1 |
from esys.escript import * |
2 |
from esys.escript.pdetools import Locator |
3 |
from esys.escript.linearPDEs import LinearPDE |
4 |
from esys.finley import Brick |
5 |
from numarray import identity,zeros,ones |
6 |
from esys.pyvisi import Scene, DataCollector, Ellipsoid, Camera |
7 |
from esys.pyvisi.constant import * |
8 |
|
9 |
ne=32 # number of cells in x_0 and x_1 directions |
10 |
width=10000. # length in x_0 and x_1 directions |
11 |
lam=3.462e9 |
12 |
mu=3.462e9 |
13 |
rho=1154. |
14 |
tend=60 |
15 |
h=(1./5.)*sqrt(rho/(lam+2*mu))*(width/ne) |
16 |
print "time step size = ",h |
17 |
|
18 |
U0=0.01 # amplitude of point source |
19 |
|
20 |
def wavePropagation(domain,h,tend,lam,mu,rho,U0): |
21 |
x=domain.getX() |
22 |
# ... open new PDE ... |
23 |
mypde=LinearPDE(domain) |
24 |
mypde.setSolverMethod(LinearPDE.LUMPING) |
25 |
kronecker=identity(mypde.getDim()) |
26 |
|
27 |
# spherical source at middle of bottom face |
28 |
|
29 |
xc=[width/2.,width/2.,0.] |
30 |
# define small radius around point xc |
31 |
# Lsup(x) returns the maximum value of the argument x |
32 |
src_radius = 0.1*Lsup(domain.getSize()) |
33 |
print "src_radius = ",src_radius |
34 |
|
35 |
dunit=numarray.array([1.,0.,0.]) # defines direction of point source |
36 |
|
37 |
mypde.setValue(D=kronecker*rho) |
38 |
# ... set initial values .... |
39 |
n=0 |
40 |
# initial value of displacement at point source is constant (U0=0.01) |
41 |
# for first two time steps |
42 |
u=U0*whereNegative(length(x-xc)-src_radius)*dunit |
43 |
u_last=U0*whereNegative(length(x-xc)-src_radius)*dunit |
44 |
t=0 |
45 |
|
46 |
# define the location of the point source |
47 |
L=Locator(domain,numarray.array(xc)) |
48 |
# find potential at point source |
49 |
u_pc=L.getValue(u) |
50 |
print "u at point charge=",u_pc |
51 |
|
52 |
u_pc_x = u_pc[0] |
53 |
u_pc_y = u_pc[1] |
54 |
u_pc_z = u_pc[2] |
55 |
|
56 |
# open file to save displacement at point source |
57 |
u_pc_data=open('./data/U_pc.out','w') |
58 |
u_pc_data.write("%f %f %f %f\n"%(t,u_pc_x,u_pc_y,u_pc_z)) |
59 |
|
60 |
s = Scene(renderer = Renderer.OFFLINE_JPG, x_size = 500, y_size = 500) |
61 |
dc = DataCollector(source = Source.ESCRIPT) |
62 |
|
63 |
while t<tend: |
64 |
# ... get current stress .... |
65 |
g=grad(u) |
66 |
stress=lam*trace(g)*kronecker+mu*(g+transpose(g)) |
67 |
# ... get new acceleration .... |
68 |
mypde.setValue(X=-stress) |
69 |
a=mypde.getSolution() |
70 |
# ... get new displacement ... |
71 |
u_new=2*u-u_last+h**2*a |
72 |
# ... shift displacements .... |
73 |
u_last=u |
74 |
u=u_new |
75 |
t+=h |
76 |
n+=1 |
77 |
print n,"-th time step t ",t |
78 |
u_pc=L.getValue(u) |
79 |
print "u at point charge=",u_pc |
80 |
|
81 |
u_pc_x=u_pc[0] |
82 |
u_pc_y=u_pc[1] |
83 |
u_pc_z=u_pc[2] |
84 |
|
85 |
# save displacements at point source to file for t > 0 |
86 |
u_pc_data.write("%f %f %f %f\n"%(t,u_pc_x,u_pc_y,u_pc_z)) |
87 |
|
88 |
# ... save current acceleration in units of gravity and displacements |
89 |
if n==1 or n%10==0: |
90 |
#saveVTK("./data/usoln.%i.vtu"%(n/10), acceleration=length(a)/9.81, |
91 |
# displacement = u, tensor = stress, Ux = u[0]) |
92 |
|
93 |
dc.setData(acceleration = length(a)/9.81, displacement = u, |
94 |
tensor = stress, Ux = u[0]) |
95 |
|
96 |
e = Ellipsoid(scene = s, data_collector = dc, |
97 |
viewport = Viewport.SOUTH_WEST, |
98 |
lut = Lut.COLOR, cell_to_point = True, outline = True) |
99 |
e.setScaleFactor(scale_factor = 0.7) |
100 |
e.setMaxScaleFactor(max_scale_factor = 1000) |
101 |
e.setRatio(ratio = 10) |
102 |
|
103 |
c = Camera(scene = s, data_collector = dc, |
104 |
viewport = Viewport.SOUTH_WEST) |
105 |
c.isometricView() |
106 |
|
107 |
s.render(image_name = "wave_%02d.jpg" % (n/10)) |
108 |
|
109 |
u_pc_data.close() |
110 |
|
111 |
mydomain=Brick(ne,ne,10,l0=width,l1=width,l2=10.*width/32.) |
112 |
wavePropagation(mydomain,h,tend,lam,mu,rho,U0) |
113 |
|