1 |
ksteube |
1811 |
|
2 |
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
3 |
ksteube |
1316 |
% |
4 |
ksteube |
1811 |
% Copyright (c) 2003-2008 by University of Queensland |
5 |
|
|
% Earth Systems Science Computational Center (ESSCC) |
6 |
|
|
% http://www.uq.edu.au/esscc |
7 |
gross |
625 |
% |
8 |
ksteube |
1811 |
% Primary Business: Queensland, Australia |
9 |
|
|
% Licensed under the Open Software License version 3.0 |
10 |
|
|
% http://www.opensource.org/licenses/osl-3.0.php |
11 |
gross |
625 |
% |
12 |
ksteube |
1811 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
13 |
jgs |
102 |
|
14 |
ksteube |
1811 |
|
15 |
ksteube |
1318 |
\chapter{ The Module \finley} |
16 |
jgs |
102 |
\label{CHAPTER ON FINLEY} |
17 |
|
|
|
18 |
|
|
\begin{figure} |
19 |
gross |
599 |
\centerline{\includegraphics[width=\figwidth]{figures/FinleyMesh.eps}} |
20 |
jgs |
102 |
\caption{Subdivision of an Ellipse into triangles order 1 (\finleyelement{Tri3})} |
21 |
|
|
\label{FINLEY FIG 0} |
22 |
|
|
\end{figure} |
23 |
|
|
|
24 |
|
|
\begin{figure} |
25 |
gross |
599 |
\centerline{\includegraphics[width=\figwidth]{figures/FinleyContact.eps}} |
26 |
jgs |
102 |
\caption{Mesh around a contact region (\finleyelement{Rec4})} |
27 |
|
|
\label{FINLEY FIG 01} |
28 |
|
|
\end{figure} |
29 |
|
|
|
30 |
|
|
\declaremodule{extension}{finley} \modulesynopsis{Solving linear, steady partial differential equations using |
31 |
|
|
finite elements} |
32 |
|
|
|
33 |
|
|
{\it finley} is a library of C functions solving linear, steady partial differential equations |
34 |
|
|
\index{partial differential equations} (PDEs) or systems of PDEs using isoparametrical finite |
35 |
|
|
elements \index{FEM!isoparametrical}. |
36 |
|
|
It supports unstructured, 1D, 2D and 3D meshes. The module \finley provides an access to the |
37 |
|
|
library through the \LinearPDE class of \escript supporting its full functionality. {\it finley} |
38 |
|
|
is parallelized using the OpenMP \index{OpenMP} paradigm. |
39 |
|
|
|
40 |
gross |
993 |
\section{Formulation} |
41 |
|
|
|
42 |
|
|
For a single PDE with a solution with a single component the linear PDE is defined in the |
43 |
|
|
following form: |
44 |
|
|
\begin{equation}\label{FINLEY.SINGLE.1} |
45 |
|
|
\begin{array}{cl} & |
46 |
|
|
\displaystyle{ |
47 |
|
|
\int\hackscore{\Omega} |
48 |
|
|
A\hackscore{jl} \cdot v\hackscore{,j}u\hackscore{,l}+ B\hackscore{j} \cdot v\hackscore{,j} u+ C\hackscore{l} \cdot v u\hackscore{,l}+D \cdot vu \; d\Omega } \\ |
49 |
|
|
+ & \displaystyle{\int\hackscore{\Gamma} d \cdot vu \; d{\Gamma} } |
50 |
|
|
+ \displaystyle{\int\hackscore{\Gamma^{contact}} d^{contact} \cdot [v][u] \; d{\Gamma} } \\ |
51 |
|
|
= & \displaystyle{\int\hackscore{\Omega} X\hackscore{j} \cdot v\hackscore{,j}+ Y \cdot v \; d\Omega }\\ |
52 |
|
|
+ & \displaystyle{\int\hackscore{\Gamma} y \cdot v \; d{\Gamma}} + |
53 |
|
|
\displaystyle{\int\hackscore{\Gamma^{contact}} y^{contact}\cdot [v] \; d{\Gamma}} \\ |
54 |
|
|
\end{array} |
55 |
|
|
\end{equation} |
56 |
|
|
|
57 |
|
|
\section{Meshes} |
58 |
jgs |
102 |
To understand the usage of \finley one needs to have an understanding of how the finite element meshes |
59 |
jgs |
107 |
\index{FEM!mesh} are defined. \fig{FINLEY FIG 0} shows an example of the |
60 |
jgs |
102 |
subdivision of an ellipse into so called elements \index{FEM!elements} \index{element}. |
61 |
|
|
In this case, triangles have been used but other forms of subdivisions |
62 |
|
|
can be constructed, e.g. into quadrilaterals or, in the three dimensional case, into tetrahedrons |
63 |
|
|
and hexahedrons. The idea of the finite element method is to approximate the solution by a function |
64 |
lgraham |
1700 |
which is a polynomial of a certain order and is continuous across it boundary to neighbor elements. |
65 |
jgs |
107 |
In the example of \fig{FINLEY FIG 0} a linear polynomial is used on each triangle. As one can see, the triangulation |
66 |
|
|
is quite a poor approximation of the ellipse. It can be improved by introducing a midpoint on each element edge then |
67 |
|
|
positioning those nodes located on an edge expected to describe the boundary, onto the boundary. |
68 |
jgs |
102 |
In this case the triangle gets a curved edge which requires a parametrization of the triangle using a |
69 |
|
|
quadratic polynomial. For this case, the solution is also approximated by a piecewise quadratic polynomial |
70 |
|
|
(which explains the name isoparametrical elements), see \Ref{Zienc,NumHand} for more details. |
71 |
|
|
|
72 |
|
|
The union of all elements defines the domain of the PDE. |
73 |
jgs |
107 |
Each element is defined by the nodes used to describe its shape. In \fig{FINLEY FIG 0} the element, |
74 |
|
|
which has type \finleyelement{Tri3}, |
75 |
|
|
with element reference number $19$ \index{element!reference number} is defined by the nodes |
76 |
|
|
with reference numbers $9$, $11$ and $0$ \index{node!reference number}. Notice that the order is counterclockwise. |
77 |
jgs |
102 |
The coefficients of the PDE are evaluated at integration nodes with each individual element. |
78 |
|
|
For quadrilateral elements a Gauss quadrature scheme is used. In the case of triangular elements a |
79 |
jgs |
107 |
modified form is applied. The boundary of the domain is also subdivided into elements. \index{element!face} In \fig{FINLEY FIG 0} |
80 |
jgs |
102 |
line elements with two nodes are used. The elements are also defined by their describing nodes, e.g. |
81 |
|
|
the face element reference number $20$ which has type \finleyelement{Line2} is defined by the nodes |
82 |
|
|
with the reference numbers $11$ and $0$. Again the order is crucial, if moving from the first |
83 |
jgs |
107 |
to second node the domain has to lie on the left hand side (in the case of a two dimension surface element |
84 |
|
|
the domain has to lie on the left hand side when moving counterclockwise). If the gradient on the |
85 |
|
|
surface of the domain is to be calculated rich face elements face to be used. Rich elements on a face |
86 |
|
|
are identical to interior elements but with a modified order of nodes such that the 'first' face of the element aligns |
87 |
ksteube |
1316 |
with the surface of the domain. In \fig{FINLEY FIG 0} |
88 |
jgs |
102 |
elements of the type \finleyelement{Tri3Face} are used. |
89 |
|
|
The face element reference number $20$ as a rich face element is defined by the nodes |
90 |
jgs |
107 |
with reference numbers $11$, $0$ and $9$. Notice that the face element $20$ is identical to the |
91 |
|
|
interior element $19$ except that, in this case, the order of the node is different to align the first |
92 |
jgs |
102 |
edge of the triangle (which is the edge starting with the first node) with the boundary of the domain. |
93 |
|
|
|
94 |
|
|
Be aware that face elements and elements in the interior of the domain must match, i.e. a face element must be the face |
95 |
jgs |
107 |
of an interior element or, in case of a rich face element, it must be identical to an interior element. |
96 |
jgs |
102 |
If no face elements are specified |
97 |
|
|
\finley implicitly assumes homogeneous natural boundary conditions \index{natural boundary conditions!homogeneous}, |
98 |
|
|
i.e. \var{d}=$0$ and \var{y}=$0$, on the entire boundary of the domain. For |
99 |
|
|
inhomogeneous natural boundary conditions \index{natural boundary conditions!inhomogeneous}, |
100 |
|
|
the boundary must be described by face elements. |
101 |
|
|
|
102 |
|
|
If discontinuities of the PDE solution are considered contact elements |
103 |
|
|
\index{element!contact}\index{contact conditions} are introduced to describe the contact region $\Gamma^{contact}$ |
104 |
|
|
even if $d^{contact}$ and $y^{contact}$ are zero. \fig{FINLEY FIG 01} shows a simple example of a mesh |
105 |
|
|
of rectangular elements around a contact region $\Gamma^{contact}$ \index{element!contact}. |
106 |
|
|
The contact region is described by the |
107 |
|
|
elements $4$, $3$ and $6$. Their element type is \finleyelement{Line2_Contact}. |
108 |
jgs |
107 |
The nodes $9$, $12$, $6$, $5$ define contact element $4$, where the coordinates of nodes $12$ and $5$ and |
109 |
jgs |
102 |
nodes $4$ and $6$ are identical with the idea that nodes $12$ and $9$ are located above and |
110 |
jgs |
107 |
nodes $5$ and $6$ below the contact region. |
111 |
jgs |
102 |
Again, the order of the nodes within an element is crucial. There is also the option of using rich elements |
112 |
jgs |
107 |
if the gradient is to be calculated on the contact region. Similarly to the rich face elements |
113 |
|
|
these are constructed from two interior elements by reordering the nodes such that |
114 |
jgs |
102 |
the 'first' face of the element above and the 'first' face of the element below the |
115 |
jgs |
107 |
contact regions line up. The rich version of element |
116 |
jgs |
102 |
$4$ is of type \finleyelement{Rec4Face_Contact} and is defined by the nodes $9$, $12$, $16$, $18$, $6$, $5$, $0$ and |
117 |
|
|
$2$. |
118 |
|
|
|
119 |
|
|
\tab{FINLEY TAB 1} shows the interior element types and the corresponding element types to be used |
120 |
jgs |
107 |
on the face and contacts. \fig{FINLEY.FIG:1}, \fig{FINLEY.FIG:2} and \fig{FINLEY.FIG:4} show the ordering of |
121 |
jgs |
102 |
the nodes within an element. |
122 |
|
|
|
123 |
|
|
\begin{table} |
124 |
|
|
\begin{tablev}{l|llll}{textrm}{interior}{face}{rich face}{contact}{rich contact} |
125 |
|
|
\linev{\finleyelement{Line2}}{\finleyelement{Point1}}{\finleyelement{Line2Face}}{\finleyelement{Point1_Contact}}{\finleyelement{Line2Face_Contact}} |
126 |
|
|
\linev{\finleyelement{Line3}}{\finleyelement{Point1}}{\finleyelement{Line3Face}}{\finleyelement{Point1_Contact}}{\finleyelement{Line3Face_Contact}} |
127 |
|
|
\linev{\finleyelement{Tri3}}{\finleyelement{Line2}}{\finleyelement{Tri3Face}}{\finleyelement{Line2_Contact}}{\finleyelement{Tri3Face_Contact}} |
128 |
|
|
\linev{\finleyelement{Tri6}}{\finleyelement{Line3}}{\finleyelement{Tri6Face}}{\finleyelement{Line3_Contact}}{\finleyelement{Tri6Face_Contact}} |
129 |
|
|
\linev{\finleyelement{Rec4}}{\finleyelement{Line2}}{\finleyelement{Rec4Face}}{\finleyelement{Line2_Contact}}{\finleyelement{Rec4Face_Contact}} |
130 |
|
|
\linev{\finleyelement{Rec8}}{\finleyelement{Line3}}{\finleyelement{Rec8Face}}{\finleyelement{Line3_Contact}}{\finleyelement{Rec8Face_Contact}} |
131 |
|
|
\linev{\finleyelement{Rec9}}{\finleyelement{Line3}}{\finleyelement{Rec9Face}}{\finleyelement{Line3_Contact}}{\finleyelement{Rec9Face_Contact}} |
132 |
|
|
\linev{\finleyelement{Tet4}}{\finleyelement{Tri6}}{\finleyelement{Tet4Face}}{\finleyelement{Tri6_Contact}}{\finleyelement{Tet4Face_Contact}} |
133 |
|
|
\linev{\finleyelement{Tet10}}{\finleyelement{Tri9}}{\finleyelement{Tet10Face}}{\finleyelement{Tri9_Contact}}{\finleyelement{Tet10Face_Contact}} |
134 |
|
|
\linev{\finleyelement{Hex8}}{\finleyelement{Rec4}}{\finleyelement{Hex8Face}}{\finleyelement{Rec4_Contact}}{\finleyelement{Hex8Face_Contact}} |
135 |
|
|
\linev{\finleyelement{Hex20}}{\finleyelement{Rec8}}{\finleyelement{Hex20Face}}{\finleyelement{Rec8_Contact}}{\finleyelement{Hex20Face_Contact}} |
136 |
|
|
\end{tablev} |
137 |
|
|
\caption{Finley elements and corresponding elements to be used on domain faces and contacts. |
138 |
ksteube |
1316 |
The rich types have to be used if the gradient of function is to be calculated on faces and contacts, respectively.} |
139 |
jgs |
102 |
\label{FINLEY TAB 1} |
140 |
|
|
\end{table} |
141 |
|
|
|
142 |
|
|
The native \finley file format is defined as follows. |
143 |
|
|
Each node \var{i} has \var{dim} spatial coordinates \var{Node[i]}, a reference number |
144 |
|
|
\var{Node_ref[i]}, a degree of freedom \var{Node_DOF[i]} and tag \var{Node_tag[i]}. |
145 |
jgs |
107 |
In most cases \var{Node_DOF[i]}=\var{Node_ref[i]} however, for periodic boundary conditions, |
146 |
jgs |
102 |
\var{Node_DOF[i]} is chosen differently, see example below. The tag can be used to mark nodes sharing |
147 |
|
|
the same properties. Element \var{i} is defined by the \var{Element_numNodes} nodes \var{Element_Nodes[i]} |
148 |
|
|
which is a list of node reference numbers. The order is crucial. |
149 |
|
|
It has a reference number \var{Element_ref[i]} and a tag \var{Element_tag[i]}. The tag |
150 |
|
|
can be used to mark elements sharing the same properties. For instance elements above |
151 |
jgs |
107 |
a contact region are marked with $2$ and elements below a contact region are marked with $1$. |
152 |
jgs |
102 |
\var{Element_Type} and \var{Element_Num} give the element type and the number of elements in the mesh. |
153 |
|
|
Analogue notations are used for face and contact elements. The following Python script |
154 |
|
|
prints the mesh definition in the \finley file format: |
155 |
|
|
\begin{python} |
156 |
|
|
print "%s\n"%mesh_name |
157 |
|
|
# node coordinates: |
158 |
|
|
print "%dD-nodes %d\n"%(dim,numNodes) |
159 |
|
|
for i in range(numNodes): |
160 |
|
|
print "%d %d %d"%(Node_ref[i],Node_DOF[i],Node_tag[i]) |
161 |
|
|
for j in range(dim): print " %e"%Node[i][j] |
162 |
|
|
print "\n" |
163 |
|
|
# interior elements |
164 |
|
|
print "%s %d\n"%(Element_Type,Element_Num) |
165 |
|
|
for i in range(Element_Num): |
166 |
|
|
print "%d %d"%(Element_ref[i],Element_tag[i]) |
167 |
|
|
for j in range(Element_numNodes): print " %d"%Element_Nodes[i][j] |
168 |
|
|
print "\n" |
169 |
|
|
# face elements |
170 |
|
|
print "%s %d\n"%(FaceElement_Type,FaceElement_Num) |
171 |
|
|
for i in range(FaceElement_Num): |
172 |
|
|
print "%d %d"%(FaceElement_ref[i],FaceElement_tag[i]) |
173 |
|
|
for j in range(FaceElement_numNodes): print " %d"%FaceElement_Nodes[i][j] |
174 |
|
|
print "\n" |
175 |
|
|
# contact elements |
176 |
|
|
print "%s %d\n"%(ContactElement_Type,ContactElement_Num) |
177 |
|
|
for i in range(ContactElement_Num): |
178 |
|
|
print "%d %d"%(ContactElement_ref[i],ContactElement_tag[i]) |
179 |
|
|
for j in range(ContactElement_numNodes): print " %d"%ContactElement_Nodes[i][j] |
180 |
|
|
print "\n" |
181 |
|
|
# point sources (not supported yet) |
182 |
ksteube |
1316 |
write("Point1 0",face_element_type,numFaceElements) |
183 |
jgs |
102 |
\end{python} |
184 |
|
|
|
185 |
|
|
The following example of a mesh file defines the mesh shown in \fig{FINLEY FIG 01}: |
186 |
|
|
\begin{verbatim} |
187 |
|
|
Example 1 |
188 |
|
|
2D Nodes 16 |
189 |
|
|
0 0 0 0. 0. |
190 |
|
|
2 2 0 0.33 0. |
191 |
|
|
3 3 0 0.66 0. |
192 |
|
|
7 4 0 1. 0. |
193 |
|
|
5 5 0 0. 0.5 |
194 |
|
|
6 6 0 0.33 0.5 |
195 |
|
|
8 8 0 0.66 0.5 |
196 |
|
|
10 10 0 1.0 0.5 |
197 |
|
|
12 12 0 0. 0.5 |
198 |
|
|
9 9 0 0.33 0.5 |
199 |
|
|
13 13 0 0.66 0.5 |
200 |
|
|
15 15 0 1.0 0.5 |
201 |
|
|
16 16 0 0. 1.0 |
202 |
|
|
18 18 0 0.33 1.0 |
203 |
|
|
19 19 0 0.66 1.0 |
204 |
|
|
20 20 0 1.0 1.0 |
205 |
|
|
Rec4 6 |
206 |
|
|
0 1 0 2 6 5 |
207 |
|
|
1 1 2 3 8 6 |
208 |
|
|
2 1 3 7 10 8 |
209 |
|
|
5 2 12 9 18 16 |
210 |
|
|
7 2 13 19 18 9 |
211 |
|
|
10 2 20 19 13 15 |
212 |
|
|
Line2 0 |
213 |
|
|
Line2_Contact 3 |
214 |
|
|
4 0 9 12 6 5 |
215 |
|
|
3 0 13 9 8 6 |
216 |
|
|
6 0 15 13 10 8 |
217 |
|
|
Point1 0 |
218 |
|
|
\end{verbatim} |
219 |
|
|
Notice that the order in which the nodes and elements are given is arbitrary. |
220 |
jgs |
107 |
In the case that rich contact elements are used the contact element section gets |
221 |
|
|
the form |
222 |
jgs |
102 |
\begin{verbatim} |
223 |
|
|
Rec4Face_Contact 3 |
224 |
|
|
4 0 9 12 16 18 6 5 0 2 |
225 |
|
|
3 0 13 9 18 19 8 6 2 3 |
226 |
|
|
6 0 15 13 19 20 10 8 3 7 |
227 |
|
|
\end{verbatim} |
228 |
|
|
Periodic boundary condition \index{boundary conditions!periodic} can be introduced by altering \var{Node_DOF}. |
229 |
jgs |
107 |
It allows identification of nodes even if they have different physical locations. For instance, to |
230 |
jgs |
102 |
enforce periodic boundary conditions at the face $x_0=0$ and $x_0=1$ one identifies |
231 |
|
|
the degrees of freedom for nodes $0$, $5$, $12$ and $16$ with the degrees of freedom for |
232 |
|
|
$7$, $10$, $15$ and $20$, respectively. The node section of the \finley mesh gets now the form: |
233 |
|
|
\begin{verbatim} |
234 |
|
|
2D Nodes 16 |
235 |
|
|
0 0 0 0. 0. |
236 |
|
|
2 2 0 0.33 0. |
237 |
|
|
3 3 0 0.66 0. |
238 |
|
|
7 0 0 1. 0. |
239 |
|
|
5 5 0 0. 0.5 |
240 |
|
|
6 6 0 0.33 0.5 |
241 |
|
|
8 8 0 0.66 0.5 |
242 |
|
|
10 5 0 1.0 0.5 |
243 |
|
|
12 12 0 0. 0.5 |
244 |
|
|
9 9 0 0.33 0.5 |
245 |
|
|
13 13 0 0.66 0.5 |
246 |
|
|
15 12 0 1.0 0.5 |
247 |
|
|
16 16 0 0. 1.0 |
248 |
|
|
18 18 0 0.33 1.0 |
249 |
|
|
19 19 0 0.66 1.0 |
250 |
|
|
20 16 0 1.0 1.0 |
251 |
|
|
\end{verbatim} |
252 |
|
|
|
253 |
jfenwick |
1955 |
\clearpage |
254 |
|
|
\input{finleyelements} |
255 |
|
|
\clearpage |
256 |
jgs |
102 |
|
257 |
|
|
\subsection{Linear Solvers in \LinearPDE} |
258 |
jgs |
107 |
Currently \finley supports the linear solvers \PCG, \GMRES, \PRESTWENTY and \BiCGStab. |
259 |
ksteube |
1316 |
For \GMRES the options \var{truncation} and \var{restart} of the \method{getSolution} can be |
260 |
|
|
used to control the truncation and restart during iteration. Default values are |
261 |
jgs |
102 |
\var{truncation}=5 and \var{restart}=20. |
262 |
jgs |
107 |
The default solver is \BiCGStab but if the symmetry flag is set \PCG is the default solver. |
263 |
jgs |
102 |
\finley supports the solver options \var{iter_max} which specifies the maximum number of iterations steps, |
264 |
|
|
\var{verbose}=\True or \False and \var{preconditioner}=\constant{JACOBI} or \constant {ILU0}. |
265 |
jgs |
107 |
In some installations \finley supports the \Direct solver and the |
266 |
jgs |
102 |
solver options \var{reordering}=\constant{util.NO_REORDERING}, |
267 |
|
|
\constant{util.MINIMUM_FILL_IN} or \constant{util.NESTED_DISSECTION} (default is \constant{util.NO_REORDERING}), |
268 |
|
|
\var{drop_tolerance} specifying the threshold for values to be dropped in the |
269 |
ksteube |
1316 |
incomplete elimination process (default is 0.01) and \var{drop_storage} specifying the maximum increase |
270 |
jgs |
102 |
in storage allowed in the |
271 |
ksteube |
1316 |
incomplete elimination process (default is 1.20). |
272 |
jgs |
102 |
|
273 |
|
|
\subsection{Functions} |
274 |
|
|
\begin{funcdesc}{Mesh}{fileName,integrationOrder=-1} |
275 |
|
|
creates a \Domain object form the FEM mesh defined in |
276 |
|
|
file \var{fileName}. The file must be given the \finley file format. |
277 |
|
|
If \var{integrationOrder} is positive, a numerical integration scheme |
278 |
|
|
chosen which is accurate on each element up to a polynomial of |
279 |
|
|
degree \var{integrationOrder} \index{integration order}. Otherwise |
280 |
|
|
an appropriate integration order is chosen independently. |
281 |
|
|
\end{funcdesc} |
282 |
|
|
|
283 |
|
|
\begin{funcdesc}{Rectangle}{n0,n1,order=1,l0=1.,l1=1., integrationOrder=-1, \\ |
284 |
ksteube |
1459 |
periodic0=\False,periodic1=\False,useElementsOnFace=\False,optimize=\False} |
285 |
jgs |
102 |
Generates a \Domain object representing a two dimensional rectangle between |
286 |
|
|
$(0,0)$ and $(l0,l1)$ with orthogonal edges. The rectangle is filled with |
287 |
|
|
\var{n0} elements along the $x_0$-axis and |
288 |
|
|
\var{n1} elements along the $x_1$-axis. |
289 |
|
|
For \var{order}=1 and \var{order}=2 |
290 |
|
|
\finleyelement{Rec4} and |
291 |
|
|
\finleyelement{Rec8} are used, respectively. |
292 |
|
|
In the case of \var{useElementsOnFace}=\False, |
293 |
|
|
\finleyelement{Line2} and |
294 |
|
|
\finleyelement{Line3} are used to subdivide the edges of the rectangle, respectively. |
295 |
|
|
In the case of \var{useElementsOnFace}=\True (this option should be used if gradients |
296 |
|
|
are calculated on domain faces), |
297 |
|
|
\finleyelement{Rec4Face} and |
298 |
|
|
\finleyelement{Rec8Face} are used on the edges, respectively. |
299 |
|
|
If \var{integrationOrder} is positive, a numerical integration scheme |
300 |
|
|
chosen which is accurate on each element up to a polynomial of |
301 |
|
|
degree \var{integrationOrder} \index{integration order}. Otherwise |
302 |
|
|
an appropriate integration order is chosen independently. If |
303 |
|
|
\var{periodic0}=\True, periodic boundary conditions \index{periodic boundary conditions} |
304 |
|
|
along the $x_0$-directions are enforced. That means when for any solution of a PDE solved by \finley |
305 |
|
|
the value on the line $x_0=0$ will be identical to the values on $x_0=\var{l0}$. |
306 |
|
|
Correspondingly, |
307 |
|
|
\var{periodic1}=\False sets periodic boundary conditions |
308 |
|
|
in $x_1$-direction. |
309 |
ksteube |
1459 |
If \var{optimize}=\True mesh node relabeling will be attempted to reduce the computation and also ParMETIS will be used to improve the mesh partition if running on multiple CPUs with MPI. |
310 |
jgs |
102 |
\end{funcdesc} |
311 |
|
|
|
312 |
|
|
\begin{funcdesc}{Brick}{n0,n1,n2,order=1,l0=1.,l1=1.,l2=1., integrationOrder=-1, \\ |
313 |
ksteube |
1459 |
periodic0=\False,periodic1=\False,periodic2=\False,useElementsOnFace=\False,optimize=\False} |
314 |
jgs |
102 |
Generates a \Domain object representing a three dimensional brick between |
315 |
|
|
$(0,0,0)$ and $(l0,l1,l2)$ with orthogonal faces. The brick is filled with |
316 |
|
|
\var{n0} elements along the $x_0$-axis, |
317 |
|
|
\var{n1} elements along the $x_1$-axis and |
318 |
|
|
\var{n2} elements along the $x_2$-axis. |
319 |
|
|
For \var{order}=1 and \var{order}=2 |
320 |
|
|
\finleyelement{Hex8} and |
321 |
|
|
\finleyelement{Hex20} are used, respectively. |
322 |
|
|
In the case of \var{useElementsOnFace}=\False, |
323 |
|
|
\finleyelement{Rec4} and |
324 |
|
|
\finleyelement{Rec8} are used to subdivide the faces of the brick, respectively. |
325 |
|
|
In the case of \var{useElementsOnFace}=\True (this option should be used if gradients |
326 |
|
|
are calculated on domain faces), |
327 |
|
|
\finleyelement{Hex8Face} and |
328 |
|
|
\finleyelement{Hex20Face} are used on the brick faces, respectively. |
329 |
|
|
If \var{integrationOrder} is positive, a numerical integration scheme |
330 |
|
|
chosen which is accurate on each element up to a polynomial of |
331 |
|
|
degree \var{integrationOrder} \index{integration order}. Otherwise |
332 |
|
|
an appropriate integration order is chosen independently. If |
333 |
|
|
\var{periodic0}=\True, periodic boundary conditions \index{periodic boundary conditions} |
334 |
|
|
along the $x_0$-directions are enforced. That means when for any solution of a PDE solved by \finley |
335 |
|
|
the value on the plane $x_0=0$ will be identical to the values on $x_0=\var{l0}$. Correspondingly, |
336 |
|
|
\var{periodic1}=\False and \var{periodic2}=\False sets periodic boundary conditions |
337 |
|
|
in $x_1$-direction and $x_2$-direction, respectively. |
338 |
ksteube |
1459 |
If \var{optimize}=\True mesh node relabeling will be attempted to reduce the computation and also ParMETIS will be used to improve the mesh partition if running on multiple CPUs with MPI. |
339 |
jgs |
102 |
\end{funcdesc} |
340 |
|
|
|
341 |
|
|
\begin{funcdesc}{GlueFaces}{meshList,safetyFactor=0.2,tolerance=1.e-13} |
342 |
ksteube |
1316 |
Generates a new \Domain object from the list \var{meshList} of \finley meshes. |
343 |
jgs |
102 |
Nodes in face elements whose difference of coordinates is less then \var{tolerance} times the |
344 |
|
|
diameter of the domain are merged. The corresponding face elements are removed from the mesh. |
345 |
|
|
|
346 |
|
|
TODO: explain \var{safetyFactor} and show an example. |
347 |
|
|
\end{funcdesc} |
348 |
|
|
|
349 |
|
|
\begin{funcdesc}{JoinFaces}{meshList,safetyFactor=0.2,tolerance=1.e-13} |
350 |
ksteube |
1316 |
Generates a new \Domain object from the list \var{meshList} of \finley meshes. |
351 |
jgs |
102 |
Face elements whose nodes coordinates have difference is less then \var{tolerance} times the |
352 |
|
|
diameter of the domain are combined to form a contact element \index{element!contact} |
353 |
|
|
The corresponding face elements are removed from the mesh. |
354 |
|
|
|
355 |
|
|
TODO: explain \var{safetyFactor} and show an example. |
356 |
|
|
\end{funcdesc} |