1 |
% |
2 |
% $Id: Models.tex 1316 2007-09-25 03:18:30Z ksteube $ |
3 |
% |
4 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
5 |
% |
6 |
% Copyright 2003-2007 by ACceSS MNRF |
7 |
% Copyright 2007 by University of Queensland |
8 |
% |
9 |
% http://esscc.uq.edu.au |
10 |
% Primary Business: Queensland, Australia |
11 |
% Licensed under the Open Software License version 3.0 |
12 |
% http://www.opensource.org/licenses/osl-3.0.php |
13 |
% |
14 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
15 |
% |
16 |
|
17 |
\chapter{Models} |
18 |
|
19 |
The following sections give a breif overview of the model classes and their corresponding methods. |
20 |
|
21 |
\section{Stokes Cartesian (Saddle Point Problem)} |
22 |
|
23 |
\subsection{Description} |
24 |
|
25 |
Saddle point type problems emerge in a number of applications throughout physics and engineering. Finite element discretisation of the Navier-Stokes (momentum) equations for incompressible flow leads to equations of a saddle point type, which can be formulated as a solution of the following operator problem for $u \in V$ and $p \in Q$ with suitable Hilbert spaces $V$ and $Q$: |
26 |
|
27 |
\begin{equation} |
28 |
\left[ \begin{array}{cc} |
29 |
A & B \\ |
30 |
b^{*} & 0 \\ |
31 |
\end{array} \right] |
32 |
\left[ \begin{array}{c} |
33 |
u \\ |
34 |
p \\ |
35 |
\end{array} \right] |
36 |
=\left[ \begin{array}{c} |
37 |
f \\ |
38 |
g \\ |
39 |
\end{array} \right] |
40 |
\label{SADDLEPOINT} |
41 |
\end{equation} |
42 |
|
43 |
where $A$ is coercive, self-adjoint linear operator in $V$, $B$ is a linear operator from $Q$ into $V$ and $B^{*}$ is the adjoint operator of $B$. $f$ and $g$ are given elements from $V$ and $Q$ respectivitly. For more details on the mathematics see references \cite{AAMIRBERKYAN2008,MBENZI2005}. |
44 |
|
45 |
The Uzawa scheme scheme is used to solve the momentum equation with the secondary condition of incompressibility \cite{GROSS2006,AAMIRBERKYAN2008}. |
46 |
|
47 |
\begin{classdesc}{StokesProblemCartesian}{domain,debug} |
48 |
opens the stokes equations on the \Domain domain. Setting debug=True switches the debug mode to on. |
49 |
\end{classdesc} |
50 |
|
51 |
example usage: |
52 |
|
53 |
solution=StokesProblemCartesian(mesh) \\ |
54 |
solution.setTolerance(TOL) \\ |
55 |
solution.initialize(fixed\_u\_mask=b\_c,eta=eta,f=Y) \\ |
56 |
velocity,pressure=solution.solve(velocity,pressure,max\_iter=max\_iter,solver=solver) \\ |
57 |
|
58 |
\subsection{Benchmark Problem} |
59 |
|
60 |
Convection problem |
61 |
|
62 |
|
63 |
\section{Temperature Cartesian} |
64 |
|
65 |
\begin{equation} |
66 |
\rho c\hackscore{p} \left (\frac{\partial T}{\partial t} + \vec{v} \cdot \nabla T \right ) = k \nabla^{2}T |
67 |
\label{HEAT EQUATION} |
68 |
\end{equation} |
69 |
|
70 |
where $\vec{v}$ is the velocity vector, $T$ is the temperature, $\rho$ is the density, $\eta$ is the viscosity, $c\hackscore{p}$ is the specific heat at constant pressure and $k$ is the thermal conductivity. |
71 |
|
72 |
\subsection{Description} |
73 |
|
74 |
\subsection{Method} |
75 |
|
76 |
\begin{classdesc}{TemperatureCartesian}{dom,theta=THETA,useSUPG=SUPG} |
77 |
\end{classdesc} |
78 |
|
79 |
\subsection{Benchmark Problem} |
80 |
|
81 |
|
82 |
\section{Level Set Method} |
83 |
|
84 |
\subsection{Description} |
85 |
|
86 |
\subsection{Method} |
87 |
|
88 |
Advection and Reinitialisation |
89 |
|
90 |
\begin{classdesc}{LevelSet}{mesh, func\_new, reinit\_max, reinit\_each, tolerance, smooth} |
91 |
\end{classdesc} |
92 |
|
93 |
%example usage: |
94 |
|
95 |
%levelset = LevelSet(mesh, func\_new, reinit\_max, reinit\_each, tolerance, smooth) |
96 |
|
97 |
\begin{methoddesc}[LevelSet]{update\_parameter}{parameter} |
98 |
Update the parameter. |
99 |
\end{methoddesc} |
100 |
|
101 |
\begin{methoddesc}[LevelSet]{update\_phi}{paramter}{velocity}{dt}{t\_step} |
102 |
Update level set function; advection and reinitialization |
103 |
\end{methoddesc} |
104 |
|
105 |
\subsection{Benchmark Problem} |
106 |
|
107 |
Rayleigh-Taylor instability problem |
108 |
|
109 |
|
110 |
\section{Drucker Prager Model} |
111 |
|
112 |
\section{Plate Mantel} |