# Diff of /trunk/doc/user/finley.tex

revision 3293 by caltinay, Thu Oct 21 23:18:32 2010 UTC revision 3306 by caltinay, Mon Oct 25 05:09:13 2010 UTC
# Line 26  Line 26
26  \label{FINLEY FIG 01}  \label{FINLEY FIG 01}
27  \end{figure}  \end{figure}
28
29  \declaremodule{extension}{finley} \modulesynopsis{Solving linear, steady partial differential equations using  %\declaremodule{extension}{finley}
30  finite elements}  %\modulesynopsis{Solving linear, steady partial differential equations using finite elements}
31
32  {\it finley} is a library of C functions solving linear, steady partial differential equations  {\it finley} is a library of C functions solving linear, steady partial differential equations
33  \index{partial differential equations} (PDEs) or systems of PDEs using isoparametrical finite  \index{partial differential equations} (PDEs) or systems of PDEs using isoparametrical finite
# Line 43  following form: Line 43  following form:
43  \label{FINLEY.SINGLE.1}  \label{FINLEY.SINGLE.1}
44  \begin{array}{cl} &  \begin{array}{cl} &
45  \displaystyle{  \displaystyle{
46  \int\hackscore{\Omega}  \int_{\Omega}
47  A\hackscore{jl} \cdot v\hackscore{,j}u\hackscore{,l}+ B\hackscore{j} \cdot v\hackscore{,j} u+ C\hackscore{l} \cdot v u\hackscore{,l}+D \cdot vu \; d\Omega }  \\  A_{jl} \cdot v_{,j}u_{,l}+ B_{j} \cdot v_{,j} u+ C_{l} \cdot v u_{,l}+D \cdot vu \; d\Omega }  \\
48  + & \displaystyle{\int\hackscore{\Gamma} d \cdot vu \; d{\Gamma} }  + & \displaystyle{\int_{\Gamma} d \cdot vu \; d{\Gamma} }
49  +  \displaystyle{\int\hackscore{\Gamma^{contact}} d^{contact} \cdot [v][u] \; d{\Gamma} } \\  +  \displaystyle{\int_{\Gamma^{contact}} d^{contact} \cdot [v][u] \; d{\Gamma} } \\
50  = & \displaystyle{\int\hackscore{\Omega}  X\hackscore{j} \cdot v\hackscore{,j}+ Y \cdot v \; d\Omega }\\  = & \displaystyle{\int_{\Omega}  X_{j} \cdot v_{,j}+ Y \cdot v \; d\Omega }\\
51  + & \displaystyle{\int\hackscore{\Gamma} y \cdot v \; d{\Gamma}}  +  + & \displaystyle{\int_{\Gamma} y \cdot v \; d{\Gamma}}  +
52  \displaystyle{\int\hackscore{\Gamma^{contact}} y^{contact}\cdot [v] \; d{\Gamma}} \\  \displaystyle{\int_{\Gamma^{contact}} y^{contact}\cdot [v] \; d{\Gamma}} \\
53  \end{array}  \end{array}
54
55
# Line 483  Table~\ref{TAB FINLEY SOLVER OPTIONS 2} Line 483  Table~\ref{TAB FINLEY SOLVER OPTIONS 2}
483  By default, \finley is using the iterative solvers \PCG for symmetric and \BiCGStab for non-symmetric problems.  By default, \finley is using the iterative solvers \PCG for symmetric and \BiCGStab for non-symmetric problems.
484  If the direct solver is selected which can be useful when solving very ill-posed equations  If the direct solver is selected which can be useful when solving very ill-posed equations
485  \finley uses the \MKL \footnote{If the stiffness matrix is non-regular \MKL may return without  \finley uses the \MKL \footnote{If the stiffness matrix is non-regular \MKL may return without
486  returning a proper error code. If you observe suspicious solutions when using MKL, this may cause by a non-invertible operator. } solver package. If \MKL is not available \UMFPACK is used. If \UMFPACK is not available  returning a proper error code. If you observe suspicious solutions when using MKL, this may be caused by a non-invertible operator. } solver package. If \MKL is not available \UMFPACK is used. If \UMFPACK is not available
487  a suitable iterative solver from the \PASO is used.  a suitable iterative solver from the \PASO is used.
488
489  \section{Functions}  \section{Functions}
# Line 532  file \var{fileName}. Line 532  file \var{fileName}.
532
533
534  \begin{funcdesc}{Rectangle}{n0,n1,order=1,l0=1.,l1=1., integrationOrder=-1, \\  \begin{funcdesc}{Rectangle}{n0,n1,order=1,l0=1.,l1=1., integrationOrder=-1, \\
535    periodic0=\False, periodic1=\False, useElementsOnFace=\False, useMacroElements=\False, optimize=\False}    periodic0=\False, periodic1=\False, useElementsOnFace=\False, useMacroElements=\False,\\ optimize=\False}
536  Generates a \Domain object representing a two dimensional rectangle between  Generates a \Domain object representing a two dimensional rectangle between
537  $(0,0)$ and $(l0,l1)$ with orthogonal edges. The rectangle is filled with  $(0,0)$ and $(l0,l1)$ with orthogonal edges. The rectangle is filled with
538  \var{n0} elements along the $x_0$-axis and  \var{n0} elements along the $x_0$-axis and
# Line 561  in $x_1$-direction. Line 561  in $x_1$-direction.
561  If \var{optimize}=\True mesh node relabeling will be attempted to reduce the computation and also ParMETIS will be used to improve the mesh partition if running on multiple CPUs with MPI.  If \var{optimize}=\True mesh node relabeling will be attempted to reduce the computation and also ParMETIS will be used to improve the mesh partition if running on multiple CPUs with MPI.
562  \end{funcdesc}  \end{funcdesc}
563
564  \begin{funcdesc}{Brick}{n0,n1,n2,order=1,l0=1.,l1=1.,l2=1., integrationOrder=-1, \\  \begin{funcdesc}{Brick}{n0,n1,n2,order=1,l0=1.,l1=1.,l2=1., integrationOrder=-1,
565    periodic0=\False,periodic1=\False,periodic2=\False,useElementsOnFace=\False, useMacroElements=\False, optimize=\False}    periodic0=\False, periodic1=\False, \\ periodic2=\False, useElementsOnFace=\False, useMacroElements=\False, optimize=\False}
566  Generates a \Domain object representing a three dimensional brick between  Generates a \Domain object representing a three dimensional brick between
567  $(0,0,0)$ and $(l0,l1,l2)$ with orthogonal faces. The brick is filled with  $(0,0,0)$ and $(l0,l1,l2)$ with orthogonal faces. The brick is filled with
568  \var{n0} elements along the $x_0$-axis,  \var{n0} elements along the $x_0$-axis,

Legend:
 Removed from v.3293 changed lines Added in v.3306