404 |
\end{equation} |
\end{equation} |
405 |
with the elastic strain given as |
with the elastic strain given as |
406 |
\begin{equation}\label{IKM-EQU-3} |
\begin{equation}\label{IKM-EQU-3} |
407 |
D\hackscore{ij}'^{el}=\frac{1}{2 \mu} \dot{\sigma}\hackscore{ij}' |
D\hackscore{ij}^{el'}=\frac{1}{2 \mu} \dot{\sigma}\hackscore{ij}' |
408 |
\end{equation} |
\end{equation} |
409 |
where $\sigma'\hackscore{ij}$ is the deviatoric stress (Notice that $\sigma'\hackscore{ii}=0$). |
where $\sigma'\hackscore{ij}$ is the deviatoric stress (Notice that $\sigma'\hackscore{ii}=0$). |
410 |
If the material is composed by materials $q$ the visco-plastic strain can be decomposed as |
If the material is composed by materials $q$ the visco-plastic strain can be decomposed as |
411 |
\begin{equation}\label{IKM-EQU-4} |
\begin{equation}\label{IKM-EQU-4} |
412 |
D\hackscore{ij}'^{vp}=\sum\hackscore{q} D\hackscore{ij}'^{q} |
D\hackscore{ij}^{vp'}=\sum\hackscore{q} D\hackscore{ij}^{q'} |
413 |
\end{equation} |
\end{equation} |
414 |
where $D\hackscore{ij}^{q}$ is the strain in material $q$ given as |
where $D\hackscore{ij}^{q}$ is the strain in material $q$ given as |
415 |
\begin{equation}\label{IKM-EQU-5} |
\begin{equation}\label{IKM-EQU-5} |
416 |
D\hackscore{ij}'^{q}=\frac{1}{2 \eta^{q}} \sigma'\hackscore{ij} |
D\hackscore{ij}^{q'}=\frac{1}{2 \eta^{q}} \sigma'\hackscore{ij} |
417 |
\end{equation} |
\end{equation} |
418 |
where $\eta^{q}$ is the viscosity of material $q$. We assume the following |
where $\eta^{q}$ is the viscosity of material $q$. We assume the following |
419 |
betwee the the strain in material $q$ |
betwee the the strain in material $q$ |
421 |
\eta^{q}=\eta^{q}\hackscore{N} \left(\frac{\tau}{\tau\hackscore{t}^q}\right)^{\frac{1}{n^{q}}-1} |
\eta^{q}=\eta^{q}\hackscore{N} \left(\frac{\tau}{\tau\hackscore{t}^q}\right)^{\frac{1}{n^{q}}-1} |
422 |
\mbox{ with } \tau=\sqrt{\frac{1}{2}\sigma'\hackscore{ij} \sigma'\hackscore{ij}} |
\mbox{ with } \tau=\sqrt{\frac{1}{2}\sigma'\hackscore{ij} \sigma'\hackscore{ij}} |
423 |
\end{equation} |
\end{equation} |
424 |
for a given power law coefficients $n^{q}$ and transition stresses $\tau\hackscore{t}^q$, see~\ref{POERLAW}. |
for a given power law coefficients $n^{q}\ge1$ and transition stresses $\tau\hackscore{t}^q$, see~\ref{POERLAW}. |
425 |
Notice that $n^{q}=1$ gives a constant viscosity. |
Notice that $n^{q}=1$ gives a constant viscosity. |
426 |
After inserting equation~\ref{IKM-EQU-5} into equation \ref{IKM-EQU-4} one gets: |
After inserting equation~\ref{IKM-EQU-5} into equation \ref{IKM-EQU-4} one gets: |
427 |
\begin{equation}\label{IKM-EQU-6} |
\begin{equation}\label{IKM-EQU-6} |
484 |
\right)\hackscore{,j}+p\hackscore{,i}=F\hackscore{i}+ |
\right)\hackscore{,j}+p\hackscore{,i}=F\hackscore{i}+ |
485 |
\frac{\eta\hackscore{eff}}{\mu dt } \sigma\hackscore{ij,j}^{'-} |
\frac{\eta\hackscore{eff}}{\mu dt } \sigma\hackscore{ij,j}^{'-} |
486 |
\end{equation} |
\end{equation} |
487 |
Together with the incomressibilty condition~\ref{IKM-EQU-2} we need to solve a problem with a form almost identical |
Combining this with the incomressibilty condition~\ref{IKM-EQU-2} we need to solve a |
488 |
to the Stokes problem discussed in section~\ref{STOKES SOLVE} but with the difference that $\eta\hackscore{eff}$ is depending on the solution. Analog to the iteration scheme~\ref{SADDLEPOINT iteration 2} we can run |
Stokes problem as discussed in section~\ref{STOKES SOLVE} in each time step. |
489 |
|
In oder to perform step~\ref{IKM iteration 2} we need to calculate the $\eta\hackscore{eff}$ which |
490 |
|
is a function of $\sigma\hackscore{ij}$ via $\tau$. To get $\tau$ and $\eta\hackscore{eff}$ we need to solve the |
491 |
|
non-linear equation |
492 |
\begin{equation} |
\begin{equation} |
493 |
\begin{array}{rcl} |
\tau = \eta\hackscore{eff} \cdot \dot{\gamma}\hackscore{total} \mbox{ with } |
494 |
-\left(\eta\hackscore{eff}(dv\hackscore{i,j}+ dv\hackscore{i,j} |
\dot{\gamma}\hackscore{total} = \sqrt{ 2 \left( D\hackscore{ij}' + |
|
)\right)\hackscore{,j} & = & F\hackscore{i}+ \sigma\hackscore{ij,j}'-p\hackscore{,i} \\ |
|
|
\frac{1}{\eta\hackscore{eff}} dp & = & - v\hackscore{i,i}^+ |
|
|
\end{array} |
|
|
\label{IKM iteration 2} |
|
|
\end{equation} |
|
|
where $v^+=v+dv$. As this problem is non-linear the Jacobi-free Newton-GMRES method is used with the norm |
|
|
\begin{equation} |
|
|
\|(v, p)\|^2= \int\hackscore{\Omega} v\hackscore{i,j}^2 + \frac{1}{\bar{\eta}^2\hackscore{eff}} p^2 \; dx |
|
|
\label{IKM iteration 3} |
|
|
\end{equation} |
|
|
where $\bar{\eta}\hackscore{eff}$ is the caracteristic viscosity, for instance: |
|
|
\begin{equation} |
|
|
\frac{1}{\bar{\eta}\hackscore{eff}} = \frac{1}{\tau^{-}}+\sum\hackscore{q} \frac{1}{\eta^{q}\hackscore{N}} |
|
|
\label{IKM iteration 4} |
|
|
\end{equation} |
|
|
In oder to perform step~\ref{IKM iteration 2} we need to calculate the $\eta\hackscore{eff}$ as well as $\sigma\hackscore{ij}'$ while via $\tau$ the first is a function of the latter. The priority is the |
|
|
calculation of $\eta\hackscore{eff}$ with the Newton-Raphson scheme. This value can then be used to calculate |
|
|
$\sigma\hackscore{ij}'$ via~\ref{IKM-EQU-10}. We need to solve |
|
|
\begin{equation} |
|
|
\tau = \eta\hackscore{eff} \cdot \epsilon \mbox{ with } |
|
|
\epsilon = \sqrt{ 2 \left( D\hackscore{ij}' + |
|
495 |
\frac{1}{ 2 \mu \; dt} \sigma\hackscore{ij}^{'-}\right)^2} |
\frac{1}{ 2 \mu \; dt} \sigma\hackscore{ij}^{'-}\right)^2} |
496 |
\label{IKM iteration 5} |
\label{IKM iteration 5} |
497 |
\end{equation} |
\end{equation} |
498 |
The Newton scheme takes the form |
The Newton scheme takes the form |
499 |
\begin{equation} |
\begin{equation} |
500 |
\tau\hackscore{n+1} = \min(\tau\hackscore{n} - \frac{\tau\hackscore{n} - \eta\hackscore{eff} \cdot \epsilon}{1 - \eta\hackscore{eff}' \cdot \epsilon}, \tau\hackscore{Y} + \beta \; p) |
\tau\hackscore{n+1} = \min(\tau\hackscore{n} - \frac{\tau\hackscore{n} - \eta\hackscore{eff} \cdot \dot{\gamma}\hackscore{total}}{1 - \eta\hackscore{eff}' \cdot \dot{\gamma}\hackscore{total}}, \tau\hackscore{Y} + \beta \; p) |
|
= \min(\frac{\eta\hackscore{eff} - \tau\hackscore{n} \eta\hackscore{eff}'} |
|
|
{1 - \eta\hackscore{eff}' \cdot \epsilon}, \frac{\tau\hackscore{Y} + \beta \; p}{\epsilon}) \epsilon |
|
501 |
\label{IKM iteration 6} |
\label{IKM iteration 6} |
502 |
\end{equation} |
\end{equation} |
503 |
where $\eta\hackscore{eff}'$ denotes the derivative of $\eta\hackscore{eff}$ with respect of $\tau$. The second term in $\min$ is droped of $\tau\hackscore{Y} + \beta \; p<0$ or $\epsilon=0$. In fact we have |
where $\eta\hackscore{eff}'$ denotes the derivative of $\eta\hackscore{eff}$ with respect of $\tau$. The second term in $\min$ is droped of $\tau\hackscore{Y} + \beta \; p<0$ (?)). We have |
504 |
\begin{equation} |
\begin{equation} |
505 |
\eta\hackscore{eff}' = - \eta\hackscore{eff}^2 \left(\frac{1}{\eta\hackscore{eff}}\right)' |
\eta\hackscore{eff}' = - \eta\hackscore{eff}^2 \left(\frac{1}{\eta\hackscore{eff}}\right)' |
506 |
\mbox{ with } |
\mbox{ with } |
510 |
\begin{equation}\label{IKM-EQU-5XX} |
\begin{equation}\label{IKM-EQU-5XX} |
511 |
\left(\frac{1}{\eta^{q}} \right)' |
\left(\frac{1}{\eta^{q}} \right)' |
512 |
= \frac{1-\frac{1}{n^{q}}}{\eta^{q}\hackscore{N}} \frac{\tau^{-\frac{1}{n^{q}}}}{(\tau\hackscore{t}^q)^{1-\frac{1}{n^{q}}}} |
= \frac{1-\frac{1}{n^{q}}}{\eta^{q}\hackscore{N}} \frac{\tau^{-\frac{1}{n^{q}}}}{(\tau\hackscore{t}^q)^{1-\frac{1}{n^{q}}}} |
513 |
= \frac{1-\frac{1}{n^{q}}}{ \tau \eta^{q}} |
= \frac{1-\frac{1}{n^{q}}}{\tau}\frac{1}{\eta^{q}} |
514 |
\end{equation} |
\end{equation} |
515 |
Notice that allways $\eta\hackscore{eff}'\le 0$ which makes the denomionator in~\ref{IKM iteration 6} |
Notice that allways $\eta\hackscore{eff}'\le 0$ which makes the denomionator in~\ref{IKM iteration 6} |
516 |
positive. |
positive. |