 # Annotation of /trunk/doc/user/darcyflux.tex

Revision 3747 - (hide annotations)
Thu Dec 15 02:13:14 2011 UTC (7 years, 9 months ago) by gross
File MIME type: application/x-tex
File size: 8480 byte(s)
inconsistent notation fixed.

 1 caltinay 3326 2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 3 % 4 % Copyright (c) 2003-2010 by University of Queensland 5 % Earth Systems Science Computational Center (ESSCC) 6 7 % 8 % Primary Business: Queensland, Australia 9 % Licensed under the Open Software License version 3.0 10 11 % 12 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 13 14 gross 2960 \section{Darcy Flux} 15 \label{DARCY FLUX} 16 gross 3747 We want to calculate the flux $u$ and pressure $p$ on a domain $\Omega$ 17 caltinay 3326 solving the Darcy flux problem\index{Darcy flux}\index{Darcy flow} 18 gross 2960 \begin{equation}\label{DARCY PROBLEM} 19 \begin{array}{rcl} 20 jfenwick 3295 u_{i} + \kappa_{ij} p_{,j} & = & g_{i} \\ 21 u_{k,k} & = & f 22 gross 2960 \end{array} 23 \end{equation} 24 with the boundary conditions 25 \begin{equation}\label{DARCY BOUNDARY} 26 \begin{array}{rcl} 27 jfenwick 3295 u_{i} \; n_{i} = u^{N}_{i} \; n_{i} & \mbox{ on } & \Gamma_{N} \\ 28 p = p^{D} & \mbox{ on } & \Gamma_{D} \\ 29 gross 2960 \end{array} 30 \end{equation} 31 caltinay 3326 where $\Gamma_{N}$ and $\Gamma_{D}$ are a partition of the boundary of 32 $\Omega$ with $\Gamma_{D}$ non-empty, $n_{i}$ is the outer normal field of the 33 boundary of $\Omega$, $u^{N}_{i}$ and $p^{D}$ are given functions on $\Omega$, 34 $g_{i}$ and $f$ are given source terms and $\kappa_{ij}$ is the given 35 permeability. 36 We assume that $\kappa_{ij}$ is symmetric (which is not really required) and 37 positive definite, i.e. there are positive constants $\alpha_{0}$ and 38 $\alpha_{1}$ which are independent from the location in $\Omega$ such that 39 gross 2960 \begin{equation} 40 jfenwick 3295 \alpha_{0} \; x_{i} x_{i} \le \kappa_{ij} x_{i} x_{j} \le \alpha_{1} \; x_{i} x_{i} 41 gross 2960 \end{equation} 42 caltinay 3326 for all $x_{i}$. 43 gross 2960 44 gross 3501 45 gross 2960 \subsection{Solution Method \label{DARCY SOLVE}} 46 gross 3502 Unfortunate equation~\ref{DARCY PROBLEM} can not solved directly in an easy way and requires mixed FEM. 47 We consider a few options to solve equation~\ref{DARCY PROBLEM} 48 gross 3568 \subsubsection{Evaluation}\label{SEC DARCY SIMPLE} 49 gross 3502 The first equation of equation~\ref{DARCY PROBLEM} is inserted into the second one: 50 \begin{equation}\label{DARCY PROBLEM SIMPLE} 51 - (\kappa_{ij} p_{,j})_{,i} = f - (g_{i})_{,i} 52 gross 3501 \end{equation} 53 gross 3568 54 gross 3502 with boundary conditions 55 \begin{equation}\label{DARCY BOUNDARY SIMPLE} 56 gross 3501 \begin{array}{rcl} 57 gross 3502 \kappa_{ij} p_{,j} \; n_{i} = ( g_{i} - u^{N}_{i} ) \; n_{i} & \mbox{ on } & \Gamma_{N} \\ 58 p = p^{D} & \mbox{ on } & \Gamma_{D} \\ 59 gross 3501 \end{array} 60 \end{equation} 61 gross 3568 Then the flux field is recovered by directly setting 62 gross 3502 \begin{equation}\label{DARCY PROBLEM SIMPLE FLUX} 63 u_{j} = g_j - \kappa_{ij} p_{,j} 64 \end{equation} 65 gross 3568 This simple recovery process will not ensure that the (numerically) calculated flux 66 meets the boundary conditions for flux or the incompressibility condition. 67 However this is a very fast way of calculating the flux. 68 gross 3502 69 gross 3568 70 gross 3502 \subsubsection{Global Postprocessing \label{SEC DARCY POST}} 71 An improved flux recovery can be achieved by solving a modified version of equation~\ref{DARCY PROBLEM SIMPLE FLUX} 72 adding the the gradient of the divergence of the flux: 73 \begin{equation}\label{DARCY PROBLEM POST FLUX} 74 \kappa^{-1}_{ij} u_{j} - 75 (\lambda \cdot u_{k,k} )_{,i}= 76 \kappa^{-1}_{ij} g_j- p_{,i} 77 - (\lambda \cdot f )_{,i} 78 \end{equation} 79 where 80 \begin{equation}\label{DARCY PROBLEM POST FLUX A} 81 \lambda = \omega \cdot |\kappa^{-1}| \cdot vol(\Omega)^{1/d} \cdot h 82 \end{equation} 83 with a non-negative factor $\omega$, $d$ is the spatial dimension and $h$ is the local element size. 84 \begin{equation}\label{DARCY PROBLEM POST FLUX BOUNDARY} 85 gross 3501 \begin{array}{rcl} 86 gross 3502 u_{i} \; n_{i} = u^{N}_{i} \; n_{i} & \mbox{ on } & \Gamma_{N} \\ 87 u_{k,k} = f & \mbox{ on } & \Gamma_{D} \\ 88 gross 3501 \end{array} 89 gross 3502 \end{equation} 90 gross 3568 Notice that the second condition is a natural boundary condition. 91 Global post-processing is more expense than direct pressure evaluation 92 however the flux is more accurate and asymptotic incompressibility 93 gross 3569 for mesh size towards zero can be shown, if $\omega>0$. 94 gross 3502 95 gross 2960 96 \subsection{Functions} 97 gross 3629 \begin{classdesc}{DarcyFlow}{domain, \optional{w=1., \optional{solver=\member{DarcyFlow.POST}, \optional{ 98 gross 3502 useReduced=\True, \optional{ verbose=\True} } }}} 99 opens the Darcy flux problem\index{Darcy flux} on the \Domain domain. 100 Reduced approximations for pressure and flux are used if \var{useReduced} is set. 101 Argument \var{solver} defines the solver method. 102 If \var{verbose} is set some information are printed. 103 gross 3568 \var{w} defines the weighting factor $\omega$ for global post-processing of the flux (see equation~\ref{DARCY PROBLEM POST FLUX A}.) 104 gross 2960 \end{classdesc} 105 106 gross 3568 \begin{memberdesc}[DarcyFlow]{EVAL} 107 flux is calculated directly from pressure evaluation, see section~\ref{SEC DARCY SIMPLE}. 108 gross 3502 \end{memberdesc} 109 110 gross 3569 \begin{memberdesc}[DarcyFlow]{SMOOTH} 111 solver using global post-processing of flux with weighting factor $\omega=0$, see section~\ref{SEC DARCY POST}. 112 \end{memberdesc} 113 114 gross 3502 \begin{memberdesc}[DarcyFlow]{POST} 115 gross 3568 solver using global post-processing of flux, see section~\ref{SEC DARCY POST}. 116 gross 3502 \end{memberdesc} 117 118 gross 2960 \begin{methoddesc}[DarcyFlow]{setValue}{\optional{f=None, \optional{g=None, \optional{location_of_fixed_pressure=None, \optional{location_of_fixed_flux=None, 119 \\\optional{permeability=None}}}}}} 120 caltinay 3326 assigns values to the model parameters. Values can be assigned using various 121 calls -- in particular in a time dependent problem only values that change 122 over time need to be reset. The permeability can be defined as a scalar 123 gross 3568 (isotropic), or a symmetric matrix (anisotropic). 124 gross 2960 \var{f} and \var{g} are the corresponding parameters in~\ref{DARCY PROBLEM}. 125 caltinay 3326 The locations and components where the flux is prescribed are set by positive 126 values in \var{location_of_fixed_flux}. 127 The locations where the pressure is prescribed are set by by positive values 128 of \var{location_of_fixed_pressure}. 129 gross 2960 The values of the pressure and flux are defined by the initial guess. 130 caltinay 3326 Notice that at any point on the boundary of the domain the pressure or the 131 normal component of the flux must be defined. There must be at least one point 132 where the pressure is prescribed. 133 The method will try to cast the given values to appropriate \Data class objects. 134 gross 2960 \end{methoddesc} 135 136 \begin{methoddesc}[DarcyFlow]{getSolverOptionsFlux}{} 137 gross 3502 returns the solver options used to solve the flux problems. 138 caltinay 3326 Use this \SolverOptions object to control the solution algorithms. 139 gross 3568 This option is only relevant if global postprocesing is used. 140 gross 2960 \end{methoddesc} 141 142 \begin{methoddesc}[DarcyFlow]{getSolverOptionsPressure}{} 143 caltinay 3331 returns a \SolverOptions object with the options used to solve the pressure 144 gross 3502 problems. 145 caltinay 3331 Use this object to control the solution algorithms. 146 gross 2960 \end{methoddesc} 147 148 gross 3568 \begin{methoddesc}[DarcyFlow]{solve}{u0,p0} 149 caltinay 3326 solves the problem and returns approximations for the flux $v$ and the pressure $p$. 150 \var{u0} and \var{p0} define initial guesses for flux and pressure. 151 Values marked by positive values \var{location_of_fixed_flux} and 152 \var{location_of_fixed_pressure}, respectively, are kept unchanged. 153 gross 2960 \end{methoddesc} 154 155 gross 3502 \begin{methoddesc}[DarcyFlow]{getFlux}{p, \optional{ u0 = None}} 156 returns the flux for a given pressure \var{p} where the flux is equal to \var{u0} 157 on locations where \var{location_of_fixed_flux} is positive, see \member{setValue}. 158 Notice that \var{g} and \var{f} are used. 159 \end{methoddesc} 160 161 gross 3629 \begin{figure} 162 \centerline{\includegraphics[width=\figwidth]{darcy_result}} 163 \caption{Flux and pressure field of the Dary flow example.} 164 \label{DIFFUSION FIG 1} 165 \end{figure} 166 gross 3502 167 gross 3629 \subsection{Example: Gravity Flow} 168 The following script \file{darcy.py}\index{scripts!\file{darcy.py.py}}\index{Darcy flow} 169 which is available in the \ExampleDirectory illustrates the usage of the 170 \class{DarcyFlow} class: 171 \begin{python} 172 from esys.escript import * 173 from esys.escript.models import DarcyFlow 174 from esys.finley import Rectangle 175 from esys.weipa import saveVTK 176 mydomain = Rectangle(l0=2.,l1=1.,n0=40, n1=20) 177 x = mydomain.getX() 178 p_BC=whereZero(x-1.)*wherePositive(x-1.) 179 u_BC=(whereZero(x)+whereZero(x-2.)) * [1.,0.] + \ 180 (whereZero(x) + whereZero(x-1.)*whereNonPositive(x-1.0)) * [0., 1.] 181 mypde = DarcyFlow(domain=mydomain) 182 mypde.setValue(g=[0., 2], 183 location_of_fixed_pressure=p_BC, 184 location_of_fixed_flux=u_BC, 185 permeability=100.) 186 gross 3502 187 gross 3629 u,p=mypde.solve(u0=x*[0., -1.], p0=0) 188 saveVTK("u.vtu",flux=u, pressure=p) 189 \end{python} 190 In the example the pressure is fixed to the initial presure \var{p0} on the right half of the top face. 191 The normal flux is set on all other faces. The corresponding values for the flux are set by the initial value 192 \var{u0}.