup(domain.getSize()) |
58 |
print "src_radius = ",src_radius |
59 |
|
60 |
dunit=numarray.array([1.,0.,0.]) # defines direction of point source |
61 |
|
62 |
mypde.setValue(D=kronecker*rho) |
63 |
# ... set initial values .... |
64 |
n=0 |
65 |
# initial value of displacement at point source is constant (U0=0.01) |
66 |
# for first two time steps |
67 |
u=U0*whereNegative(length(x-xc)-src_radius)*dunit |
68 |
u_last=U0*whereNegative(length(x-xc)-src_radius)*dunit |
69 |
t=0 |
70 |
|
71 |
# define the location of the point source |
72 |
L=Locator(domain,numarray.array(xc)) |
73 |
# find potential at point source |
74 |
u_pc=L.getValue(u) |
75 |
print "u at point charge=",u_pc |
76 |
|
77 |
u_pc_x = u_pc[0] |
78 |
u_pc_y = u_pc[1] |
79 |
u_pc_z = u_pc[2] |
80 |
|
81 |
# open file to save displacement at point source |
82 |
u_pc_data=open('./data/U_pc.out','w') |
83 |
u_pc_data.write("%f %f %f %f\n"%(t,u_pc_x,u_pc_y,u_pc_z)) |
84 |
|
85 |
while t<tend: |
86 |
# ... get current stress .... |
87 |
g=grad(u) |
88 |
stress=lam*trace(g)*kronecker+mu*(g+transpose(g)) |
89 |
# ... get new acceleration .... |
90 |
mypde.setValue(X=-stress) |
91 |
a=mypde.getSolution() |
92 |
# ... get new displacement ... |
93 |
u_new=2*u-u_last+h**2*a |
94 |
# ... shift displacements .... |
95 |
u_last=u |
96 |
u=u_new |
97 |
t+=h |
98 |
n+=1 |
99 |
print n,"-th time step t ",t |
100 |
u_pc=L.getValue(u) |
101 |
print "u at point charge=",u_pc |
102 |
|
103 |
u_pc_x=u_pc[0] |
104 |
u_pc_y=u_pc[1] |
105 |
u_pc_z=u_pc[2] |
106 |
|
107 |
# save displacements at point source to file for t > 0 |
108 |
u_pc_data.write("%f %f %f %f\n"%(t,u_pc_x,u_pc_y,u_pc_z)) |
109 |
|
110 |
# ... save current acceleration in units of gravity and displacements |
111 |
if n==1 or n%10==0: saveVTK("./data/usoln.%i.vtu"%(n/10),acceleration=length(a)/9.81, |
112 |
displacement = length(u), tensor = stress, Ux = u[0] ) |
113 |
|
114 |
u_pc_data.close() |
115 |
|
116 |
mydomain=Brick(ne,ne,10,l0=width,l1=width,l2=10.*width/32.) |
117 |
wavePropagation(mydomain,h,tend,lam,mu,rho,U0) |
118 |
|