 # Diff of /trunk/doc/user/Models.tex

revision 1878 by gross, Tue Oct 14 03:39:13 2008 UTC revision 1966 by jfenwick, Wed Nov 5 04:59:22 2008 UTC
# Line 251  After inserting~\ref{IKM-EQU-10} into~\r Line 251  After inserting~\ref{IKM-EQU-10} into~\r
251  \frac{\eta\hackscore{eff}}{\mu dt } \sigma\hackscore{ij,j}^{'-}  \frac{\eta\hackscore{eff}}{\mu dt } \sigma\hackscore{ij,j}^{'-}
252  \end{equation}  \end{equation}
253  Together with the incomressibilty condition~\ref{IKM-EQU-2} we need to solve a problem with a form almost identical  Together with the incomressibilty condition~\ref{IKM-EQU-2} we need to solve a problem with a form almost identical
254  to the Stokes problem discussed in section~\label{STOKES SOLVE} but with the difference that $\eta\hackscore{eff}$ is depending on the solution. Analog to the iteration scheme~\ref{SADDLEPOINT iteration 2} we can run  to the Stokes problem discussed in section~\ref{STOKES SOLVE} but with the difference that $\eta\hackscore{eff}$ is depending on the solution. Analog to the iteration scheme~\ref{SADDLEPOINT iteration 2} we can run
255  \begin{equation}  \begin{equation}
256  \begin{array}{rcl}  \begin{array}{rcl}
257  -\left(\eta\hackscore{eff}(dv\hackscore{i,j}+ dv\hackscore{i,j})\right)\hackscore{,j} & = & F\hackscore{i}+ \sigma\hackscore{ij,j}' \\  -\left(\eta\hackscore{eff}(dv\hackscore{i,j}+ dv\hackscore{i,j})\right)\hackscore{,j} & = & F\hackscore{i}+ \sigma\hackscore{ij,j}' \\

Legend:
 Removed from v.1878 changed lines Added in v.1966